
Abstract Interpretation
of Annotated Commands

Tobias Nipkow?

Fakultät für Informatik, Technische Universität München

Abstract. This paper formalizes a generic abstract interpreter for a
while-language, including widening and narrowing. The collecting seman-
tics and the abstract interpreter operate on annotated commands: the
program is represented as a syntax tree with the semantic information
directly embedded, without auxiliary labels. The aim of the paper is sim-
plicity of the formalization, not efficiency or precision. This is motivated
by the inclusion of the material in a theorem prover based course on
semantics.

1 Introduction

The purpose of this work is to formalize the basics of abstract interpretation in
a theorem prover in as simple a manner as possible. The background is a course
on semantics [10] that is completely based on Isabelle/HOL [11]. The first 4
weeks of the course are dedicated to the theorem prover; the rest of the course
focuses on the semantics of a simple while-language and on its applications (e.g.
compiler correctness). In particular, the last 4 weeks are dedicated to abstract
interpretation. Hence the need to concentrate on the essence and simplify the
technicalities. A second desideratum was to stick with the unifying represen-
tation of programs as abstract syntax trees employed throughout the course.
Finally we wanted to visualize the stepwise computation of the semantics and
the abstract interpreter as directly as possible. As a result we chose syntax trees
annotated with (concrete or abstract) semantic information and a Jacobi-like it-
eration strategy. That is, displaying the annotated program after each iteration
step animates the stepwise approximation of the result. This paper presents the
formalization of a collecting semantics, a derived small-step operational seman-
tics, and a stepwise development of a series of abstract interpreters, up to and
including widening and narrowing. Just like previous formalizations, we only
consider concretization, not abstraction, and verify only correctness, not opti-
mality of the interpreter. Due to space limitations, this is not a tutorial paper
and readers are assumed to be familiar with abstract interpretation [4,5,8].

Abstract interpretation is a vast research area, but only a few formalizations
have been published, primarily the impressive work by Pichardie [12,13,3], who
employs Coq’s expressive type and module system to great effect. The key dif-
ferences to our approach are that Pichardie labels the nodes of the syntax tree

? Research supported by NICTA and by DFG GK PUMA

whereas we annotate the tree directly with information, his whole approach is
denotational (i.e. nested iterations) whereas ours is based on one global iteration,
the termination proofs for widening and narrowing are very different, and overall
his model is more refined and ours is simpler, which reflects the different aims.
Bertot [1] presents an approach that is also based on annotating the program
directly but is otherwise very different from ours: Bertot’s reference point is a
Hoare logic, not a collecting semantics. There have also been a number of specific
applications of abstract interpretation, eg [9,2], but without a formalization of
the generic theory.

2 Notation

The logic HOL of the Isabelle proof assistant conforms largely to everyday math-
ematical notation. This section summarizes non-standard notation.

The function space is denoted by ⇒. Type variables are denoted by ′a, ′b,
etc. The notation t :: τ means that term t has type τ . Type constructors follow
postfix syntax, eg ′a set is the type of sets of elements of type ′a. Lists over
type ′a, type ′a list, come with the empty list [], the infix constructor ·, and
enumeration syntax [x 1, . . ., xn]. The datatype ′a option = None | Some ′a
is predefined. The notation [[A1, . . ., An]] =⇒ B is an implication with the
premises Ai and the conclusion B.

3 Annotated Commands

There are arithmetic and boolean expressions, where vname = string :

datatype aexp = N int | V vname | Plus aexp aexp
datatype bexp = Bc bool | Not bexp | And bexp bexp | Less aexp aexp

Their evaluation is defined as usual: aval :: aexp ⇒ state ⇒ int and bval :: bexp
⇒ state ⇒ bool, where state = vname ⇒ int. There are commands (type com)
and annotated commands, with the customary concrete syntax; annotations of
type ′a are enclosed in braces:

datatype ′a acom =
SKIP { ′a }

| string ::= aexp { ′a }
| ′a acom ; ′a acom
| IF bexp THEN ′a acom ELSE ′a acom { ′a }
| { ′a } WHILE bexp DO ′a acom { ′a }

Type com is not shown as it is identical to acom, but without the annotations.
Annotations positioned at the end of a command refer to the very end of

that command, not to some subcommand (eg the ELSE branch or the WHILE
body). The annotation in front of WHILE is meant to hold the invariant.

2

There are many alternatives as to the placement and number of annotations.
Our choice fits our formalization of semantics and abstract interpretation, but
other choices are possible.

There are a number of auxiliary functions: post :: ′a acom ⇒ ′a extracts
the post-annotation of a command (post (c1; c2) = post c2), strip :: ′a acom
⇒ com removes all annotations, and anno :: ′a ⇒ com ⇒ ′a acom annotates a
command with the same annotation everywhere.

We say that c1 and c2 are strip-equal if strip c1 = strip c2.

