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Abstract. Due to a recent revision of Hales’s proof of the Kepler Con-
jecture, the existing verification of the central graph enumeration proce-
dure had to be revised because it now has to cope with more than 109

graphs. This resulted in a new and modular design. This paper primarily
describes the reusable components of the new design: a while combinator
for partial functions, a theory of worklist algorithms, a stepwise imple-
mentation of a data type of sets over a quasi-order with the help of tries,
and a plane graph isomorphism checker. The verification turned out not
to be in vain as it uncovered a bug in Hales’s graph enumeration code.

1 Introduction

In 1998, Hales announced the proof of the Kepler Conjecture (about the densest
packing of congruent spheres in Euclidean space), which he published in a series
of papers, ending with [6]. In addition to the sequence of journal articles, the
proof employs three distinct large computations. To remove any doubt about the
correctness of the proof due to the unverified computations, Hales started the
Flyspeck project (http://code.google.com/p/flyspeck) to produce a formal proof
of the Kepler Conjecture. An early contribution [17] was the verification of the
enumeration of all potential counterexamples (i.e. denser packings) in the form of
plane graphs, the so-called tame graphs. We confirmed that the so-called archive
of tame graphs given by Hales is complete (in fact: too large). In a second step,
it must be shown that none of these tame graphs constitute a counterexample.
Obua [19] verified much of this part of the proof. This paper is about what
happened when the geometry underlying the tame graph abstraction changed.

In 2009, Marchal [15] published a new and simpler approach to parts of
Hales’s proof. As a consequence Hales revised his proof. At the moment, only
the online HOL Light theorems and proofs (most of Flyspeck is carried out in
HOL Light [8]) reflect this revision (see the Flyspeck web page above). The
complete revised proof will appear as a book [7]. Below we call the two versions
of the proof the 1998 and the revised version.

The verified enumeration of tame graphs relies on executing functions verified
in the theorem prover. Due to the revision, tame graph enumeration ran out of
space because of the 10-fold increase in the number of tame graphs and the
100-fold increase in the overall number of graphs that need to be generated.
Therefore I completely modularized that part of the proof in order to slot in
more space-efficient enumeration machinery.

http://code.google.com/p/flyspeck


The verification of tame graph enumeration for the 1998 proof [17] was a bit
of an anticlimax: at the end we could confirm that Hales’s archive of tame graphs
(which he had generated with an unverified Java program) was complete. Not
so this time: I found two graphs that were missing from Hales’s revised archive
(which he had generated with a revised version of that Java program). A few
days later Hales emailed me:

I found the bug in my code! It was in the code that uses symmetry to
reduce the search space. This is a bug that goes all the way back to the
1998 proof. It is just a happy coincidence that there were no missed cases
in the 1998 proof. This is a good example of the importance of formal
proof in computer assisted proofs.

The main contribution of this paper is an abstract description of the compu-
tational tools used in the revised proof, at a level where they can be reused in
different settings. In particular, the paper provides the following generic compo-
nents:

– A while combinator that allows to reason about terminating executions of
partial functions without the need for a termination proof.

– Combinators for and beginnings of a theory of worklist algorithms.
– A stepwise implementation of an abstract type of sets over a quasi-order.
– A general schema for stepwise implementation of abstract data types in

Isabelle’s locale system of modules.
– A simple isomorphism checker for plane graphs.

Much of this paper is not concerned with the formal proof of the Kepler Con-
jecture per se, and those parts that are, complement [17].

2 Basics

This work is carried out with the Isabelle/HOL proof assistant. HOL con-
forms largely to everyday mathematical notation. This section summarizes non-
standard notation and features.

The function space is denoted by ⇒. Type variables are denoted by ′a, ′b,
etc. The notation t :: τ means that term t has type τ . Sets over type ′a, type
′a set (which is just a synonym for ′a ⇒ bool), follow the usual mathematical
conventions. The image of a function over a set is denoted by f ‘ S. Lists over
type ′a, type ′a list, come with the empty list [], the infix constructor ·, the infix
@ that appends two lists, the length function |.| and the conversion function
set from lists to sets. Names ending in s typically refer to lists. The datatype
′a option = None | Some ′a is predefined. Implications are displayed either as
arrows or as proof rules with horizontal lines.

