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Abstract. Nitpick is a counterexample generator for Isabelle/HOL that builds
on Kodkod, a SAT-based first-order relational model finder. Nitpick supports un-
bounded quantification, (co)inductive predicates and datatypes, and (co)recursive
functions. Fundamentally a finite model finder, it approximates infinite types by
finite subsets. As case studies, we consider a security type system and a hotel key
card system. Our experimental results on Isabelle theories and the TPTP library
indicate that Nitpick generates more counterexamples than other model finders
for higher-order logic, without restrictions on the form of the formulas to falsify.

1 Introduction

Anecdotal evidence suggests that most “theorems” initially given to an interactive theo-
rem prover do not hold, typically because of a typo or a missing assumption, but some-
times because of a fundamental flaw. Modern proof assistants often include counter-
example generators that can be run on putative theorems or on specific subgoals in a
proof to spare users the Sisyphean task of trying to prove non-theorems.

Isabelle/HOL [17] includes two such tools: Quickcheck [4] generates functional
code for the higher-order logic (HOL) formula and evaluates it for random values of the
free variables, and Refute [23] searches for finite countermodels of a formula through
a reduction to SAT (Boolean satisfiability). Their areas of applicability are almost dis-
joint: Quickcheck excels at inductive datatypes but is restricted to the executable frag-
ment of HOL (which excludes unbounded quantifiers) and may loop endlessly on in-
ductive predicates. Refute copes well with logical symbols, but inductive datatypes and
predicates are mostly out of reach due to combinatorial explosion.

In the first-order world, the Alloy Analyzer [13], a testing tool for first-order re-
lational logic (FORL), has enjoyed considerable success lately. Alloy’s backend, the
relational model finder Kodkod [21], is available as a stand-alone Java library and is
used in many projects.

Alloy’s success inspired us to develop a new counterexample generator for Isabelle,
called Nitpick.1 It uses Kodkod as its backend, thereby benefiting from Kodkod’s opti-
mizations (notably its symmetry breaking) and its rich relational logic. The basic trans-
lation from HOL to FORL is conceptually simple (Section 3); however, common HOL
? This work is supported by the DFG grant Ni 491/11-1.
1 The name Nitpick is appropriated from Alloy’s venerable precursor.



idioms such as (co)inductive datatypes and (co)inductive predicates necessitate a trans-
lation scheme tailored for SAT solving (Section 4). In addition, Nitpick benefits from
many novel optimizations that greatly improve its performance, especially in the pres-
ence of higher-order constructs (Section 5).

As case studies, we consider the Isabelle formalizations of a hotel key card system
and a security type system (Section 6), both of which are currently beyond the reach
of Quickcheck and Refute. Our evaluation indicates that Nitpick falsifies more formu-
las than Quickcheck and Refute (Section 7), to a large extent because it imposes no
syntactic restrictions on the formulas to falsify. Nitpick is integrated with the TPTP
benchmark suite [20] and exposed three bugs in the higher-order provers TPS [1] and
LEO-II [3].

2 Background

2.1 Higher-Order Logic (HOL)

The types and terms of HOL [12] are that of the simply typed λ-calculus extended with
type constructors and constants:

Types: Terms:
σ ::= α (type variable) t ::= xσ (variable)

| (σ, . . . ,σ) κ (type construction) | cσ (constant)
| t t (application)
| λxσ. t (abstraction)

We write κ for () κ, σ κ for (σ) κ, and σ κ τ for (σ, τ) κ. HOL’s standard semantics
interprets the Boolean type o and the function space σ→ τ. Other types are defined,
notably the product type σ×τ. The function arrow associates to the right, reflecting the
left-associativity of application. We assume throughout that terms are well-typed using
the standard typing rules and write x and c instead of xσ and cσ when the type σ is
irrelevant or can be inferred from the context. A formula is a term of type o.

Type variables occurring in the type of a constant can be instantiated, offering a
restricted form of polymorphism. Standard models interpret the constant 'α�α�o as
equality on α for any instance of α. Logical connectives and quantifiers can be defined
in terms of '; for example, Trueo = (λxo. x) ' (λx. x) and ∀(α�o)�o = (λPα�o. P '
(λx. True)). The traditional binder notation Qx. t abbreviates Q (λx. t).

2.2 First-Order Relational Logic (FORL)

Kodkod’s idiosyncratic logic, FORL, combines elements from first-order logic and rela-
tional calculus, to which it adds the transitive closure operator [21]. Its formulas involve
variables and terms ranging over relations (sets of tuples drawn from a universe of un-
interpreted atoms) of arbitrary arities. The logic is unsorted, but each term denotes a
relation of a fixed arity that can be inferred from the arities of its variables. Our transla-
tion relies on the following FORL fragment.



Formulas: Terms:
ϕ ::= false (falsity) r ::= none (empty set)
| true (truth) | iden (identity relation)
| m r (multiplicity constraint) | an (atom)
| r ' r (equality) | x (variable)
| r ⊆ r (inclusion) | {〈d, . . . ,d〉 | ϕ} (comprehension)
| ¬ϕ (negation) | πn

n(r) (projection)
| ϕ ∧ ϕ (conjunction) | r+ (transitive closure)
| ∀d: ϕ (universal quantification) | r.r (dot-join)

| r× r (Cartesian product)
d ::= x ∈ r | r ∪ r (union)
m ::= no | lone | one | r− r (difference)
n ::= 1 | 2 | · · · | if ϕ then r else r (conditional)

FORL syntactically distinguishes between terms and formulas. The universe of dis-
course is A = {a1, . . . ,ak}, where each ai is an uninterpreted atom. Atoms and n-tuples
are identified with singleton sets and singleton n-ary relations, respectively. Bound vari-
ables in quantifications and comprehensions range over the tuples in a relation; thus,
∀x∈ (a1∪a2)×a3: ϕ(x) is equivalent to ϕ(a1×a3) ∧ ϕ(a2×a3).

