
Majority Vote Algorithm Revisited Again

Tobias Nipkow

(Technische Universität München, www.in.tum.de/∼nipkow)

Abstract

In his article Experience with Software Specification and Verifica-
tion Using LP, the Larch Proof Assistant, Manfred Broy verified (as
one of his smaller case studies) the Majority Vote Algorithm by Boyer
and Moore. LP requires that all user theories are expressed axiomat-
ically. I reworked the example in Isabelle/HOL and turned it into a
definitional development, thus proving its consistency. In the end, a
short alternative proof is given.

1 Introduction

This paper is about Manfred Broy’s verification [Bro96] of the Majority Vote
algorithm by Boyer and Moore [BM91] conducted with the help of LP, the
Larch Prover [GG89]. LP was a theorem prover developed by Garland and
Guttag at MIT. It grew out of Lescanne’s Reve system [Les83], which was
based on equational logic. Although LP later supported full first-order logic,
the version that Broy was using was still restricted to equations.

This article is an attempt to evaluate the progress in theorem proving
technology and tools over the past two decades by reworking Broy’s proof in
the state of the art theorem prover Isabelle/HOL [NPW02]. Unsurprisingly,
much less effort is involved today. But more interesting is the conceptual
progress the field has made. Hence this article will not compare proof sizes
but specification styles. LP was based on an axiomatic specification style:
every function was introduced by axioms, and there was no mechanism to
check the consistency of a specification. In contrast, the Boyer-Moore prover
Nqthm [BM79], Mike Gordon’s HOL [GM93], and Isabelle/HOL [NPW02]
all emphasise or even restrict to definitional extension, thus guaranteeing
consistency. Broy accompanies his specification by informal proofs of con-
sistency, sometimes indicating how a richer logic would have permitted a
definitional specification. Having translated Broy’s specifications into defi-
nitional form I can confirm that they are consistent, although in two places
this is not trivial to show.

Of course one should not be too unkind to LP. It was not conceived
as a program verification system in the way Nqthm was, and it allowed

1

www.in.tum.de/~nipkow


axiomatic reasoning in a way that Nqthm would not. Higher-order provers
can combine the best of both worlds: Isabelle/HOL supports structured
specifications called locales [Bal04] which appear axiomatic but are in fact
definitional.

2 MJRTY

Before we begin to formalise Broy’s proof we explain MJRTY, the Boyer-
Moore Majority Vote algorithm, by quoting their own vivid description:

Imagine a convention center filled with delegates (i.e. voters)
each carrying a placard proclaiming the name of his candidate.
Suppose a floor fight ensues and delegates of different persuasions
begin to knock one another down with their placards. Suppose
that each delegate who knocks down a member of the opposition
is simultaneously knocked down by his opponent. Clearly, should
any candidate field more delegates than all the others combined,
that candidate would win the floor fight and, when the chaos
subsided, the only delegates left standing would be from the
majority block. Should no candidate field a clear majority, the
outcome is less clear; at the conclusion of the fight, delegates in
favor of at most one candidate, say, the nominee, would remain
standing—but the nominee might not represent a majority of all
the delegates. Thus, in general, if someone remains standing at
the end of such a fight, the convention chairman is obliged to
count the nominee’s placards (including those held by downed
delegates) to determine whether a majority exists.

Like everybody else I concentrate on the fight phase of the algorithm, where
a single candidate is determined—counting if he has a majority is trivial.
Here is how Boyer and Moore describe a bloodless version of the fight phase:

The chairman visits each delegate in turn, keeping in mind a
current candidate cand and a count k, which is initialised to
0. Upon visiting each delegate, the chairman first determines
whether k is 0; if it is, the chairman selects the delegate’s can-
didate as the new value of cand and sets k to 1. Otherwise, the
chairman asks the delegate whether his candidate is cand. If so,
then k is incremented by 1. If not, then k is decremented by 1.
The chairman then proceeds to the next delegate.

They verified a Fortran version of this algorithm. I follow Broy in verifying
a functional specification instead.

2



3 Consistency

Above I explained that working with LP raises the issue of consistency of an
axiomatic specification. Broy discusses it as well and uses two mechanisms
to ensure consistency: non-recursive definitions and structurally recursive
definitions over a set of free constructors. We can prove the consistency
of some axiomatic specification if we can give a consistent definition of the
functions involved (e.g. using the two definition principles just mentioned)
and we can prove the axioms from those definitions. Unfortunately Broy
chooses the non-free data type of multisets for his work, which raises a
thorny consistency issue. He is aware of this: at the end of section 3.2 of his
article he acknowledges that for structural recursion equations over non-free
data types one still needs to show that the result of the function is unique.
He writes

This proof, however, can be quite difficult for recursive functions.

and does not attempt such proofs in the paper. Most likely, LP would not
have supported them.