Locales [2] are Isabelle’s version of parameterized theories. A locale is a named
context of functions f1, . . . , fn and assumptions P1, . . . , Pm about them that is
introduced roughly like this:
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locale loc = fixes f1 . . . fn assumes P1 . . . Pm

The fi’s are the parameters of the locale. Every locale implicitly defines a pred-
icate:

loc f1 . . . fn ←→ P1 ∧ . . . ∧ Pm

Locales can be hierarchical as in locale loc’ = loc1 + loc2 + fixes . . . .
In the context of a locale, definitions can be made and theorems can be

proved. This is called the body of the locale and can be extended dynamically.
An interpretation of a locale

interpretation loc e1 . . . en

where the ei’s are expressions, generates the proof obligation loc e1 . . . en (recall
that loc is a predicate), and, if the proof obligation is discharged by the user,
one obtains all the definitions and theorems from the body of the locale, with
each fi replaced by ei. For more details see the tutorial on locales [1].

Executability of functions in Isabelle/HOL does not rely on a constructive
logic but merely on the ability of the user to phrase a function, by definition
or by lemma, as a recursion equation [5]. Additionally we make heavy use of a
preprocessor that replaces (by proof!) many kinds of bounded quantifications by
suitable list combinators.

3 Worklist algorithms

3.1 While combinators

Proving termination of the enumeration of tame graphs is possible but tedious
and unneccesary: after all, it does terminate eventually, which is proof enough.
But how to define a potentially partial function in HOL? Originally I had solved
that problem by brute force with bounded recursion: totalize the function with
an additional argument of type nat that is decreased with every recursive call,
return None if 0 is reached and Some r when the actual result r has been
reached, and call the function with a sufficiently large initial number. It does the
job but is inelegant because unnecessary. What are the alternatives?

Isabelle’s standard function definition facility due to Krauss [10] does not
require a termination proof, but until termination has been proved, the recursion
equations are conditional and hence not executable. This is the opposite of the
original while combinator defined in Isabelle/HOL [18]

while :: ( ′a ⇒ bool) ⇒ ( ′a ⇒ ′a) ⇒ ′a ⇒ ′a

where ′a is the “state” of the computation, the first parameter is the loop test,
the second parameter the loop body that transforms the state, and the last
parameter is the start state. This combinator obeys the recursion equation

while b c s = (if b s then while b c (c s) else s)
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and enables the definition of executable tail-recursive partial functions. But to
prove anything useful about the result of the function, we first need to prove
termination. This is a consequence of the type of while: the result does not tell
us if it came out of a terminating computation sequence or is just some arbitrary
value forced by the totality of the logic.

Krauss’ recent work [11] theoretically provides what we need but the imple-
mentation does not yet. Hence Krauss and I defined a while combinator that
returns an option value, telling us if it terminated or not, just as in bounded
recursion outlined above, but without the need for a counter:

while-option :: ( ′a ⇒ bool) ⇒ ( ′a ⇒ ′a) ⇒ ′a ⇒ ′a option

while-option b c s =

(if ∃ k . ¬ b (ck s) then Some (cLEAST k . ¬ b (ck s) s) else None)

It obeys a similar unfolding law as while

while-option b c s = (if b s then while-option b c (c s) else Some s)

but allows to reason about Some results in the traditional manner of Hoare logic:
invariants hold at the end if they hold at the beginning

while-option b c s = Some t ∀ s. P s ∧ b s −→ P (c s) P s

P t

and at the end the loop condition no longer holds:

while-option b c s = Some t =⇒ ¬ b t

Note that termination is built into the premise while-option b c s = Some t,
which is the proposition that we intend to prove by evaluation.

Of course, if we can prove termination by deductive means, this ensures that
Some result is returned:

wf {(t , s) | (P s ∧ b s) ∧ t = c s} ∀ s. P s ∧ b s −→ P (c s) P s

∃ t . while-option b c s = Some t

where wf R means that relation R is wellfounded, and where P is an invariant.