Although they are not listed above, we will sometimes make use of ∨, −→, ∃, ∗,
and ∩ in examples. The constraint no r expresses that r is the empty relation, one r
expresses that r is a singleton, and lone r⇐⇒ no r ∨ one r. The projection and dot-join
operators are unconventional; their semantics is given by the equations

Jπk
i (r)K = {(ri, . . . ,ri+k−1) | (r1, . . . ,rm) ∈ JrK}
Jr.sK = {(r1, . . . ,rm−1, s2, . . . , sn) | ∃t. (r1, . . . ,rm−1, t) ∈ JrK ∧ (t, s2, . . . , sn) ∈ JsK}.

The dot-join operator admits three important special cases. Let s be unary and r, r′ be
binary relations. The expression s.r gives the direct image of the set s under r; if s is a
singleton and r a function, it coincides with the function application r(s). Analogously,
r.s gives the inverse image of s under r. Finally, r.r′ expresses relational composition.

To pass an n-tuple s to a function r, we write 〈s〉.r, which stands for the n-fold
dot-join πn(s).(. . . .(π1(s).r) . . .). We write πi(r) for π1

i (r).
The relational operators often make it possible to express first-order problems con-

cisely. The following Kodkod specification attempts to fit 30 pigeons in 29 holes:

vars pigeons = {a1, . . . ,a30}, holes = {a31, . . . ,a59}
var /0⊆ nest⊆ {a1, . . . ,a30}×{a31, . . . ,a59}
solve (∀p∈pigeons: one p.nest) ∧ (∀h∈holes: lone nest.h)

The example declares three free variables: pigeons and holes are given fixed values,
whereas nest is specified with a lower and an upper bound. Variable declarations are an
extralogical way of specifying sort constraints and partial solutions.

The constraint one p.nest states that pigeon p is in relation with exactly one hole,
and lone nest.h that hole h is in relation with at most one pigeon. Taken as a whole, the
formula states that nest is a one-to-one function. It is, of course, not satisfiable, a fact
that Kodkod can establish in less than a second.



When reducing FORL to SAT, each n-ary relational variable y is in principle trans-
lated to an |A |n array of propositional variables V[i1, . . . , in], with V[i1, . . . , in] ⇐⇒
〈ai1 , . . . ,ain〉 ∈ y. Most relational operations can be coded efficiently; for example, ∪ is
simply ∨. The quantified formula ∀r∈ s: ϕ(r) is treated as

∧n
j=1 tj ⊆ s−→ ϕ(tj), where

the tj’s are the tuples that may belong to s. Transitive closure is unrolled to saturation.

3 The Basic Translation

Nitpick employs Kodkod to find a finite model (a satisfying assignment to the free
variables and constants) of ¬P, where P is the formula to refute. The translation of a
formula from HOL to FORL is parameterized by the cardinalities of the types occurring
in it, provided as a function |σ| from types to positive integers obeying

|σ| ≥ 1 |o|= 2 |σ→τ|= |τ||σ| |σ×τ|= |σ| · |τ| .

Following Jackson [13], we call such a function a scope. Like other SAT-based model
finders, Nitpick enumerates the possible scopes for each basic type, so that if a formula
has a finite counterexample, the tool eventually finds it, unless it runs out of resources.

The basic translation presented in this section handles the following HOL constants:

Falseo (falsity) insertα�(α�o)�α�o (element insertion)
Trueo (truth) UNIVα�o (universal set)
'α�α�o (equality) ∪(α�o)�(α�o)�α�o (union)
⊆(α�o)�(α�o)�o (subset) −(α�o)�(α�o)�α�o (set difference)
¬o�o (negation) Pairα�β�α×β (pair constructor)
∧o�o�o (conjunction) fstα×β�α (first projection)
∀(α�o)�o (universal quantifier) sndα×β�β (second projection)
/0α�o (empty set) ( )+ (α×α�o)�α×α�o (transitive closure)

SAT solvers are particularly sensitive to the encoding of problems, so special care is
needed when translating HOL formulas. Whenever practicable, HOL constants should
be mapped to their FORL equivalents, rather than expanded to their definitions. This is
especially true for the transitive closure r+, which is defined as the least fixed point of
λR (x, y). (∃a b. x' a ∧ y' b ∧ r (a, b)) ∨ (∃a b c. x' a ∧ y' c ∧ R (a, b) ∧ r (b, c)).

As a rule, HOL functions should be mapped to FORL relations accompanied by
a constraint. For example, assuming the scope |α| = 2 and |β| = 3, the presumptive
theorem ∀xα. ∃y β. f x' y corresponds to the Kodkod problem

var /0⊆ f ⊆ {a1,a2}×{a3,a4,a5}
solve (∀x∈a1∪a2: one x. f ) ∧ ¬(∀x∈a1∪a2: ∃y∈a3∪a4∪a5: x. f ' y)

The first conjunct ensures that f is a function, and the second conjunct is the negation
of the HOL formula translated to FORL.

An n-ary first-order function (curried or not) can be coded as an (n+1)-ary relation
accompanied by a constraint. However, if the return type is o, the function is more
efficiently coded as an unconstrained n-ary relation. This allows formulas such as A+ ∪
B+ ' (A ∪ B)+ to be translated without taking a detour through ternary relations.