Below we will show the consistency of Broy’s specifications by expressing
all functions purely definitionally in Isabelle/HOL. That is, in the end, every
function is defined by a non-recursive equation f(x) = t, where f does not
occur in t. Luckily, Isabelle/HOL helps: for example, terminating recursion
equations over free data types can be given by the user and the system will
turn them into non-recursive definitions from which it derives the original
recursion equations as theorems. However, for multisets, no such automation
is available and I had to get my hands dirty.

In places where the axiomatic specification follows easily from the defi-
nitional one, I will not comment on the issue.

4 Broy’s development

Broy decides to model the delegates on the floor by a multiset. He needed to
specify multisets himself, in Isabelle/HOL we have a well-developed library
theory of finite multisets of type ′a multiset—multisets of elements of type
′a, where ′a is a type variable. It provides the empty and singleton multisets
{#} and {#x#}, multiset union and difference M +N and M−N, multiset
membership x ∈# M, the number of times an element occurs in a multiset
count M x, and the size of a multiset size M . Having such well-developed
libraries of fundamental mathematical concepts is theoretically trivial but
practically invaluable progress.

Broy also introduces a choice function any of type ′a multiset ⇒ ′a that
he characterises axiomatically:

any ({#x#} + M ) = x ∨ M 6= {#} ∧ any ({#x#} + M ) = any M

3



In Isabelle/HOL we define any via the indefinite choice operator SOME :

any M = (SOME x . x ∈# M )

and abbreviate M − {#any M #} by drop M.
Note that any does not satisfy Broy’s axiom, something I only realized

when I failed to prove the axiom. Nitpick [BN10] found the following coun-
terexample for me. I present it in terms of sets instead of multisets, the issue
remains the same. Let type ′a be some 3-element type, e.g. {1 ,2 ,3}. Let
any behave like this: {1 ,2 ,3} 7→ 3, {1 ,2} 7→ 1, {1 ,3} 7→ 1, {2 ,3} 7→ 2, {1}
7→ 1, {2} 7→ 2, {3} 7→ 3, {} 7→ 3. This is consistent with our definition of
any. But if we set M = {2 ,3} and x = 1, Broy’s axiom for any is falsified
because any {1 ,2 ,3} is neither 1 nor any {2 ,3}. This reveals that Broy’s
axiom is stronger than necessary. The implication

M 6= {#} =⇒ any M ∈# M

would have sufficed and would have been equivalent to my definition of any.
His axiom is consistent because in HOL it is provable that every type can
be well-ordered. Hence any could pick out the least element w.r.t. that
well-order, thus satisfying Broy’s axiom.

Broy subdivides the rest of his development into the classical triple of
requirements, design and implementation.

4.1 The requirements specification

Let majority M x (“x has the majority in M ”) be an abbreviation for size
M < 2 ∗ count M x. Broy states the requirements on the majority vote
algorithm by introducing a function major of type ′a multiset ⇒ ′a and
asserting that if there is a majority in M, then major M must return that
element. Due to the lack of existential quantifiers in LP, Broy needs to
specify two functions simultaneously, major and anarchic. The latter, he
notes, should really be defined like this, which I did:

anarchic M = (@ x . majority M x )

Introducing the requirements specification as a function major is unsat-
isfactory as it is not clear yet if such a function exists. In Isabelle, there is
an alternative: locales [Bal04]. Here is the requirements specification as a
locale:

locale Mjrty-req =
fixes major :: ′a multiset ⇒ ′a
assumes ¬ anarchic M =⇒ majority M (major M )

This looks like an axiomatic specification of a function major but defines a
predicate Mjrty-req where major is just a parameter:

4



Mjrty-req major = (∀M . ¬ anarchic M −→ majority M (major M ))

That is, Mjrty-req is a higher-order function that defines the requirement to
be a majority finder. LP being first-order, such a specification was not open
to Broy. He comments on this very issue in his quicksort proof in the same
article.