3.2 Worklist algorithms

Worklist algorithms repeatedly remove an item from the worklist, replace it by
a new list of items, and process the item. They operate on pairs (ws, s) of a
worklist ws and a state s. We define

worklist-aux succs f =
while-option (λ(ws, s). ws 6= [])
(λ(ws, s). case ws of x ·ws ′⇒ (succs s x @ ws ′, f x s))
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of type
( ′s ⇒ ′a ⇒ ′a list) ⇒ ( ′a ⇒ ′s ⇒ ′s) ⇒ ′a list × ′s ⇒ ( ′a list × ′s) option.

Type ′a is the type of items, type ′s the type of states. Functions succs and f
produce the next items and next state. If the algorithm terminates, it must have
enumerated the set of items reachable via the successor function starting from
the start items.

The successor function may depend on the state. This allows us, for example,
to detect loops in the search process by carrying already visited items around
in the state. But our application does not require this generality: its successor
relationship is a tree. Hence we specialize worklist-aux and develop a theory of
worklist algorithms on trees. A unified theory of worklist algorithms on trees and
graphs is beyond the scope of this paper. From now on succs will not depend on
the state and we define

worklist-tree-aux succs = worklist-aux (λs. succs)

Upon termination the worklist will be empty and we project on the state:

worklist-tree succs f ws s =
(case worklist-tree-aux succs f (ws, s) of None ⇒ None
| Some (ws, s) ⇒ Some s)

In order to talk about the set of items reachable via succs we introduce the
abbreviation

Rel succs ≡ {(x , y) | y ∈ set (succs x )}

that translates succs into a relation. In addition, R ‘‘ S is the image of a relation
over a set. Thus (Rel succs)∗ ‘‘ A is the set of items reachable from the set of
items A via the reflexive transitive closure of Rel succs.

The first theorem about worklist-tree expresses that it folds f over the reach-
able items in some order:

worklist-tree succs f ws s = Some s ′

∃ rs. set rs = (Rel succs)∗ ‘‘ set ws ∧ s ′ = fold f rs s

where fold f [] s = s and fold f (x ·xs) s = fold f xs (f x s).
This theorem is intentionally weak: rs is some list whose elements form the

set of reachable items, in any order and with any number of repetitions. The
order should not matter, to allow us to replace the particular depth-first traver-
sal strategy of worklist-aux by any other, for example appending the successor
items at the right end of the worklist. Of course it means that f should also be
insensitive to the order. Moreover, f should be insensitive to duplicates, i.e. it
should be idempotent. Thus this theorem is specialized for applications where
the state is effectively a set of items, which is exactly what we are aiming for in
our application, the enumeration and collection of graphs.

If we want to prove some property of the result of worklist-tree, we can do so
by obtaining rs and proving the property by induction over rs. But we can also
replace the induction by a Hoare-style invariance rule:
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worklist-tree succs f ws s = Some s ′

∀ s. R [] s s ∀ r x ws s. R ws (f x s) r −→ R (x ·ws) s r

∃ rs. set rs = (Rel succs)∗ ‘‘ set ws ∧ R rs s s ′

This rule is phrased in terms of a predicate R of type ′a list ⇒ ′s ⇒ ′s ⇒ bool,
where R rs s s ′ should express the relationship between some start configuration
(rs, s) and the corresponding final state s ′, when the worklist has been emptied.

Unfortunately, this rule is too weak in practice: both the items and the states
come with nontrivial invariants of their own, and the invariance of R can only
be shown if we may assume that the item and state invariants hold for the
arguments of R. In nice set theoretic language the extended rule looks like this:

worklist-tree succs f ws s = Some s ′ succs ∈ I → lists I
set ws ⊆ I s ∈ S f ∈ I → S → S ∀ s. R [] s s

∀ r x ws s. x ∈ I ∧ set ws ⊆ I ∧ s ∈ S ∧ R ws (f x s) r −→ R (x ·ws) s r

∃ rs. set rs = (Rel succs)∗ ‘‘ set ws ∧ R rs s s ′

Here I and S are the invariants on items and states, lists I is the set of lists
over I, and A → B is the set of functions from set A to set B.