Higher-order quantification and functions bring complications of their own. For ex-
ample, we would like to translate ∀g β�α. g x 6' y into something like

∀g⊆ (a3∪a4∪a5)× (a1∪a2): (∀x∈a3∪a4∪a5: one x.g)−→ x.g 6' y,

but the⊆ symbol is not allowed at the binding site; only ∈ is. Skolemization solves half
of the problem (Section 5.1), but for the remaining quantifiers we are forced to adopt
an unwieldy n-tuple singleton representation of functions, where n is the cardinality of
the domain. For the formula above, this gives

∀G∈ (a1∪a2)×(a1∪a2)×(a1∪a2): x.
( g︷ ︸︸ ︷

a3×π1(G) ∪ a4×π2(G) ∪ a5×π3(G)
)
6' y,

where G is the triple corresponding to g. In the body, we convert the singleton G to the
relational representation, then we apply x on it using dot-join. The singleton encoding
is also used for passing functions to functions; fortunately, two optimizations, function
specialization and boxing (Section 5.1), make this rarely necessary.

We are now ready to look at the basic translation in more detail. The translation dis-
tinguishes between formulas (F), singletons (S), and relations (R). We start by mapping
HOL types to sets of FORL atom tuples. For each type σ, we provide two codings, a
singleton representation S〈〈σ〉〉 and a relational representation R〈〈σ〉〉:2

S〈〈σ→τ〉〉= S〈〈τ〉〉|σ| R〈〈σ→o〉〉= S〈〈σ〉〉
S〈〈σ×τ〉〉= S〈〈σ〉〉×S〈〈τ〉〉 R〈〈σ→τ〉〉= S〈〈σ〉〉×R〈〈τ〉〉

S〈〈σ〉〉= {a1, . . . ,a|σ|} R〈〈σ〉〉= S〈〈σ〉〉.

In the S representation, an element of type σ is mapped to a single tuple ∈ S〈〈σ〉〉. In the
R representation, an element of type σ→o is mapped to a subset of S〈〈σ〉〉 consisting of
the points at which the predicate is True; an element of σ→τ (where τ 6= o) is mapped
to a relation ⊆ S〈〈σ〉〉×R〈〈τ〉〉; any other element is coded as a singleton. For simplicity,
we reuse the same atoms for distinct types. Doing so is sound for well-typed terms.

For each free variable yσ, we generate the declaration var /0⊆ y⊆ R〈〈σ〉〉 as well as a
constraint Φσ(y) to ensure that functions are functions and single values are singletons:

Φ
σ1�···�σn�o(r) = true Φ

σ�τ(r) = ∀bf∈S〈〈σ〉〉: Φ
τ
(
〈bf〉.r

)
Φ
σ(r) = one r.

We assume that free and bound variables are syntactically distinguishable, and use the
letter y for the former and b for the latter. The symbol bf denotes a fresh bound variable.

We assume a total order on n-tuples of atoms and let Si〈〈σ〉〉 denote the ith tuple from
S〈〈σ〉〉 according to that order. Furthermore, we define s(σ) and r(σ) as the arity of the
tuples in S〈〈σ〉〉 and R〈〈σ〉〉, respectively. The translation of terms requires the following
rather technical conversions between singletons (S), relations (R), and formulas (F):

s2rσ→o(r) =
⋃|σ|

i=1 πi(r).(a2×Si〈〈σ〉〉) f2s(ϕ) = if ϕ then a2 else a1

s2rσ→τ(r) =
⋃|σ|

i=1 Si〈〈σ〉〉× s2rτ
(
π

s(τ)
(i−1)·s(τ)+1(r)

)
s2f(r) = r ' a2

r2sσ→τ(r) = {〈bf∈S〈〈σ→τ〉〉〉 | s2rσ→τ(bf)' r} s2rσ(r) = r r2sσ(r) = r.

The Boolean values false and true are arbitrarily coded as a1 and a2, respectively.
2 Metatheoretic functions here and elsewhere are defined using sequential pattern matching,

eliminating the need for side conditions such as “if τ 6= o” and “otherwise.”



The translation of HOL terms is performed by three functions, F〈〈t〉〉, S〈〈t〉〉, and R〈〈t〉〉.
Their defining equations are to be matched modulo η-equivalence:

F〈〈y〉〉= s2f(y) F〈〈t ⊆ u〉〉= R〈〈t〉〉 ⊆ R〈〈u〉〉 S〈〈b〉〉= b

F〈〈b〉〉= s2f(b) F〈〈¬ t〉〉= ¬F〈〈t〉〉 S〈〈Pair t u〉〉= S〈〈t〉〉×S〈〈u〉〉
F〈〈False〉〉= false F〈〈t ∧ u〉〉= F〈〈t〉〉 ∧ F〈〈u〉〉 S〈〈fst tσ×τ〉〉= π

s(σ)
1 (S〈〈t〉〉)

F〈〈True〉〉= true F〈〈∀bσ. t〉〉= ∀b∈S〈〈σ〉〉: F〈〈t〉〉 S〈〈snd tσ×τ〉〉= π
s(τ)
s(σ)+1(S〈〈t〉〉)