4.2 The design specification

Broy calls a multiset homogeneous iff all its elements are the same:

homo M = (∀ x y . x ∈# M −→ y ∈# M −→ x = y)

His approach is to compute the majority by splitting the multiset into a ho-
mogeneous and an anarchic part. Simplifying and translating Broy’s speci-
fication into a locale yields

locale Mjrty-design =
fixes hom :: ′a multiset ⇒ ′a multiset
assumes hom M ≤ M and homo(hom M ) and anarchic(M − hom M )

Locale Mjrty-design specifies the above requirements for splitting off a ho-
mogeneous part. Note that ≤ is the submultiset relation. In the context of
the assumptions of Mjrty-design it is easy to show that any ◦ hom satisfies
the requirements specification:

Mjrty-req (any ◦ hom)

4.3 Implementation

Now we come to the “bloodless” algorithm where the chairman visits each
delegate in turn (see Section 2). Broy’s version looks quite different from
Boyer and Moore’s but is in fact very similar: he operates on homogeneous
multisets, and a homogeneous multiset is isomorphic to an element and a
multiplicity—the cand and k by Boyer and Moore. Broy specifies a function
scan :: ′a multiset ⇒ ′a multiset that iterates over a multiset and is supposed
to satisfy Mjrty-design. Here is his specification:

scan {#} = {#}

scan ({#any M #} + drop M ) =
(if homo ({#any M #} + scan (drop M )) then {#any M #} + scan (drop
M )
else drop (scan (drop M )))

5



This is a subtle axiomatisation. Defining a recursive function on multisets
(or sets) is nontrivial because they are non-free data structures. Broy does
not write the second axiom as scan ({#x#} + M ) = . . ., which would have
been inconsistent: if the argument of scan is anarchic, it matters in which
order the elements of the multiset are visited. Broy avoids the problem by
examining the elements in the canonical order determined by any. Although
this leaves open in what sense this can be considered executable or an im-
plementation, it seems to avoid the inconsistency. But are his axioms really
consistent? In the definitional approach we have to face this issue, and this
is where HOL comes into its own. Isabelle/HOL’s multiset library offers a
recursion combinator for iterating over a multiset. But the function to be
iterated needs to be insensitive to the order in which multiset elements are
examined, but scan is not. Hence we have to do some real work.

I follow the standard road for defining beastly functions: define an in-
ductive predicate/relation and show that it is in fact a function. Here is the
inductive definition of a binary predicate Scan:

Scan {#} {#}

Scan (drop M ) N =⇒
Scan (drop M + {#any M #})
(if homo ({#any M #} + N ) then {#any M #} + N else drop N )

The point is that (monotone) inductive definitions are always consistent.
Isabelle knows about this. That is, if you tell it to interpret a set of implica-
tions of a particular form as an inductive definition, it will internally create
a proper definition from which it derives the given implications as theorems.
No axioms are involved.

Resorting to Isabelle/HOL’s definite description operator THE we can
trivially define scan:

scan M = (THE N . Scan M N )

Of course, now the real work starts: we have to derive the recursion
equations from this definition. First, injectivity of Scan:

Scan M N =⇒ Scan M N ′ =⇒ N = N ′

The proof is a simple induction on the derivation of the first premise. All
the work is in this lemma:

Scan (drop M + {#any M #}) N =⇒
∃K . Scan (drop M ) K ∧

N = (if homo ({#any M #} + K ) then {#any M #} + K else drop
K )

6



It holds because nonempty multisets can be decomposed uniquely into an
element any M and a rest drop M. The proof is a bit technical. Now we can
prove that Scan is not just injective but also total:

∃ !N . Scan M N

The quantifier ∃ ! means “there exists a unique”. This proof is by induction
on the size of M. If M is nonempty, Scan (drop M ) L follows by induction
hypothesis, from which we can derive Scan M . . . (for suitable . . .) by the
second rule for Scan because M = drop M + {#any M #}. By injectivity
of Scan, the result . . . is unique. Now the two equations for scan are easily
derived using this basic lemma:

∃ !x . P x =⇒ P a =⇒ (THE x . P x ) = a

Until now, except for the derivation of the scan equations, we hardly
needed to prove anything. But now we need to show that scan satisfies the
design specification:

Mjrty-design scan

We prove the three properties that Mjrty-design stands for by a simultaneous
induction on M :

scan M ≤ M homo (scan M ) anarchic (M − scan M )

Because of the nonstandard pattern on the left-hand side of the second scan
equation, the induction is on the size of M. The proof is about as long as
the derivation of the scan equation.

We have now come to the end of our little case study. Broy still has to
prove the consistency of his specifications of homo and anarchic. He does so
by giving recursion equations over multisets. Again this is not a complete
proof because multisets are non-free data types (see Section 3). But now a
proper consistency proof is simpler. We already have definitions for those
two functions, we merely need to show that Broy’s equations follow from
them, which turns out to be almost trivial due to Isabelle’s automation. We
show the equations without further comment:

homo {#} homo {#x#}
homo (A + {#b#} + {#a#}) = (a = b ∧ homo (A + {#b#}))
anarchic M = comp M (size M )

comp {#} n comp {#a#} n = (1 < n)

comp ({#a#} + M ) n = (2 ∗ count ({#a#} + M ) a ≤ n ∧ comp M n)

Here comp is a suitably defined function, which the reader is invited to figure
out herself. Note that the definition does not matter as long as we obtain
the desired properties.