As a simple application we obtain almost automatically that the function

colls succs P ws = worklist-tree succs (λx xs. if P x then x ·xs else xs) ws []

indeed collects all reachable items that satisfy P :

colls succs P ws = Some rs

set rs = {x ∈ (Rel succs)∗ ‘‘ set ws | P x}

3.3 Sets over a quasi-order

In our application we need to collect a large set of graphs and we encounter
many isomorphic copies of each graph. Storing all copies is out of the question for
reasons of space. Hence we work with sets over a quasi-order, thus generalizing
the graph isomorphism to a subsumption relation. We formulate our worklist
algorithms in the context of an abstract interface to such a set data type and
use Isabelle’s locale mechanism (see §2) for this purpose. We start with a locale
for the quasi-order, later to be interpreted by graph isomorphism:

locale quasi-order =
fixes qle :: ′a ⇒ ′a ⇒ bool (infix � 60)
assumes x � x
and x � y =⇒ y � z =⇒ x � z

The following definitions are made in this context:

x ∈� M ≡ ∃ y∈M . x � y
M ⊆� N ≡ ∀ x∈M . x ∈� N
M =� N ≡ M ⊆� N ∧ N ⊆� M
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The actual work will be done in the context of sets over � in locale set-modulo,
an extension of locale quasi-order :

locale set-modulo = quasi-order +
fixes empty :: ′s
and insert-mod :: ′a ⇒ ′s ⇒ ′s
and set-of :: ′s ⇒ ′a set
and I :: ′a set
and S :: ′s set
assumes set-of empty = ∅
and x ∈ I =⇒ s ∈ S =⇒ set-of s ⊆ I =⇒

set-of (insert-mod x s) = {x} ∪ set-of s ∨
(∃ y∈set-of s. x � y) ∧ set-of (insert-mod x s) = set-of s

and empty ∈ S
and s ∈ S =⇒ insert-mod x s ∈ S

In the body of a locale, the type variables in the types of the locale parameters
are fixed. Above, ′a stands for the fixed element type, ′s for the abstract type
of sets. The empty set is empty, elements are inserted by insert-mod. The sets I
and S are invariants on elements and sets. In our application later on, both are
needed. The behaviour of our sets is specified with the help of an abstraction
function set-of that maps them back to HOL’s mathematical sets.

The first assumption is clear, the last two assumptions state that all sets
generated by empty and insert-mod satisfy the invariant. Only the second as-
sumption needs an explanation, ignoring its self-explanatory preconditions. The
point of this assumption is to leave the implementation complete freedom what
to do when inserting a new element x. If the set already contains an element y
that subsumes x, insert-mod is allowed to ignore x. But is not forced to: it may
always insert x. This specification allows an implementation to choose how much
effort to invest to avoid subsumed elements in a set. Because this subsumption
test can be costly: in our application it involves testing for isomorphism with
tens of thousands of graphs. Our implementation later on will use a hash func-
tion to zoom in on a small subset of potentially isomorphic graphs and only
test isomorphism on those. This liberal specification of insert-mod saves us from
proving that isomorphic graphs have the same hash value.

The above sets only offer empty and insert-mod, which seems overly toy-like
or even useless. In reality there is also a function all :: ( ′a ⇒ bool) ⇒ ′s ⇒ bool
for examining sets, and many other functions could be added to set-modulo, but
this would not raise any interesting new issues.

3.4 Collecting modulo subsumption

This subsection takes place completely within the context of locale set-modulo.
We specialize the generic worklist combinator to fold insert-mod over the list
of reachable items. At the same time we parameterize things further: we merely
collect those items that satisfy some predicate P, and we don’t collect the items
themselves but apply some function f to them first:
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insert-mod2 P f x s = (if P x then insert-mod (f x ) s else s)

Filtering with P in a separate pass is out of the question in our application
because less than one 104th of all reachable items satisfy P ; trying to store all
reachable items would exhaust available memory. Applying f right away, rather
than in a second pass, is also done for efficiency but is less critical.