F〈〈t ' u〉〉= R〈〈t〉〉 ' R〈〈u〉〉 F〈〈t u〉〉= S〈〈u〉〉 ⊆ R〈〈t〉〉 S〈〈t〉〉= r2sσ
(
R〈〈t〉〉

)
R〈〈co〉〉= f2s(c) R〈〈insert t u〉〉= S〈〈t〉〉 ∪ R〈〈u〉〉

R〈〈y〉〉= y R〈〈t ∪ u〉〉= R〈〈t〉〉 ∪ R〈〈u〉〉
R〈〈bσ〉〉= s2rσ(b) R〈〈t−u〉〉= R〈〈t〉〉−R〈〈u〉〉

R〈〈Pair t u〉〉= S〈〈Pair t u〉〉 R〈〈(tσ×σ�o)+〉〉= R〈〈t〉〉+ if r(σ) = 1

R〈〈fst tσ×τ〉〉= s2rσ
(
S〈〈fst t〉〉

)
R〈〈tσ�o u〉〉= f2s

(
F〈〈t u〉〉

)
R〈〈snd tσ×τ〉〉= s2rτ

(
S〈〈snd t〉〉

)
R〈〈t u〉〉= 〈S〈〈u〉〉〉.R〈〈t〉〉

R〈〈 /0σ〉〉= noner(σ) R〈〈λbσ. to〉〉= {〈b∈S〈〈σ〉〉〉 | F〈〈t〉〉}
R〈〈UNIVσ〉〉= R〈〈σ〉〉 R〈〈λbσ. tτ〉〉= {〈b∈S〈〈σ〉〉, bf∈R〈〈τ〉〉〉 | bf ⊆ R〈〈t〉〉}.

Annoyingly, the translation of transitive closure is defined only if r(σ) = 1. We will
see ways to lift this restriction in the next two sections.

Theorem 1 (Soundness). Given a putative theorem P with free variables yσ1
1 , . . . ,yσn

n
within our HOL fragment and a scope S, P admits a counterexample if there exists a
valuation V with V(yj)⊆R〈〈σj〉〉 that satisfies the FORL formula F〈〈¬P〉〉∧

∧n
j=1 Φσj(yj).

Proof sketch. Let JtKA denote the set-theoretic semantics of the HOL term t w.r.t. a vari-
able assignment A and the scope S. Let JρKV denote the semantics of the FORL term
or formula ρ w.r.t. a variable valuation V and the scope S. Furthermore, let bvcX de-
note the X -encoded FORL value corresponding to the HOL value v, for X ∈ {F,S,R}.
Using recursion induction, it is straightforward to prove that JX〈〈t〉〉KV = bJtKAcX if
V(yi) = bA(yi)cR for all free variables yi and V(bi) = bA(bi)cS for all locally free bound
variables bi occurring in t. Moreover, from the satisfying valuation V of the free vari-
ables yi, we can construct a type-correct HOL assignment A such that bA(yi)cR = V(yi);
the Φσj(yj) constraints and the variable bounds V(yj) ⊆ R〈〈σj〉〉 ensure that such an as-
signment exists. Hence, JF〈〈¬P〉〉KV = true = bJ¬PKAcF, which shows that A falsifies P.

A very thorough soundness proof of a translation from HOL to SAT can be found
in Tjark Weber’s Ph.D. thesis [23].

4 Refinements to the Basic Translation

4.1 Approximation of Infinite Types and Partiality

Because of the axiom of infinity, the type nat of natural numbers does not admit any
finite models. To work around this, Nitpick considers finite subsets {0,1, . . . , K − 1}



of nat and maps numbers ≥ K to the undefined value (⊥), coded as none, the empty
set. Formulas of the form ∀nnat. P(n) are treated in essence as (∀n < K. P(n)) ∧ P(⊥),
which usually evaluates to either False (if P(i) gives False for some i < K) or⊥, but not
to True, since we do not know whether P(K), P(K +1), . . . (collectively represented by
P(⊥)) are true. In view of this, Nitpick generally cannot soundly disprove conjectures
that contain an infinite existential quantifier in their conclusion or an infinite univer-
sal quantifier in their assumptions. As a fallback, the tool enters an unsound mode in
which the quantifiers are artificially bounded. Counterexamples obtained under these
conditions are marked as “potential.”

Functions from nat to α are abstracted by relations ⊆ {a1, . . . ,aK} × {a1, . . . ,a|α|}
constrained to be partial functions. Partiality makes it possible to encode the successor
function Suc as the relation S = (a1× a2) ∪ ·· · ∪ (aK−1× aK), which associates no
value with aK . Conveniently, the dot-join aK .S yields none, and so does none.S . This
is desirable because Suc (K−1) is unrepresentable and Suc ⊥ is unknown.

Partiality leads to a Kleene three-valued logic, which is expressed in terms of Kod-
kod’s two-valued logic as follows. At the outermost level, we let the FORL truth value
false stand for both False (no counterexample) and ⊥ (potential counterexample), and
reserve true for True (genuine counterexample). The same convention is obeyed in other
positive contexts within the formula. In negative contexts, false codes False and true
codes True or ⊥. Finally, in unpolarized contexts (for example, as argument to a func-
tion), the atom a1 codes False, a2 codes True, and none codes⊥. Unlike similar approx-
imation approaches [18, p. 164; 23], Nitpick’s logic is sound, although the tool also has
an unsound mode as noted above.

4.2 Nonuniform Representation of HOL Terms

FORL gives Nitpick a lot of flexibility when encoding terms. A value of type α×β, for
example, can be translated as before to a pair ∈ {a1, . . . ,a|α|}×{a1, . . . ,a|β|}, but it can
also be mapped to a single atom ∈ {a1, . . . ,a|α×β|}. Predicates on α (or functions from
α to σ with |σ|= 2) can be coded as single atoms, sets of atoms, relations from atoms
to {a1,a2}, or |α|-tuples over {a1,a2}.

Nitpick uses FORL’s flexibility to a larger extent than was hinted at in Section 3.
For example, it ensures that the operand of transitive closure is always a binary relation
(a set of pairs), no matter what the HOL type is, lifting an annoying limitation in the
basic translation described earlier. It also keeps track of whether a term can evaluate
to ⊥, which makes many optimizations possible in FORL. For example, because free
variables never yield ⊥, we encode x' y as x⊆ y, which is more efficient.

The current representation selection scheme proceeds in a straightforward bottom-
up fashion, inserting conversions as appropriate. More sophisticated schemes that would
minimize the number of conversions have yet to be tried.