4 Collecting Semantics

The purpose of the collecting semantics is to collect the set of all reachable states
at some program point as an annotation. Both the collecting semantics and later
the abstract interpreter are defined by iterated simultaneous “micro-step” execu-
tion of all atomic commands, similar to the Jacobi method for linear equations.
This is very different from a denotational approach where whole subcommands
are executed in one go. We define a function step :: state set ⇒ state set acom
⇒ state set acom that pushes a set of initial states one step into an annotated
command c and propagates the state set annotations inside c one step further:

step S (SKIP {P}) = SKIP {S}
step S (x ::= e {P}) = x ::= e {{s ′ | ∃ s∈S . s ′ = s(x := aval e s)}}
step S (c1; c2) = step S c1; step (post c1) c2

step S (IF b THEN c1 ELSE c2 {P}) = IF b THEN step {s ∈ S | bval b s} c1

ELSE step {s ∈ S | ¬ bval b s} c2

{post c1 ∪ post c2}
step S ({Inv}WHILE b DO c {P}) = {S ∪ post c}

WHILE b DO step {s ∈ Inv | bval b s} c
{{s ∈ Inv | ¬ bval b s}}

Annotations for IF and WHILE are (in principle) redundant, but the invariant
is conceptually important and the post-annotations allow a uniform definition
of post for arbitrary annotations.

The beauty of annotated commands is the ability to visualize the semantics
by evaluating step. This is possible thanks to Isabelle’s evaluation mechanism,
which can handle finite sets. Here is a small (contrived) example, further exam-
ples follow. Given the command cs-ex =

′′x ′′ ::= Plus (V ′′x ′′) (N 1) {{λx . 5 , λx . 6 , λx . 7}};
′′x ′′ ::= Plus (V ′′x ′′) (N 2) {∅}

evaluation of show-acom [′′x ′′] (step {λx . −1 , λx . 1} cs-ex) yields

′′x ′′ ::= Plus (V ′′x ′′) (N 1) {{[(′′x ′′, 0)], [(′′x ′′, 2)]}};
′′x ′′ ::= Plus (V ′′x ′′) (N 2) {{[(′′x ′′, 7)], [(′′x ′′, 8)], [(′′x ′′, 9)]}}

In the input, states are functions, but in the output, the pretty-printing function
show-acom converts states into variable-value pairs, for a given list of variables.

3

In order to find least fixed-points of step, we extend orderings ≤ on type ′a
to ′a acom:

SKIP {S} ≤ SKIP {S ′} ←→ S ≤ S ′

x ::= e {S} ≤ x ′ ::= e ′ {S ′} ←→ x = x ′ ∧ e = e ′ ∧ S ≤ S ′

c1; c2 ≤ d1; d2 ←→ c1 ≤ d1 ∧ c2 ≤ d2

IF b THEN c1 ELSE c2 {S} ≤ IF b ′ THEN d1 ELSE d2 {S ′}
←→ b = b ′ ∧ c1 ≤ d1 ∧ c2 ≤ d2 ∧ S ≤ S ′

{I } WHILE b DO c {P} ≤ {I ′} WHILE b ′ DO c ′ {P ′}
←→ b = b ′ ∧ c ≤ c ′ ∧ I ≤ I ′ ∧ P ≤ P ′

In all other cases c ≤ c ′ is defined to be False. We can now compare commands
annotated with state sets. The underlying ordering on the state sets is ⊆. A
simple inductive proof shows monotonicity of step:

Lemma If c1 ≤ c2 and S 1 ⊆ S 2 then step S 1 c1 ≤ step S2 c2.

To show that step has a least fixed point we turn acom into a complete lattice.

4.1 Indexed Complete Lattices

Only subsets of acom form a complete lattice, namely {c ′ | strip c ′ = c} for any
c. Hence we define a little theory of indexed complete lattices parameterized by

L :: ′i ⇒ ′a set and Glb :: ′i ⇒ ′a set ⇒ ′a

where ′i is the index type and L i the carrier set. We assume that Glb is the
greatest lower bound and that L i is closed under Glb:

[[A ⊆ L i ; a ∈ A]] =⇒ Glb i A ≤ a
[[b ∈ L i ; ∀ a∈A. b ≤ a]] =⇒ b ≤ Glb i A
A ⊆ L i =⇒ Glb i A ∈ L i

In this context we can prove that lfp f i = Glb i {a ∈ L i | f a ≤ a} is indeed
the least fixed and post-fixed point. Note that we define post-fixed point to mean
f x ≤ x, which is customary in the abstract interpretation literature, although
usually this is called a pre-fixed point.

4.2 Application to Collecting Semantics

The Glb of a set of annotated commands is taken pointwise, assuming the com-
mands are all strip-equal. More generally, any function on annotation sets can
be lifted to sets of annotated commands in this pointwise manner (where f ‘ M
is the image of a function over a set):

lift :: (′a set ⇒ ′a) ⇒ com ⇒ ′a acom set ⇒ ′a acom
lift F SKIP M = SKIP {F (post ‘ M)}
lift F (x ::= a) M = x ::= a {F (post ‘ M)}

4

lift F (c1; c2) M = lift F c1 (sub1 ‘ M); lift F c2 (sub2 ‘ M)
lift F (IF b THEN c1 ELSE c2) M = IF b THEN lift F c1 (sub1 ‘ M)

ELSE lift F c2 (sub2 ‘ M)
{F (post ‘ M)}

lift F (WHILE b DO c) M = {F (invar ‘ M)}
WHILE b DO lift F c (sub1 ‘ M)
{F (post ‘ M)}

Subcommands and the invariant are accessed by auxiliary functions:

sub1 (c1; c2) = c1

sub1 (IF b THEN c1 ELSE c2 {S}) = c1

sub1 ({I } WHILE b DO c {P}) = c
sub2 (c1; c2) = c2

sub2 (IF b THEN c1 ELSE c2 {S}) = c2

invar ({I } WHILE b DO c {P}) = I

Lemma Type ′a set acom is a complete lattice indexed by com where L c =
{c ′ | strip c ′ = c} and Glb = lift

⋂
.