The actual collecting is done by our worklist combinators:

worklist-tree-coll-aux succs P f = worklist-tree succs (insert-mod2 P f )
worklist-tree-coll succs P f ws = worklist-tree-coll-aux succs P f ws empty

With the help of the generic theorems about worklist-tree (see §3.2) and the
assumptions of locale set-modulo we can derive two important theorems about
worklist-tree-coll. Its result is equivalent (modulo �) to the image under f of
those reachable items that satisfy P :

worklist-tree-coll succs P f ws = Some s ′

succs ∈ I 0 → lists I 0 set ws ⊆ I 0 f ∈ I 0 → I

set-of s ′ =� f ‘ {x ∈ (Rel succs)∗ ‘‘ set ws | P x}

This theorem alone leaves the possibility that set-of s ′ contains elements that
are only equivalent but not identical to the reachable items. But we can also
derive

worklist-tree-coll succs P f ws = Some t
succs ∈ I 0 → lists I 0 set ws ⊆ I 0 f ∈ I 0 → I

set-of t ⊆ f ‘ {h ∈ (Rel succs)∗ ‘‘ set ws | P h}

This is helpful because it means, for example, that the resulting items all satisfy
the invariant I.

4 Implementing sets modulo

We will now implement the interface set-modulo in two steps. First we implement
set-modulo abstractly by another locale, set-mod-maps, with a map-like interface,
and then we implement that by a concrete data structure, Tries. Figure 1 depicts
the implementation relationships (where A → B means that A is implemented
by B), and ⊇ is locale extension. The full meaning of the diagram will become
clear as we go along.

set-modulo → set-mod-maps ⊇ maps
↓ ↓

Graph Tries

Fig. 1. Implementation diagram
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4.1 Maps

Our maps correspond to functions of type ′a ⇒ ′b list that return [] almost
everywhere. We could implement them via ordinary maps of type ′a ⇒ ′c option
as they are provided, for example, in the Collections Framework [12]. The latter
did not exist yet when our proof was first developed, and since ′a ⇒ ′b list is
simpler than ′a ⇒ ′b list option (where None acts like []) and of interest in its
own right, this is what locale maps specifies:

locale maps =
fixes empty :: ′m
and up :: ′m ⇒ ′a ⇒ ′b list ⇒ ′m
and map-of :: ′m ⇒ ′a ⇒ ′b list
and M :: ′m set
assumes map-of empty = (λa. [])
and map-of (up m a bs) = fun-upd (map-of m) a bs
and empty ∈ M
and m ∈ M =⇒ up m a bs ∈ M

Type variable ′m represents the maps, ′a and ′b list its domain and range type.
Maps are created from empty by up (update). Function map-of serves two pur-
poses: as a lookup function and as an abstraction function from ′m to ′a ⇒ ′b
list. Function fun-upd is the predefined pointwise function update.

We extend maps with a function that produces the set of elements in the
range of a map:

set-of m = (
⋃

x set (map-of m x ))

4.2 Implementing sets modulo by maps

Before we present the details, we sketch the rough idea. Sets of elements of type
′b are represented by maps from ′a to ′b list where ′a is some type of “addresses”
and there is some (hash) function key :: ′b ⇒ ′a. Operation insert-mod x m will
operate as follows: it looks up key x in m, obtains some list ys, checks if x is
subsumed (modulo �) by some element of ys, and adds it otherwise.

This abstract implementation is phrased as a locale that enriches maps
with key and some further functions, and that will implement the operations
of set-modulo with the help of those of maps and the newly added functions.

locale set-mod-maps = maps + quasi-order +
fixes subsumed :: ′b ⇒ ′b ⇒ bool
and key :: ′b ⇒ ′a
and I :: ′b set
assumes x∈I =⇒ y∈I =⇒ subsumed x y ←→ (x � y)

The two parameters of set-mod-maps in addition to key are a predicate subsumed,
meant to represent an executable version of the mathematical�, and an invariant
I that guarantees that subsumed coincides with � (see the assumption).
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In the body of set-mod-maps the actual implementation of insert-mod is
defined:

insert-mod x m =
(let k = key x ; ys = map-of m k
in if ∃ y∈set ys. subsumed x y then m else up m k (x ·ys))

Now it is time to assert and prove that set-mod-maps is an implementation of
sets-modulo, i.e. that we can interpret sets-modulo in the context of set-mod-
maps:1

interpretation (in set-mod-maps)
set-modulo (op �) empty insert-mod set-of I M

Predicate set-modulo takes six arguments. The first one is the quasi-order from
locale quasi-order that it extends. Since set-mod-maps also extends quasi-order,
we can supply that same relation �. The other five parameters are the ones
fixed in set-modulo: the empty set is interpreted by the empty map, insert-mod
is interpreted by the insert-mod defined just above, set-of is interpreted by the
set-of defined in the context of maps, the invariant on set elements is interpreted
by the parameter I, and the set invariant by the maps invariant. The proofs of
the set-modulo assumptions under this interpretation are straightforward.