4.3 Encoding of (Co)inductive Predicates

Isabelle lets users specify (co)inductive predicates p by their introduction rules and
synthesizes a fixed point definition p ' lfp F or p ' gfp F. For performance reasons,



Nitpick avoids expanding lfp and gfp to their definitions and translates (co)inductive
predicates directly, using appropriate FORL concepts.

A first intuition is that an inductive predicate p is a fixed point, so we could use
the equation p ' F p as the axiomatic specification of p. In general, this is unsound
since it underspecifies p, but there are two important cases for which this method is
sound. First, if the recursion in F is well-founded, the fixed point equation p ' F p
admits exactly one solution and we can safely use it as p’s specification. Second, if p
occurs negatively in the formula, we can replace these occurrences by a fresh constant
q satisfying the axiom q' F q; this transformation preserves equisatisfiability.

To deal with positive occurrences of p, we adapt a technique from bounded model
checking [5]: We replace p by a fresh predicate rk defined by

r0 ' (λx̄.⊥) rn+1 ' F rn,

which corresponds to p unrolled k times. For unpolarized occurrences, we use q ∩ rk.
In essence, we have made p well-founded by adding a counter that decreases by one
with each recursive call. This unrolling comes at a price: The search space and the size
of the propositional formula for rk is k times that of q. Hence, it makes sense to look for
a counterexample with a small value of k first and increment it gradually if needed.

The situation is mirrored for coinductive predicates: Negative occurrences of p be-
come rk, positive occurrences become q, and unpolarized occurrences become q ∪ rk.

To determine whether a predicate is well-founded, Nitpick generates a wellfound-
edness goal and invokes Isabelle’s termination prover [7] with a time limit. Given intro-
duction rules of the form

p t̄i1 · · · p t̄ini Qi

p ūi

for i ∈ {1, . . . ,m}, the termination prover must exhibit a well-founded relation R such
that

∧m
i=1
∧ni

j=1 Qi −→
〈
t̄ij, ūi

〉
∈ R holds.

In our experience, about half of the inductive predicates occurring in practice are
well-founded—this includes most type systems and other compositional formalisms,
but generally excludes state transition systems.

4.4 Encoding of (Co)inductive Datatypes and (Co)recursive Functions

In contrast to Isabelle’s constructor-oriented treatment of inductive datatypes, Nitpick’s
FORL axiomatization revolves around selectors and discriminators, inspired by Kuncak
and Jackson’s modeling of lists and trees in Alloy [14]. The selector and discriminator
view is usually more efficient than the constructor view because it breaks high-arity
constructors into several low-arity selectors.

Consider the type α list generated from Nilα list and Consα�α list�α list. The FORL
axiomatization is done in terms of the discriminators isNilα list�o and isConsα list�o and
the selectors get1Consα list�α and get2Consα list�α list, which give access to a nonempty
list’s head and tail. Following Dunets et al. [10], Nil and Cons x xs are translated as isNil
and get1Cons.x ∩ get2Cons.xs, respectively.



The following axioms, with N = 1,2, specify a subterm-closed finite universe of
lists using the atoms Aα list:

DISJ: no isNil ∩ isCons

EXH: isNil ∪ isCons'Aα list

SELN : ∀xs∈Aα list: if xs⊆ isCons then one xs.getNCons else no xs.getNCons

UNIQ: lone isNil ∧ (∀x∈Aα, xs∈Aα list: lone get1Cons.x ∩ get2Cons.xs)
ACYCL: no get2Cons+ ∩ iden.

Examples of subterm-closed list universes using traditional list notation are {[], [a1], [a2],
[a3]} and {[], [a2], [a3,a2], [a1,a3,a2]}. For recursive functions, Nitpick ignores the con-
struction synthesized by Isabelle and relies instead on the user-specified equations.

The approach can be generalized to mutually recursive datatypes. To generate the
ACYCL axioms for the mutually recursive datatypes x with constructors A x�y�x and B x

and y with constructor C x�y, we compute their datatype dependency graph, in which
vertices are labeled with datatypes and arcs are labeled with selectors. Then we compute
for each datatype a regular expression capturing the nontrivial paths from the datatype
to itself, with . standing for concatenation, ∪ for alternative, and ∗ and + for repetition.
We require the paths to be disjoint from identity:

no (get1A ∪ get2A.get1C)+ ∩ iden

no (get1C .get1A∗ .get2A)+ ∩ iden.

yx
get1A 

get2A 

get1C

Nitpick supports coinductive datatypes, even though Isabelle does not provide a
high-level mechanism for defining them. Users can define custom coinductive datatypes
from first principles and tell Nitpick to substitute its efficient FORL axiomatization for
their definitions. Nitpick also knows about Isabelle’s coinductive “lazy list” datatype,
α llist, with the constructors LNilα llist and LConsα�α llist�α llist. The FORL axiomatiza-
tion is similar to that used for α list, but the ACYCL axiom is omitted to allow cyclic
(ω-regular) lists. Infinite lists are presented to the user as lassos, with a finite stem
and cycle. The following coinductive bisimulation principle is translated along with the
HOL formula, to ensure that distinct atoms correspond to observably distinct lists:

BISIM1
LNil' LNil

x' y xs' ys
BISIM2 .

LCons x xs' LCons y ys

5 Optimization Steps

5.1 HOL Preprocessing

Function Specialization. A function argument is said to be static if it is passed unaltered
to all recursive calls. A typical example is f in the definition of map:

map f []' [] map f (x · xs)' f x · map f xs.