Of course this works for any complete lattice of annotations, but we only need
it for sets. We can now define the collecting semantics as a least fixed-point:

CS :: com ⇒ state set acom
CS c = lfp (step UNIV) c

where UNIV is the set of all elements of a type, in this case the set of all states.
That is, the set of initial states are all states. This is a standard choice but any
other set is equally possible.

4.3 Small-Step Semantics

The collecting semantics can be specialized to a small-step semantics executing
a command c starting in a state s: annotate c with ∅ everywhere, make a single
step with initial state set {s} (now s has been “injected” into c), but now keep
stepping c with empty initial state set:

steps s c n = (step ∅)n (step {s} (anno ∅ c))

This describes n+1 steps of a small-step operational semantics. The resulting
command will take one of two forms: either it is annotated with ∅ everywhere,
which means that the execution terminated and the state has “dropped out” at
the end; or it contains exactly one non-empty annotation, which is a singleton
{s ′} that shows exactly where the execution currently is.

We can animate the small-step semantic just like the full collecting semantics,
by evaluating steps. The output below is generated by executing

value show-acom [′′x ′′] (steps (λx . 0) ss-ex n)

5

in Isabelle, for increasing n, which is very effective in class. The first 4 iterations
produce the following output:

{{[(′′x ′′, 0)]}}
WHILE Less (V ′′x ′′) (N 1) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2) {∅}
{∅}

{∅}
WHILE Less (V ′′x ′′) (N 1)
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2) {{[(′′x ′′, 2)]}}
{∅}

{{[(′′x ′′, 2)]}}
WHILE Less (V ′′x ′′) (N 1) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2) {∅}
{∅}

{∅}
WHILE Less (V ′′x ′′) (N 1) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 2) {∅}
{{[(′′x ′′, 2)]}}

One more step, and the single state drops out.
The whole point of this operational semantics is to justify the least-fixed

point construction of CS with respect to it. More precisely, we show that CS
overapproximates the operational semantics:

Lemma steps s c n ≤ CS c

The two semantics actually coincide, but we only need one direction. Later we
show that the abstract interpreter overapproximates the collecting semantics.
Together this proves that the abstract interpreter overapproximates the small-
step semantics.

The above small-step semantics is rather non-standard (but attractively sim-
ple). Cachera and Pichardie [3] present a proof relating a standard small-step
semantics to a collecting semantics. Their proof should carry over to our frame-
work if their program points are simulated by our annotations.

5 Abstract Interpretation

This and the following two sections develop and refine a generic abstract in-
terpreter. Initially, boolean expressions are not analysed. This is corrected in a
second step. In a last step, widening and narrowing are added.

5.1 Orderings

The various orderings we need are defined as type classes. The notation τ :: C
means that type τ is of class C.

6

A type ′a is a preorder (′a :: preord) if there is a reflexive and transitive
relation v :: ′a ⇒ ′a ⇒ bool. We do not assume antisymmetry because we
want to cover types with multiple different representations for the same abstract
element, e.g. pairs as intervals, where all pairs (l, h) with h < l represent the
empty interval.

Any relation v on type ′a extends to type ′a acom exactly like ≤ in the
definition of the collecting semantics in Section 4.

Lemma If ′a :: preord then ′a acom :: preord.

In Isabelle, such lemmas are expressed as so-called instance statements. They
allow the type checker to infer the class of complex types automatically.

Our abstract domains will initially be semilattices. Later we extend them to
lattices. A type ′a is a semilattice with top (′a :: SL-top) if it is a preorder and
there is a least upper bound (join) operation t :: ′a ⇒ ′a ⇒ ′a, i.e.

x v x t y y v x t y [[x v z ; y v z]] =⇒ x t y v z

and there is a top element > :: ′a, i.e. x v >.
Both option and function types preserve semilattices:

Lemma If ′a :: SL-top then ′a option :: SL-top.

The extension adjoins None as the least element.

Lemma If ′a :: SL-top then ′b ⇒ ′a :: SL-top.

The orderings extends pointwise in the usual manner.

5.2 Abstract Interpretation with Functional Abstract States

We start with an abstract interpreter that operates on abstract states that are
functions. It is not yet executable, but a first, conceptually simple design that
is made executable in a second step.

The abstract interpreter is parameterized with a type ′av :: SL-top of abstract
values that comes with a concretization function γ. In Isabelle this is expressed
as a locale:

locale Val-abs =
fixes γ :: ′av ::SL-top ⇒ val set
assumes a v b =⇒ γ a ⊆ γ b and γ > = UNIV

The fixes part declares the parameters, the assumes part states assumptions
on the parameters. As explained in the introduction, we only model half the
abstract interpretation theory: we drop the abstraction function α and do not
calculate abstract interpreters from concrete ones but merely prove given ab-
stract interpreters correct.