Thus we have realized the horizontal arrow in Figure 1: any implementation
(i.e. interpretation) of set-mod-maps yields an implementation of set-modulo.

4.3 Implementing maps by tries

Tries (pronounced as in “retrieval”) are search trees indexed by lists of keys, one
element for each level of the tree. Ordinary tries are found in the Collections
Framework [12]; we provide a simple variation aimed at maps: lists rather than
single items are stored, obviating the need for options.

Tries are defined in theory Tries and we refer to many of its operations with
their qualified name, i.e. Tries.f rather than just f. The datatype itself is defined
like this, where ′a is the type of keys and ′v the type of values:

datatype ( ′a, ′v) tries = Tries ( ′v list) (( ′a × ( ′a, ′v) tries) list)

The two projection functions are values (Tries vs al) = vs and alist (Tries vs al)
= al. The name alist reflects that the second argument is an association list of
keys and subtries. The invariant Tries.inv asserts that there are no two distinct
elements with the same key in any alist in some trie. For concreteness, here is
the code for lookup and update:

Tries.lookup t [] = values t
Tries.lookup t (a·as) =
(case map-of (alist t) a of None ⇒ [] | Some at ⇒ Tries.lookup at as)

1 The actual syntax uses the keyword sublocale but we have chosen this more intuitive
variation of interpretation.
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Tries.update t [] vs = Tries vs (alist t)
Tries.update t (a·as) vs =
(let tt = case map-of (alist t) a of None ⇒ Tries [] [] | Some at ⇒ at
in Tries (values t) ((a, Tries.update tt as vs)·rem-alist a (alist t)))

Auxiliary functions are omitted and easy to reconstruct. Now it is straightfor-
ward to show

interpretation maps (Tries [] []) Tries.update Tries.lookup Tries.inv

Thus we have realized the arrow from maps to Tries in Figure 1. Once we
also implement the set-mod-map extension (in §5.2), we obtain the body of set-
modulo, in particular the collecting worklist algorithms and their correctness
theorems.

4.4 Stepwise implementation in general

The above developments are instances of the following general schema, simplified
for the sake of presentation. We want to implement an abstract interface

locale A = fixes f assumes P

In our case A is set-modulo. We base the implementation on n interfaces

locale Bi = fixes gi assumes Qi (i = 1, . . . , n)

In our case, there are two Bi’s: maps, and the extension of set-mod-maps with
key, subsumed and I, which can be viewed as a separate locale that is added
to the import list of set-mod-maps. Now, given some schema F [g1, . . . , gn] for
defining f from the g1, . . . , gn, A can be implemented by the Bi’s:

locale A-by-Bs = B1 + . . . + Bn + definition fimpl = F [g1, . . . , gn]

The correctness of this development step corresponds to the claim that A can
be interpreted in the context of A-by-Bs, which of course needs to be proved:

interpretation (in A-by-Bs) A fimpl

Each Bi can either be implemented in the same manner as A, or it can be
implemented directly:

interpretation Bi concrete-gi

where concrete-gi in an implementation of gi on a suitable concrete type. In
the end, we obtain an overall concrete implementation of A, together with an
instance of the body of A.

It seems that this is the first time a general development scheme for abstract
data types has been formulated for locales. The general idea of stepwise devel-
opment of abstract data types via theory interpretations goes back to Maibaum
et al. [14]. Theory interpretations are also a central concept in IMPS [3], but
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with a focus on mathematics. Likewise, locales have primarily been motivated
as a device for structuring mathematics [9]. Instances of the above schema can
be found in a few large Isabelle developments, for example Lochbihler’s Java-like
language with threads [13], but even the Collections Framework by Lammich and
Lochbihler [12], which is all about abstract data type specification and imple-
mentation, does not discuss the general picture and does not contain an instance
of A-by-Bs above.