An optimization reminiscent of the static argument transformation or lambda-dropping
[9, pp. 148–156] is to specialize the function for each eligible call site, thereby avoiding
passing the static argument altogether. At the call site, any term whose free variables
are all globally free is eligible for this optimization. Following this scheme, map Suc ns
would become mapSuc ns, where mapSuc is defined as follows:

mapSuc []' [] mapSuc (x · xs)' Suc x · mapSuc xs.

For this example, specialization reduces the number of propositional variables needed
to encode the function by a factor of |nat||nat|.

Boxing. Nitpick normally translates function and product types directly to the homol-
ogous Kodkod concepts. This is not always desirable; for example, a transition relation
on states represented as n-tuples leads to a 2n-ary relation, which gives rise to a combi-
natorial explosion and precludes the use of FORL’s binary transitive closure.

Our experience suggests that it is almost always advantageous to approximate n-
tuples where n ≥ 3 as well as higher-order arguments. This is achieved by wrapping
them in an isomorphic type α box with the single constructor Boxα�α box, inserting
constructors and selectors as appropriate. Assuming that specialization is not in use, the
second equation for map would then become

map f (nat�nat) box (x · xs)' get1Box f x · map f xs,

with map (Box Suc) ns at the call site. Notice that for function types, boxing is similar
to defunctionalization [2], with selectors playing the role of “apply” functions. Further
opportunities for boxing are created by uncurrying high-arity constants beforehand.

Quantifier Massaging. (Co)inductive definitions are marred by existential quantifiers,
which blow up the size of the resulting propositional formula. The following steps are
applied to eliminate quantifiers or reduce their binding range: (1) Replace quantifica-
tions of the forms ∀x. x ' t −→ P(x) and ∃x. x ' t ∧ P(x) by P(t) if x does not occur
free in t. (2) Skolemize. (3) Distribute quantifiers over congenial connectives (∀ over ∧,
∃ over ∨ and −→). (4) For any remaining subformula Qx1 . . . xn. p1 ⊗ ·· · ⊗ pm, where
Q is a quantifier and ⊗ is a connective, move the pi’s out of as many quantifiers as
possible by rebuilding the formula using qfy({x1, . . . , xn}, {p1, . . . , pm}), defined as

qfy( /0, P) =
⊗

P qfy(x ] X, P) = qfy(X, P−Px ∪ {Qx.
⊗

Px}),
where Px = {p ∈ P | x occurs free in p}.

The order in which individual variables x are removed from the first argument is
crucial because it affects which pi’s can be moved out. For clusters of up to 7 quantifiers,
Nitpick considers all permutations of the bound variables and chooses the one that
minimizes the sum ∑

m
i=1 |τi1| · . . . · |τiki | · size(pi), where τi1, . . . , τiki are the types of the

variables that have pi in their binding range, and size(pi) is a rough syntactic measure
of pi’s size; for larger clusters, it falls back on a heuristic inspired by Paradox’s clause
splitting procedure [8]. Thus, the formula ∃xα yα. p x∧ q x y∧ r y ( f y y) is transformed
into ∃yα. r y ( f y y) ∧ (∃xα. p x ∧ q x y). Processing y before x in qfy would instead
give ∃xα. p x ∧ (∃yα. q x y ∧ r y ( f y y)), which is more expensive because r y ( f y y),
the most complex conjunct, is doubly quantified and hence |α|2 copies of it are needed
in the resulting propositional formula.



Constructor Elimination. Since datatype constructors may return ⊥ in our encoding,
we can increase precision by eliminating them. A formula such as [x,y] ' [a,b] can
easily be rewritten into x ' a ∧ y ' b, which evaluates to either True or False even if
[x,y] or [a,b] would yield ⊥.

For multiple-argument constructors, eliminating constructors helps reduce the num-
ber of nested quantifiers. Consider a datatype of AVL trees with two constructors,
Nullα tree and Nodeα�α tree�α tree�nat�α tree, and a data constant defined by the equations

data Null' /0 ∀a t1 t2 h. data (Node a t1 t2 h)' {a} ∪ data t1 ∪ data t2.

Our target is the constructor application Node a t1 t2 h in the second equation’s left-hand
side. We first pull it out and assign it to a fresh bound variable y:

∀a t1 t2 h y. y' Node a t1 t2 h −→ data y' {a} ∪ data t1 ∪ data t2.

Then we express the constructor arguments in terms of selectors in the conclusion,
rewrite the assumption to use a discriminator, and omit the obsolete variables:

∀y. isNode y−→ data y' {get1Node y} ∪ data (get2Node y) ∪ data (get3Node y).

By quantifying over a single variable, we reduce the number of copies of the body from
|α| · |α tree|2 · |nat| to |α tree| in the SAT problem, without losing counterexamples. This
technique is also useful for constructors taking a single higher-order argument, such as
those inserted by the boxing optimization described above.

5.2 Monotonicity Inference

Many formulas occurring in practice are monotonic in the sense that if the formula is
falsifiable for a given scope, it is also falsifiable for all larger scopes [13, p. 165]. That
not all formulas are monotonic will become clear after considering |UNIV|= 3.

Monotonicity can be exploited to prune the search space. For a formula involving
n uninterpreted types, a model finder must a priori consider kn scopes to exhaust all
models up to the cardinality bound k. With monotonicity, it is sufficient to consider the
single scope in which all types have cardinality k.

We developed and implemented two calculi for inferring monotonicity, and proved
them sound [6]. The first calculus, on which we focus here, has limited support for sets
encoded as predicates. The second, more powerful calculus addresses this problem by
annotating function arrows and relying on a SAT solver to ensure consistent annotations.