In the context of this locale we define abstract interpreters for aexp and acom.
They operate on a lifted abstract state of type ′av st option where

7

′av st = vname ⇒ ′av

Type option allows us to model unreachable program points by annotating them
with None, the counterpart to ∅ in the collecting semantics.

The concretization function γ is extended to ′av option st acom in the canon-
ical manner, preserving monotonicity:

γf :: ′av st ⇒ state set
γf S = {s | ∀ x . s x ∈ γ (S x)}
γo :: ′av st option ⇒ state set
γo None = ∅
γo (Some S) = γf S

γc :: ′av st option acom ⇒ state set acom
γc c = map-acom γo c

where map-acom f c applies f to all annotations in c.
Now we come to the actual interpreters. An abstraction of aval requires

abstractions of the basic arithmetic operations. Hence locale Val-abs is actually
richer than we pretended above: it contains abstractions of N and Plus, too:

fixes num ′ :: val ⇒ ′av
assumes n ∈ γ (num ′ n)
fixes plus ′ :: ′av ⇒ ′av ⇒ ′av
assumes [[n1 ∈ γ a1; n2 ∈ γ a2]] =⇒ n1 + n2 ∈ γ (plus ′ a1 a2)

The abstract interpreter for aexp is standard

aval ′ :: aexp ⇒ ′av st ⇒ ′av

aval ′ (N n) S = num ′ n
aval ′ (V x) S = S x
aval ′ (Plus a1 a2) S = plus ′ (aval ′ a1 S) (aval ′ a2 S)

and its correctness (s ∈ γf S =⇒ aval a s ∈ γ (aval ′ a S)) is trivial.
The abstract interpreter for annotated commands is defined like the collecting

semantics in two stages. We start with an abstraction of step, where the notation
f (x := y) is predefined and means function update:

step ′ :: ′av st option ⇒ ′av st option acom ⇒ ′av st option acom

step ′ S (SKIP {P}) = SKIP {S}
step ′ S (x ::= e {P})
= x ::= e {case S of None ⇒ None | Some S ⇒ Some (S (x := aval ′ e S))}
step ′ S (c1; c2) = step ′ S c1; step ′ (post c1) c2

step ′ S (IF b THEN c1 ELSE c2 {P})
= IF b THEN step ′ S c1 ELSE step ′ S c2 {post c1 t post c2}
step ′ S ({Inv} WHILE b DO c {P})
= {S t post c} WHILE b DO step ′ Inv c {Inv}

Correctness of step ′ wrt step is proved by induction on c:

8

Lemma If S ⊆ γo S ′ and c ≤ γc c ′ then step S c ≤ γc (step ′ S ′ c ′)

The abstract interpreter is defined by fixed-point iteration of step ′. This raises
the termination question. Because proof assistants like Coq and Isabelle/HOL
build on logics of total functions, previous formalizations (e.g. the work by
Pichardie) built the termination requirement into the ordering v. We define the
iteration for arbitrary orderings and prove termination separately. The slight
advantage in a teaching context is that it allows us to postpone the discussion
of termination. Our trick is to use while-option :: (′a ⇒ bool) ⇒ (′a ⇒ ′a) ⇒
′a ⇒ ′a option from the Isabelle/HOL library. It satisfies the recursion equation

while-option b c s = (if b s then while-option b c (c s) else Some s)

which makes it executable. Mathematically, while-option b c s = None in case
the recursion does not terminate. We define a generic post-fixed point finder

pfp :: (′a ⇒ ′a) ⇒ ′a ⇒ ′a option
pfp f = while-option (λx . ¬ f x v x) f

and as a special case the abstract interpreter:

AI :: com ⇒ ′av st option acom option
AI c = pfp (step ′ >) (⊥c c)

where ⊥c = anno None (note that ⊥c is one symbol). Iteration starts with
⊥c c, the least annotated version of c, thus making sure we obtain the least
post-fixed point (if f is monotone). This is nice to know, but not used later on:
for correctness, any post-fixed point will do. We iterate step ′ >, corresponding
to step UNIV in the collecting semantics.

Theorem (Correctness of AI wrt CS) AI c = Some c ′ =⇒ CS c ≤ γc c ′

It follows essentially because CS is defined as the least (post-)fixed point, AI
returns a post-fixed point, and step ′ and step operate in lock-step.

This is the initial version of our generic abstract interpreter. Unfortunately it
is not executable: in each iteration of pfp we need to test if the old and the new
version of the annotated command are related by v. This in turn requires us to
compare all annotations, which are (optional) functions. But v on functions is
not computable if the domain is infinite, which vname is. Before we fix this, a
remark on monotonicity.

So far, monotonicity at the abstract level has not entered the picture: it is not
needed for correctness of the basic abstract interpreter but will be required for
termination. We define an extension of locale Val-abs (locales are hierarchical)
where we also assume monotonicity of the abstract operations

assumes [[a1 v b1; a2 v b2]] =⇒ plus ′ a1 a2 v plus ′ b1 b2

and call this the monotone framework. In this framework we can prove mono-
tonicity of step ′:

Lemma If S v S ′ and c v c ′ then step ′ S c v step ′ S ′ c ′.