Similar specifications and developments are possible with the Coq module
system, e.g. [4]. It would be interesting to investigate the precise relationship
between locales and the Coq module system.

5 Application to plane graphs

As explained in the Introduction, Hales’s proof involves the enumeration of a very
large set of tame graphs, where tame graphs are by definition also plane [17].
Our representation of plane graphs follows Hales’s 1998 proof: a plane graph is
a set/list of faces, where each face is a list of vertices of type ′a:

′a Fgraph = ′a list set
′a fgraph = ′a list list

Type Fgraph involves sets and belongs to the mathematical level, type fgraph
represents sets by lists and belongs to the executable level. Below we develop a
number of notions first on the Fgraph level and transfer them easily and directly
to the fgraph level. We call graphs on both levels face graphs and frequently use
the letter F for faces.

5.1 Plane graph isomorphisms

This subsection describes in some detail the isomorphism test that had to be
left out of [17].

Face graphs need to be compared modulo rotation of faces and we define

F 1
∼= F 2 ≡ ∃n. F 2 = rotate n F 1

{∼=} ≡ {(F 1, F 2) | F 1
∼= F 2}

Relation {∼=} is an equivalence and we can form the quotient S // {∼=} with the
predefined quotient operator //, defining proper homomorphisms and isomor-
phisms on face graphs, where ϕ is a function on vertices:

is-pr-Hom ϕ Fs1 Fs2 ≡ map ϕ ‘ Fs1 // {∼=} = Fs2 // {∼=}
is-pr-Iso ϕ Fs1 Fs2 ≡ is-pr-Hom ϕ Fs1 Fs2 ∧ inj-on ϕ (

⋃
F∈Fs1

set F )
is-pr-iso ϕ Fs1 Fs2 ≡ is-pr-Iso ϕ (set Fs1) (set Fs2)

The first two functions operate on type Fgraph, the last one on fgraph. The
attribute “proper” indicates that orientation of faces matters. The more liberal
version where the faces of one graph may have the reverse orientation of those of
the other graph, which corresponds to the standard notion of graph isomorphism,
is easily defined on top:
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is-Iso ϕ Fs1 Fs2 ≡ is-pr-Iso ϕ Fs1 Fs2 ∨ is-pr-Iso ϕ Fs1 (rev ‘ Fs2)
is-iso ϕ Fs1 Fs2 ≡ is-Iso ϕ (set Fs1) (set Fs2)
g1 ' g2 ≡ ∃ϕ. is-iso ϕ g1 g2

What we need is an executable isomorphism test. A simple solution would
have been to search for an isomorphism by some unverified function and check
the result with a verified checker. Although this is a perfectly reasonable solution,
we wanted to see if a verified isomorphism test that performs well in our context
is also within easy reach. It turns out it is. The verification took of the order of
600 lines of proof that rely heavily on automation of set theory.

We start with the search for a proper isomorphism. The isomorphism is
represented by a list of vertex pairs I that is built up incrementally. Given two
lists of faces, repeatedly take a face F 1 from the first list, find a matching face
F 2 in the second list, and remove both faces. Matching means that F 1 and F 2

must have the same length, and for some n < |F 2|, the bijection obtained by
pairing off F 1 and rotate n F 2 vertex by vertex is compatible with I. Then we
can merge it with I. This is the corresponding recursive function:

pr-iso-test-rec :: ( ′a × ′b)list ⇒ ′a fgraph ⇒ ′b fgraph ⇒ bool

pr-iso-test-rec I [] Fs2 ←→ Fs2 = []
pr-iso-test-rec I (F 1·Fs1) Fs2 ←→
(∃F 2∈set Fs2.
|F 1| = |F 2| ∧
(∃n<|F 2|.

let I ′ = zip F 1 (rotate n F 2)
in compat I ′ I ∧

pr-iso-test-rec (merge I ′ I ) Fs1 (remove1 F 2 Fs2)))

Function compat checks if two lists of vertex pairs are compatible

compat I I ′ ≡ ∀ (x , y)∈set I . ∀ (x ′, y ′)∈set I ′. x = x ′←→ y = y ′

and function merge merges them:

merge [] I = I
merge (xy ·xys) I =
(let (x , y) = xy
in if ∀ (x ′, y ′)∈set I . x 6= x ′ then xy ·merge xys I else merge xys I )