For simplicity of exposition, the first calculus is defined for a HOL fragment in
which the only constants are ' and −→. We let True abbreviate (λxo. x)' (λx. x) and
∀x. p abbreviate (λx. p)' (λx. True). We assume a distinguished type variable α with
respect to which monotonicity is inferred. The calculus is defined below:

TVs(o) = /0 TV+(β) = {β} TV–(β) = /0 TVs(σ→τ) = TV–s(σ) ∪ TVs(τ)

K(x) K(−→)

α /∈ TV–(σ)

K('σ�σ�o)

K(t) K(u)

K(t u)

K(t)

K(λx. t)



K(t)

Ms(t)

M–s(t) Ms(u)

Ms(t −→ u)

M+(t) α /∈ TV+(σ)

M+(∀xσ. t)

M–(t)

M–(∀x. t)

K(t) K(u)

M–(t ' u)
.

The TVs(σ) function gives the set of type variables occurring positively (if s is +) or
negatively (if s is −) with respect to →. The judgment K(t) expresses that t’s value
remains essentially the same when α’s cardinality is increased, assuming that the free
variables also stay the same. A formula P is monotonic if M–(P) is derivable.

We evaluated both calculi on the theorems from six highly polymorphic Isabelle
theories (AVL2, Fun, Huffman, List, Map, and Relation). We found that the simple cal-
culus inferred monotonicity for 41% to 97% of the theorems depending on the theory,
while the more sophisticated calculus achieved 65% to 100% [6].

6 Case Studies

6.1 Volpano–Smith–Irvine Security Type System

Assuming a partition of program variables into public and private ones, Volpano, Smith,
and Irvine [22] provide typing rules guaranteeing that the contents of private variables
stay private. They define two types, High (private) and Low (public). An expression
is High if it involves private variables; otherwise it is Low. A command is High if it
modifies private variables only; commands that could alter public variables are Low.

As our first case study, we consider a fragment of the formal soundness proof by
Snelting and Wasserrab [19]. Given a variable partition Γ, the inductive predicate Γ `
e : σ tells whether e has type σ, whereas Γ,σ ` c tells whether command c has type σ.
Below is a flawed definition of Γ,σ ` c:

Γ,σ ` skip
Γ v' bHighc
Γ,σ ` v:=e

Γ ` e : Low Γ v' bLowc
Γ,Low ` v:=e

Γ,σ ` c1

Γ,σ ` c1 ;c2

Γ ` b : σ Γ,σ ` c1 Γ,σ ` c2

Γ,σ ` if (b) c1 else c2

Γ ` b : σ Γ,σ ` c

Γ,σ ` while (b) c

Γ,High ` c

Γ,Low ` c
.

The following theorem constitutes a key step in the soundness proof:

Γ,High ` c ∧ 〈c, s〉 ∗
〈
skip, s′

〉
−→ ∀v. Γ v' bLowc −→ s v' s′ v.

Informally, it asserts that if executing the High command c in state s terminates in
state s′, then the public variables of s and s′ must agree. This is consistent with our
intuition that High commands should only modify private variables. However, because
we planted a bug in the definition of Γ,σ ` c, Nitpick finds a counterexample:

Γ = [v1 7→ Low] s = [v1 7→ false]
c = skip; v1 := (Var v1 ==Var v1) s′ = [v1 7→ true].

Even though the command c has type High, it assigns true to the Low variable v1. The
bug is a missing assumption Γ,σ ` c2 in the typing rule for sequential composition.



6.2 Hotel Key Card System

We consider a state-based model of a vulnerable hotel key card system with record-
able locks [16], inspired by an Alloy specification due to Jackson [13, pp. 299–306].
The formalization relies on three opaque types, room, guest, and key. A key card, of
type card = key× key, combines an old key and a new key. A state is a 7-field record
(|owns ::room→guest option, curr ::room→key, issued ::key→o, cards ::guest→card→
o, roomk ::room→key, isin ::room→guest→o, safe ::room→o|). The set reach of reach-
able states is defined inductively by the following rules:

inj init
INIT

(|owns = (λr.⊥), curr = init, issued = range init, cards = (λg. /0),
roomk = init, isin = (λr. /0), safe = (λr. True)|) ∈ reach

s ∈ reach k /∈ issued s
CHECK-IN

s(|curr := (curr s)(r := k), issued := issued s ∪ k,
cards := (cards s)(g := cards s g ∪ 〈curr s r, k〉),
owns := (owns s)(r := bgc), safe := (safe s)(r := False)|) ∈ reach

s ∈ reach 〈k, k′〉 ∈ cards s g roomk s r ∈ {k, k′}
ENTRY

s(|isin := (isin s)(r := isin s r ∪ g), roomk := (roomk s)(r := k′),
safe := (safe s)(r := owns s r ' bgc ∧ isin s r ' /0 ∨ safe s r)|) ∈ reach

s ∈ reach g ∈ isin s r
EXIT.

s(|isin := (isin s)(r := isin s r−{g})|) ∈ reach

A desirable property of the system is that it should prevent unauthorized access:

s ∈ reach ∧ safe s r ∧ g ∈ isin s r −→ owns s r ' bgc.

Nitpick needs some help to contain the state space explosion: We restrict the search to
one room and two guests. Within seconds, we get the counterexample

s = (|owns = (r1 := bg1c), curr = (r1 := k1), issued = {k1, k2, k3, k4},
cards = (g1 := {〈k3, k1〉 , 〈k4, k2〉}, g2 := {〈k2, k3〉}), roomk = (r1 := k3),
isin = (r1 := {g1, g2}), safe = {r1}|)

with g = g2 and r = r1.
To retrace the steps from the initial state to the s, we can ask Nitpick to show the

interpretation of reach at each iteration. This reveals the following “guest in the middle”
attack: (1) Guest g1 checks in and gets a card 〈k4, k2〉 for room r1, whose lock expects
k4. Guest g1 does not enter the room yet. (2) Guest g2 checks in, gets a card 〈k2, k3〉 for
r1, and waits. (3) Guest g1 checks in again, gets a card 〈k3, k1〉, inadvertently unlocks
room r1 with her previous card, 〈k4, k2〉, leaves a diamond on the nightstand, and exits.
(4) Guest g2 enters the room and “borrows” the diamond.