9

5.3 Abstract Interpretation with Computable Abstract States

We replace vname ⇒ ′av by finite functions because the state only needs to
record values of variables that actually occur in the command being analysed. We
could parameterize our abstract interpreter wrt a type of finite functions [12], but
since we do not intend to provide multiple implementations, we fix a particularly
simple model and redefine ′a st as follows:

datatype ′a st = FunDom (vname ⇒ ′a) (vname list)

That is, we record the domain of the finite function as a list. The two projection
functions are fun (FunDom f xs) = f and dom (FunDom f xs) = xs. Function
update is easy:

update F x y =
FunDom ((fun F)(x := y)) (if x ∈ set (dom F) then dom F else x ·dom F)

where set converts a list into a set and “·” is Cons. Function application is called
lookup and requires ′a to have a > element which is returned outside the domain:

lookup F x = (if x ∈ set (dom F) then fun F x else >)

Why >? This reflects that our analysis assumes that uninitialized variables can
have arbitrary values.

Lemma If ′a :: SL-top then ′a st :: SL-top.

The ordering is again pointwise (but expressed with lookup). The join intersects
the domains because outside the domain lookup returns >.

The development of the abstract interpreter stays exactly the same, except
that application and update on type ′av st are called lookup and update. We have
arrived at our first executable abstract interpreter. The initial development in
terms of abstract states as functions was merely presented for didactic reasons,
to keep it as simple as possible and introduce improvements gradually.

In addition we also prove a generic termination theorem. It is phrased directly
in terms of measures because this is most convenient for our applications. In the
context of the monotone framework (see end of previous subsection) we obtain

Theorem ∃ c ′. AI c = Some c ′ if there is a measure m :: ′av ⇒ nat such that
x v y ∧ ¬ y v x −→ m y < m x and x v y ∧ y v x −→ m x = m y.

The fact that while-option b f x = Some y means termination follows from
the recursion equation for while-option (see above) together with the fact that

while-option b f x = None in case b (f k x) for all k.

6 Backward Analysis of Boolean Expressions

So far we have not analyzed boolean expressions at all. Now we take them
into account by defining an analysis that “filters” an abstract state S wrt some

10

boolean expression b and some intended result r of b: the resulting abstract state
S ′ should be more precise than S, i.e. γo S ′ ⊆ γo S, but no state that makes b
evaluate to r must be lost: if s ∈ γo S and bval b s = r then also s ∈ γo S ′.
This filtering of abstract states corresponds to an intersection and is realized by
the dual of the join, the meet. We also need to model the situation that some
variable has no possible value, which corresponds to a least abstract element ⊥.
Therefore we upgrade from a semilattice to a lattice. A type ′a is a lattice with
top and bottom (′a :: L-top-bot) if it is a semilattice with top and there is a
greatest lower bound (meet) operation u :: ′a ⇒ ′a ⇒ ′a, i.e.

x u y v x x u y v y [[x v y ; x v z]] =⇒ x v y u z

and there is a bottom element ⊥ :: ′a, i.e. ⊥ v x.
We specialize the Val-abs interface further by requiring ′av ::L-top-bot and

by adding two further assumptions:

assumes γ a1 ∩ γ a2 ⊆ γ (a1 u a2) and γ ⊥ = ∅

The first assumption actually implies γ (a1 u a2) = γ a1 ∩ γ a2. Moreover we
require abstract filter functions for all basic arithmetic and boolean operations:

fixes test-num ′ :: int ⇒ ′av ⇒ bool
fixes filter-plus ′ :: ′av ⇒ ′av ⇒ ′av ⇒ ′av × ′av
fixes filter-less ′ :: bool ⇒ ′av ⇒ ′av ⇒ ′av × ′av
assumes test-num ′ n a = (n ∈ γ a)
assumes filter-plus ′ a a1 a2 = (b1, b2) =⇒
[[n1 ∈ γ a1; n2 ∈ γ a2; n1 + n2 ∈ γ a]] =⇒ n1 ∈ γ b1 ∧ n2 ∈ γ b2

assumes filter-less ′ (n1 < n2) a1 a2 = (b1, b2) =⇒
[[n1 ∈ γ a1; n2 ∈ γ a2]] =⇒ n1 ∈ γ b1 ∧ n2 ∈ γ b2

The filter functions are similar to inverse functions: but instead of computing the
arguments from the result, they are given both the arguments and the result and
should return the filtered arguments where values that cannot lead to the given
result may be removed. The assumes clauses express it the other way around:
the filter-plus ′ clause says that values in the conretization of a1 and a2 that
lead into γ a must not be filtered out. This assumptions guarantees soundness.
Based on the basic filtering functions we can now filter wrt aexp and later bexp
as explained in the introduction of this section:

afilter :: aexp ⇒ ′av ⇒ ′av st option ⇒ ′av st option

afilter (N n) a S = (if test-num ′ n a then S else None)
afilter (V x) a S =
(case S of None ⇒ None
| Some S ⇒

let a ′ = lookup S x u a
in if a ′ v ⊥ then None else Some (update S x a ′))

afilter (Plus e1 e2) a S =
(let (a1, a2) = filter-plus ′ a (aval ′′ e1 S) (aval ′′ e2 S)
in afilter e1 a1 (afilter e2 a2 S))