7



5 A functional program

Although I could prove the consistency of Broy’s specifications, the result
is not satisfactory from a programmer’s point of view: a lot of logic, and
in the end we do not even obtain an executable functional program but a
set of recursion equations over multisets that still contain a choice operator.
Surely we can do better! For a start, let us work on lists, multisets only
complicate matters: they appear to be more abstract, but scan has to operate
on canonically ordered multisets, i.e. lists in disguise. Let us also drop all
ideas of stepwise refinement: the algorithm is simple enough for a direct
approach. The “bloodless algorithm” is trivially expressed as a function on
lists:

cand c k [] = c
cand c k (x ·xs) =
(if x = c then cand c (k + 1 ) xs
else case k of 0 ⇒ cand x 1 xs | Suc n ⇒ cand c n xs)

where [] is the empty list and x ·xs is the list with head x and tail xs. Without
further ado, here is the correctness theorem

majority xs m =⇒ cand c 0 xs = m

where majority xs m abbreviates length xs div 2 < length(filter (λx . x=m)
xs). The theorem follows trivially from this lemma

majority (replicate k c @ xs) m =⇒ cand c k xs = m

which is proved by induction on xs followed by simplification. The key
is the no-frills formulation on lists with its rich background library that
already provides the functions length, @ (append), filter and replicate (where
replicate k c is the list of k c’s) for a compact description of the specification
and its generalisation.

6 Conclusion

This paper has compared an axiomatic theorem prover from the early 1990s
(LP) with a state-of-the-art definitional theorem prover of today (Isabelle/HOL).
The progress that we have seen is largely conceptual. Most importantly, all
of the axiomatic specifications could be replaced by definitions from which
the axioms are derived. This is partly the result of the richer logic HOL
that supports polymorphism, higher-order functions and choice operators.
It is also the result of many years of system development: Isabelle/HOL of-
fers inductive and recursive definition facilities that appear axiomatic on the
surface but are definitional internally. The same is true of structuring facil-
ities like locales that help to express axiomatic requirements specifications

8



in a definitional manner. Last but not least, the continuous development of
libraries is absolutely essential: The pleasingly succinct verification of the
functional program in Section 5 would not have been possible without Is-
abelle/HOL’s well-developed list library. The latter proof is also an excellent
example of the keep it simple approach to verification.

Acknowledgement I would like to thank Manfred Broy for his long-term
support of the Isabelle project and many years of extremely pleasant coop-
eration.

References

[Bal04] Clemens Ballarin. Locales and locale expressions in Isabelle/Isar.
In S. Berardi, M. Coppo, and F. Damiani, editors, Types for
Proofs and Programs (TYPES 2003), volume 3085 of Lect. Notes
in Comp. Sci., pages 34–50. Springer-Verlag, 2004.

[BM79] Robert S. Boyer and J Strother Moore. A Computational Logic.
Academic Press, 1979.

[BM91] Robert S. Boyer and J. Strother Moore. MJRTY: A fast majority
vote algorithm. In Automated Reasoning: Essays in Honor of
Woody Bledsoe, pages 105–118. Kluwer, 1991.

[BN10] Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A
counterexample generator for higher-order logic based on a re-
lational model finder. In M. Kaufmann and L. Paulson, editors,
Interactive Theorem Proving (ITP 2010), volume 6172 of Lect.
Notes in Comp. Sci., pages 131–146. Springer-Verlag, 2010.

[Bro96] Manfred Broy. Experiences with software specification and veri-
fication using LP, the Larch proof assistant. Formal Methods in
System Design, 8(3):221–272, 1996.

[GG89] Stephen Garland and John Guttag. An overview of LP, the Larch
prover. In N. Dershowitz, editor, Rewriting Techniques and Appli-
cations, volume 355 of Lect. Notes in Comp. Sci., pages 137–151.
Springer-Verlag, 1989.

[GM93] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL:
a theorem-proving environment for higher order logic. Cambridge
University Press, 1993.

[Les83] Pierre Lescanne. Computer experiments with the Reve term
rewriting system generator. In Proc. 10th ACM Symp. Princi-
ples of Programming Languages, pages 99–108. ACM Press, 1983.

9



[NPW02] Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Is-
abelle/HOL — A Proof Assistant for Higher-Order Logic, volume
2283 of Lect. Notes in Comp. Sci. Springer-Verlag, 2002.

10


	Introduction
	MJRTY
	Consistency
	Broy's development
	The requirements specification
	The design specification
	Implementation

	A functional program
	Conclusion