This flaw was already detected by Jackson using the Alloy Analyzer on his original
specification and can be fixed by adding k′ ' curr s r to the conjunction in ENTRY.



7 Evaluation

An ideal way to assess Nitpick’s strength would be to run it against Refute and Quick-
check on a representative database of Isabelle/HOL non-theorems. Lacking such a
database, we chose instead to derive formulas from existing theorems by mutation,
replacing constants with other constants and swapping arguments, as was done when
evaluating Quickcheck [4]. The vast majority of formulas obtained this way are in-
valid, and those few that are valid do not influence the ranking of the counterexample
generators. For executable theorems, we made sure that the generated mutants are also
executable to prevent a bias against Quickcheck.

The table below summarizes the results of running the tools on 3200 random mu-
tants from 20 Isabelle theories (200 per theory), with a limit of 10 seconds per formula.
Most counterexamples are found within a few seconds; giving the tool more time would
have little impact on the results.

THEORY QUICK. REF. NITP.

Divides 134/184 3+15 141+2

Fun 5/9 162+1 163+0

GCD 119/162 1+17 124+10

List 78/130 3+113 117+9

MacLaurin 43/62 0+0 26+7

Map 19/34 103+45 157+0

Predicate 2/2 147+14 161+0

Relation 0/2 144+3 150+1

Set 17/25 149+0 151+0

Wellfounded 10/24 118+20 141+1

THEORY QUICK. REF. NITP.

ArrowGS 0/0 0+126 139+2

Coinductive 4/6 16+7 87+13

CoreC++ 7/30 3+6 29+1

FFT 31/40 1+2 47+15

Huffman 84/160 1+45 119+2

MiniML 14/33 0+116 79+49

NBE 41/62 0+18 81+24

Ordinal 0/66 10+3 12+0

POPLmark 56/96 4+6 103+15

Topology 0/0 124+4 139+3

The table’s entries have the form G/X for Quickcheck and G+P for Refute and Nit-
pick, where G = number of genuine counterexamples found and reported as such, P =
number of potential counterexamples found (in addition to G), and X = number of ex-
ecutable mutants (among 200).

Refute’s three-valued logic is unsound, so all counterexamples for formulas that in-
volve an infinite type are potentially spurious and reported as such to the user. Nitpick
also has an unsound mode, which contributes some potential counterexamples. Unfor-
tunately, there is no easy way to tell how many of these are actually genuine.

Quickcheck and Nitpick are comparable on executable formulas, but Nitpick also
fares well on non-executable ones. Notable exceptions are formalizations involving real
arithmetic (MacLaurin and FFT), complex set-theoretic constructions (Ordinal), or a
large state space (CoreC++).

Independently, Nitpick competes against Refute in the higher-order model finding
division of the TPTP [20]. In a preliminary run, it disproved 293 out of 2729 formulas
(mostly theorems), compared with 214 for Refute. Much to our surprise, Nitpick exhib-
ited counterexamples for five formulas that had previously been proved by TPS [1] or
LEO-II [3], revealing two bugs in the former and one bug in the latter.



8 Related Work

The approaches for testing conjectures can be classified in three broad categories:

– Random testing. The formula is evaluated for random values of the free variables.
This approach is embodied by Isabelle’s Quickcheck [4] and similar tools for other
proof assistants. It is restricted to executable formulas.

– SAT solving. The formula is translated to propositional logic and handed to a SAT
solver. This procedure was pioneered by McCune in his first-order finder MACE
[15]. Other first-order MACE-style finders include Paradox [8] and Kodkod [21].
The higher-order finders Refute [23] and Nitpick also belong to this category.

– Direct search. The search for a model is performed directly on the formula, without
translation to propositional logic. This approach was introduced by SEM [24].

Some proof methods deliver sound or unsound counterexamples upon failure, notably
model checking, semantic tableaux, and satisfiability modulo theory (SMT) solving.
Also worth of mention is the Dynamite tool [11], which lets users prove Alloy formulas
in the interactive theorem prover PVS. Weber [23, pp. 3–4] provides a more detailed
discussion of related work.

9 Conclusion

Nitpick is to our knowledge the first higher-order model finder that supports both in-
ductive and coinductive predicates and datatypes. It works by translating higher-order
formulas to first-order relational logic (FORL) and invoking the highly-optimized SAT-
based Kodkod model finder [21] to solve these. Compared with Quickcheck, which
is restricted to executable formulas, Nitpick shines by its generality—the hallmark of
SAT-based model finding.

The translation to FORL is designed to exploit Kodkod’s strengths. Datatypes are
encoded following an Alloy idiom [10,14] extended to mutually recursive and coinduc-
tive datatypes. FORL’s relational operators provide a natural encoding of partial appli-
cation and λ-abstraction, and the transitive closure plays a crucial role in the encoding of
inductive datatypes. Our main contributions have been to isolate three ways to translate
(co)inductive predicates to FORL, based on wellfoundedness, polarity, and linearity,
and to devise optimizations—notably function specialization, boxing, and monotonic-
ity inference—that dramatically increase scalability in practical applications.

Nitpick is included with the latest version of Isabelle and is invoked automatically
whenever users enter new formulas to prove, helping to catch errors early, thereby sav-
ing time and effort. But Nitpick’s real beauty is that it lets users experiment with formal
specifications in the playful way championed by Alloy but with Isabelle’s higher-order
syntax, definition principles, and theories at their fingertips.
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