11

where aval ′′ is just a lifted version of aval ′:

aval ′′ e None = ⊥
aval ′′ e (Some S) = aval ′ e S

Note that the test a ′ v ⊥ in the afilter (V x) clause prevents an imprecision. We
could always return Some (update S x a ′), as some authors do [14]. But if a ′ is ⊥,
this is really an unreachable state. However, this information can be overwritten
in subsequent assignments, and when the resulting state is joined with another
execution path, e.g. at the end of a conditional, the unreachable state can lead
to a loss of precision. Hence we avoid creating states with ⊥ components and
work with the least state None instead.

Filtering with bexp is similar:

bfilter :: bexp ⇒ bool ⇒ ′av st option ⇒ ′av st option

bfilter (Bc v) res S = (if v = res then S else None)
bfilter (Not b) res S = bfilter b (¬ res) S
bfilter (And b1 b2) res S =
(if res then bfilter b1 True (bfilter b2 True S)
else bfilter b1 False S t bfilter b2 False S)

bfilter (Less e1 e2) res S =
(let (res1, res2) = filter-less ′ res (aval ′′ e1 S) (aval ′′ e2 S)
in afilter e1 res1 (afilter e2 res2 S))

Note that the then-case in bfilter (And b1 b2) is a tricky way to express bfilter
b1 True u bfilter b2 True, thus obviating the need to define u on abstract states.
It is debatable if this trick is a good idea in a teaching context.

Two of the defining equations for step ′ are now refined

step ′ S (IF b THEN c1 ELSE c2 {P}) =

IF b THEN step ′ (bfilter b True S) c1 ELSE step ′ (bfilter b False S) c2

{post c1 t post c2}

step ′ S ({Inv} WHILE b DO c {P}) =

{S t post c}
WHILE b DO step ′ (bfilter b True Inv) c
{bfilter b False Inv}

but the definition of the abstract interpreter AI itself is unchanged. The cor-
rectness proof stays largely the same but requires two new lemmas:

Lemma If s ∈ γo S and aval e s ∈ γ a then s ∈ γo (afilter e a S).

Lemma If s ∈ γo S then s ∈ γo (bfilter b (bval b s) S).

12

7 Widening and Narrowing

Widening is meant to ensure termination of fixed point iteration even in lattices
of infinite height, eg intervals. More generally, it is meant to accelate convergence.
Instead of computing f i(⊥) for i = 0, 1, . . . until a post-fixed point is found (see
pfp), widening allows us to take bigger steps thus avoiding nontermination. These
bigger steps may lose precision. Narrowing, another iteration, is meant to regain
it.

A widening operator 5 has type ′a ⇒ ′a ⇒ ′a and satisfies x v x 5 y and
y v x 5 y. A narrowing operator 4 has type ′a ⇒ ′a ⇒ ′a and satisfies y v
x =⇒ y v x 4 y and y v x =⇒ x 4 y v x. For convenience we put both of
them in class WN and make it a subclass of SL-top.

Normally the axioms of widening and narrowing also include an ascending
chain condition. We have again chosen to separate the termination argument.
(Strictly speaking, widening would not need any axioms for correctness but only
for termination.) Both operators can be extended to type option and st :

Lemma If ′a :: WN then ′a st :: WN.

Lemma If ′a :: WN then ′a option :: WN.

For the didactic reason of simplicity we have chosen not to apply widening or
narrowing selectively at individual annotations but simultaneously everywhere.
This can be less precise than more selective strategies [3] but is much simpler.

We define a function map2-acom :: (′a ⇒ ′a ⇒ ′a) ⇒ ′a acom ⇒ ′a acom ⇒
′a acom that applies a function simultaneously to the corresponding annotations
of two strip-equal annotated commands. This permits us to lift 5 and 4 to 5c

and 4c on annotated commands: c1 5c c2 = map2-acom (op 5) c1 c2 and
c1 4c c2 = map2-acom (op 4) c1 c2, where (op ./) is the function some infix
operator ./ stands for.

Iterative widening and narrowing on acom are expressed as loops:

iter-widen f = while-option (λc. ¬ f c v c) (λc. c 5c f c)
iter-narrow f = while-option (λc. ¬ c v c 4c f c) (λc. c 4c f c)

This formalizes one of the widening variants proposed by Cousot [6, footnote 6].
Pichardie and Monniaux [7] propose other formalizations.

The overall analysis performs widening first and then narrowing:

pfp-wn f c =
(case iter-widen f (⊥c c) of None ⇒ None | Some c ′⇒ iter-narrow f c ′)

Later we show that the None case cannot arise under certain assumptions about
widening. By definition, iter-widen f (⊥c c) finds a post-fixed point c ′ of f if
it terminates. Assuming f is monotone, induction together with the narrowing
properties shows that iter-narrow f c ′ finds another post-fixed point of f below
c ′ if it terminates.