Moving from proper isomorphism to isomorphism is easy

iso-test g1 g2 ←→ pr-iso-test g1 g2 ∨ pr-iso-test g1 (map rev g2)

where pr-iso-test Fs1 Fs2 ←→ pr-iso-test-rec [] Fs1 Fs2.
Function pr-iso-test-rec is the result of a stepwise development that we skip

in favour of the final correctness theorem:

pr-iso-test-rec [] Fs1 Fs2 ←→ (∃ϕ. is-pr-iso ϕ Fs1 Fs2)

13



This theorem comes with a number of preconditions on the two face lists: in each
face, all vertices must be distinct, all faces in each list must be distinct modulo ∼=,
and the empty face is not allowed. An executable version of these preconditions,
for the case where the vertices are natural numbers, can be expressed like this:

pre-iso-test Fs ←→
[] /∈ set Fs ∧ (∀F∈set Fs. distinct F ) ∧ distinct (map rotate-min Fs)

Function rotate-min produces a unique representative of the ∼= equivalence class
of a face by rotating the minimal vertex to the head of the list.

The key theorem now states that under the executable preconditions, the
executable and the mathematical definition of isomorphism agree:

pre-iso-test Fs1 =⇒ pre-iso-test Fs2 =⇒ iso-test Fs1 Fs2 ←→ Fs1 ' Fs2

5.2 Sets of graphs modulo isomorphism

Now we can reap the benefits of the implementation work in §3.4. The interpre-
tation of locale quasi-order with ' on type fgraph is trivial and omitted. The
interpretation of set-mod-maps is more involved:

interpretation
set-mod-maps (Tries [] []) Tries.update Tries.lookup Tries.inv

(op ') iso-test hash pre-iso-test

The first four parameters are identical to those in the interpretation of the sublo-
cale maps in §4.2. The quasi-order is interpreted as '. The last three parameters
interpret the subsumed, key and I parameters of set-mod-maps. Only the hash
function remains to be explained, informally. It takes an fgraph and produces a
list of natural numbers, in this order: the number of vertices, the number of faces,
the sorted list of degrees of each vertex. All of these are well-known invariants
under isomorphism, but as explained in §3.3, we have set things up such that
we do not need to prove this.

The final theorem in the previous subsection is all we need to prove the one
assumption of locale set-mod-maps in this interpretation. Now we have estab-
lished the last remaining arrow in Figure 1, the one from to set-mod-maps to
Graph (representing the plane graph theory).

5.3 Application to Hales’s proof

During the enumeration, graphs are represented by an abstract type graph with
a successor function next :: graph ⇒ graph list, a predicate final that picks out
the tame graphs, and a projection fgraph :: graph ⇒ nat fgraph.

The interpretation of set-mod-maps above yields a function worklist-tree-coll
that we can specialize as follows to the enumeration of all tame graphs:

worklist-tree-coll next final fgraph
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of type graph list ⇒ (nat ,nat fgraph) tries option. In the end, this function
is applied to four different start graphs, runs for 11 hours, and terminates with
Some tries; the resulting tries are compared modulo isomorphism with an archive
of tame graphs, which Hales had initially supplied. The first time the verified
enumeration terminated successfully, I found that the archive lacked two graphs.
The completed archive is available online, as are all the Isabelle theories [16].

During the enumeration, a total of 1 870 507 512 graphs are generated, of
which 348 231 are final tame graphs, of which 18 762 are distinct modulo iso-
morphism. The final tame graphs have at most 25 faces (18.6 on average) and
at most 15 vertices (13.8 on average). Our hash function works very well: on
average, there are 3.1 graphs in each entry of a trie, and in the worst case there
are 97.

6 Conclusion

This work is an encouraging example of both the contribution that theorem
proving can make to extreme mathematical proofs and the contribution that
software development methods can make to theorem proving. Initially we had
hacked our way through the proof and did not describe the details in [17]. This
paper is a rational reconstruction of the underlying data structures and algo-
rithms of that hack. This exercise in modularization has given rise to a number
of interesting reusable components.

Acknowledgement I would like to thank Tom Hales for hosting my visit to Pitt,
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the subsumption relation and many other improvements.
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