In the context of the monotone framework we define AI-wn with the help of
pfp-wn instead of pfp, as previously:

13

AI-wn = pfp-wn (step ′ >)

The correctness (AI-wn c = Some c ′ =⇒ CS c ≤ γc c ′) proof is as before.

7.1 Termination

Correctness of widening and narrowing was easy. Termination is quite technical,
although we have adopted an approach that does not refer to infinite chains but
is phrased in terms of measure functions. For widening, each type needs to come
with a measure function m into nat such that

x v y =⇒ m y ≤ m x
¬ y v x =⇒ m (x 5 y) < m x

The first measure property guarantees that the measure cannot go up with a
widening step: the first widening axiom implies m (x 5 y) ≤ m x (the second
widening axiom is never needed). The second measure property guarantees that
with every widening step of iter-widen, the measure goes down. The second
property is the one we need, the first one is only auxiliary.

Both measure properties together allow us to lift them to composite data
types, especially abstract states and annotated commands. Both types are just
glorified tuples and hence we can explain the mechanism in terms of pairs without
having to bother with the technical details of the more complex types. Every-
thing on pairs is defined componentwise, including the measure function and the
function f whose post-fixed point we seek:

((y1, y2) v (x 1, x 2)) = (y1 v x 1 ∧ y2 v x 2)
(x 1, x 2) 5 (y1, y2) = (x 1 5 y1, x 2 5 y2)
m (x 1, x 2) = m1 x 1 + m2 x 2

f (x 1, x 2) = (f 1 x 1, f 2 x 2)

The first measure property, anti-monotonicity, lifts trivially to pairs. Let us now
consider the second measure property and assume ¬ f (x 1, x 2) v (x 1, x 2), i.e.
either ¬ f 1 x 1 v x 1 or ¬ f 2 x 2 v x 2. In the first case we have m1(x 1 5 f 1 x 1)
< m1 x 1 (by the second measure property) and m2(x 2 5 f 2 x 2) ≤ m2 x 2 (by
the first measure property) and thus m ((x 1, x 2) 5 f (x 1, x 2)) = m1 (x 1 5 f 1

x 1) + m2 (x 2 5 f 2 x 2) < m1 x 1 + m2 x 2. The second case is dual.
This way we can lift the two measure properties from the basic domain of ab-

stract values up to annotated commands. However, there are some technicalities.
The x and y in the measure properties need to fulfill additional invariants, in
particular at the acom level: both must be strip-equal annotated commands over
the same fixed finite set of variables. Hence the full measure theorem becomes

If finite X, strip c ′ = strip c, c ∈ Com X, c ′ ∈ Com X and ¬ c ′ v c,
then m (c 5c c ′) < m c.

where m is the measure function on acom and Com X is the set of commands
whose annotations mention only variables in X. Of course step ′ preserves these
invariants.

14

Termination of narrowing is proved in a similar manner, using measure func-
tions called n that must also satisfy two properties:

x v y =⇒ n x ≤ n y
y v x =⇒ ¬ x v x 4 y =⇒ n(x 4 y) < n x

Again, the first property lifts trivially but it is the second one we are really
after. It is lifted to pairs in a similar manner as for widening, using the second
narrowing axiom. Obtaining the final measure theorem for narrowing on the
acom level is again technical in the same way as for widening. At the end of the
day, here is the unconditional termination statement for AI-ivl ′, the instantiation
of AI-wn with intervals:

Theorem ∃ c ′. AI-ivl ′ c = Some c ′

7.2 Intervals

We have instantiated the various frameworks above with the standard analyses,
in particular intervals. Our definition of intervals is extremely basic:

datatype ivl = I (int option) (int option)

where None represents infinity. For readability we install some syntactic sugar:
{i . . .j} stands for I (Some i) (Some j); infinite lower or upper bounds are simply
dropped. For example, {i . . .} is I (Some i) None. The only drawback is that the
empty interval has many representations, but this is why our value abstraction is
based on preorders, not partial orders. We refrain from giving the details of the
operations on intervals. They follow the literature, except for the representation.

Just like for the small-step semantics, we can animate the computation of
the abstract interpreter by iterating the step function and widening/narrowing.
We evaluate show-acom ((λc. c 5c step-ivl > c)n (⊥c testc)) for increasing n.
The pretty-printing function show-acom shows an abstract state as a list of pairs
(x ,ivl) — no need to supply the list of variables, it is part of the abstract state.

For n = 1 we obtain the program annotated with None everywhere except
after the first assignment:

′′x ′′ ::= N 7 {Some [(′′x ′′, {7 . . .7})]};
{None}
WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1) {None}
{None}

The next step merely initializes the invariant:

′′x ′′ ::= N 7 {Some [(′′x ′′, {7 . . .7})]};
{Some [(′′x ′′, {7 . . .7})]}
WHILE Less (V ′′x ′′) (N 100) DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1) {None}
{None}

Now the invariant filtered with the loop condition is propagated to the end of
the loop body:

15

′′x ′′ ::= N 7 {Some [(′′x ′′, {7 . . .7})]};
{Some [(′′x ′′, {7 . . .7})]}
WHILE Less (V ′′x ′′) (N 100)
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1) {Some [(′′x ′′, {8 . . .8})]}
{None}

In the next step, widening has an effect and combines {7 . . .7} and {8 . . .8} into
the new invariant {7 . . .}:

′′x ′′ ::= N 7 {Some [(′′x ′′, {7 . . .7})]};
{Some [(′′x ′′, {7 . . .})]}
WHILE Less (V ′′x ′′) (N 100)
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1) {Some [(′′x ′′, {8 . . .8})]}
{None}

One more iteration yields a (post-)fixed point of step-ivl :

′′x ′′ ::= N 7 {Some [(′′x ′′, {7 . . .7})]};
{Some [(′′x ′′, {7 . . .})]}
WHILE Less (V ′′x ′′) (N 100)
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1) {Some [(′′x ′′, {8 . . .})]}
{Some [(′′x ′′, {100 . . .})]}

Switching to narrowing now, we obtain a second (post-)fixed point of step-ivl
after 3 more iterations:

′′x ′′ ::= N 7 {Some [(′′x ′′, {7 . . .7})]};
{Some [(′′x ′′, {7 . . .100})]}
WHILE Less (V ′′x ′′) (N 100)
DO ′′x ′′ ::= Plus (V ′′x ′′) (N 1) {Some [(′′x ′′, {8 . . .100})]}
{Some [(′′x ′′, {100 . . .100})]}

8 Conclusion

The above material was covered in 4 weeks in an MSc course on semantics via
a theorem prover. Much of it worked well, although a few points are still a bit
technical. In particular, we did not cover termination formally, especially for
widening/narrowing. We intend to streamline this issue further in the future.

The Isabelle theories are available online at http://isabelle.in.tum.de/dist/
library/HOL/HOL-IMP/ (the relevant theories are named *ITP) and in the
Isabelle distribution in src/HOL/IMP/Abs Int ITP/.

Acknowledgement David Pichardie’s exemplary review and his many expla-
nations greatly improved my understanding of his work and of abstract inter-
pretation in general. Brian Huffman’s comments improved the presentation.

16

http://isabelle.in.tum.de/dist/library/HOL/HOL-IMP/
http://isabelle.in.tum.de/dist/library/HOL/HOL-IMP/

References

1. Bertot, Y.: Structural abstract interpretation: A formal study using Coq. In: Bove,
Barbosa, Pardo, Pinto (eds.) Language Engineering and Rigorous Software Devel-
opment (ALFA Summer School). Lect. Notes in Comp. Sci., vol. 5520, pp. 153–194.
Springer-Verlag (2008)

2. Bertot, Y., Grégoire, B., Leroy, X.: A structured approach to proving compiler opti-
mizations based on dataflow analysis. In: Types for Proofs and Programs (TYPES
2004). Lect. Notes in Comp. Sci., vol. 3839, pp. 66–81. Springer-Verlag (2006)

3. Cachera, D., Pichardie, D.: A certified denotational abstract interpreter. In: Kauf-
mann, M., Paulson, L. (eds.) Interactive Theorem Proving (ITP 2010). Lect. Notes
in Comp. Sci., vol. 6172, pp. 9–24. Springer-Verlag (2010)

4. Cousot, P.: The calculational design of a generic abstract interpreter. In: Broy,
Steinbrüggen (eds.) Calculational System Design. IOS Press (1999)

5. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. 4th
ACM Symp. Principles of Programming Languages. pp. 238–252 (1977)

6. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrowing
approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.) Pro-
gramming Language Implementation and Logic Programming (PLILP ’92). Lect.
Notes in Comp. Sci., vol. 631, pp. 269–295. Springer-Verlag (1992)

7. Monniaux, D.: A minimalistic look at widening operators. Higher-Order and Sym-
bolic Computation 22, 145–154 (2009)

8. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag (1999)

9. Nipkow, T.: Verified bytecode verifiers. In: Honsell, F. (ed.) Foundations of Soft-
ware Science and Computation Structures (FOSSACS 2001). Lect. Notes in Comp.
Sci., vol. 2030, pp. 347–363. Springer-Verlag (2001)

10. Nipkow, T.: Teaching semantics with a proof assistant: No more LSD trip proofs.
In: Kuncak, V., Rybalchenko, A. (eds.) Verification, Model Checking, and Abstract
Interpretation (VMCAI 2012). Lect. Notes in Comp. Sci., vol. 7148, pp. 24–38.
Springer-Verlag (2012)

11. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, Lect. Notes in Comp. Sci., vol. 2283. Springer-Verlag (2002)

12. Pichardie, D.: Interprétation abstraite en logique intuitionniste : extraction
d’analyseurs Java certifiés. Ph.D. thesis, Université Rennes 1 (2005)

13. Pichardie, D.: Building certified static analysers by modular construction of well-
founded lattices. In: Proc. 1st International Conference on Foundations of Infor-
matics, Computing and Software (FICS’08). ENTCS, vol. 212, pp. 225–239 (2008)

14. Seo, S., Yang, H., Yi, K.: Automatic construction of Hoare proofs from abstract
interpretation results. In: Ohori, A. (ed.) Programming Languages and Systems
(APLAS 2003). Lect. Notes in Comp. Sci., vol. 2895, pp. 230–245. Springer-Verlag
(2003)

17

	Abstract Interpretation of Annotated Commands
	Tobias Nipkow

