
Automatic Functional Correctness Proofs
for Functional Search Trees

Tobias Nipkow?

Technische Universität München
http://www.in.tum.de/∼nipkow

Abstract. In a new approach, functional correctness specifications of
insert/update and delete operations on search trees are expressed on the
level of lists by means of an inorder traversal function that projects trees
to lists. With the help of a small lemma library, functional correctness
and preservation of the search tree property are proved automatically (in
Isabelle/HOL) for a range of data structures: unbalanced binary trees,
AVL trees, red-black trees, 2-3 and 2-3-4 trees, 1-2 brother trees, AA
trees and splay trees.

1 Introduction

Most books and articles on search tree data structures do not discuss func-
tional correctness, which is taken to be obvious, but concentrate on non-obvious
structural invariants like balancedness. This paper confirms that this is the right
attitude by providing a framework for proving the functional correctness of eight
different search tree data structures automatically (in Isabelle/HOL [19,21]).

What is proved automatically? Functional correctness of insert, delete and
isin together with the preservation of the search tree invariant, i.e. sortedness, by
insert and delete. Structural invariants like balancedness are proved manually,
depend on the specific data structure, and are not discussed here.

Which data structures are covered? Unbalanced binary trees, AVL trees, red-
black trees, 2-3 and 2-3-4 trees, 1-2 brother trees, AA trees and splay trees. 1

As far as we know, these are the first formal proofs for 2-3 and 2-3-4 trees, 1-2
brother trees and AA trees, and the first automatic proofs for most of the eight
data structures.

What does automatic mean? It means that all the required theorems are
proved by induction followed by a single invocation of Isabelle’s auto proof
method, parameterized with a fixed set of basic lemmas plus further lemmas
about auxiliary functions. The lemmas to be proved about insert, delete and
isin are fixed; lemmas about auxiliary functions need to be invented but (mostly)
follow a simple pattern.

? Supported by DFG Koselleck grant NI 491/16-1
1 See http://isabelle.in.tum.de/library/HOL/HOL-Data Structures/ or the source di-

rectory src/HOL/Data Structures/ in the Isabelle distribution.

http://www.in.tum.de/~nipkow
http://isabelle.in.tum.de/library/HOL/HOL-Data_Structures/

The paper is structured as follows. Section 3 presents two approaches to
the specification and verification of set implementations: the standard approach
and our new approach. Section 4 details the verification framework behind the
new approach. In Section 5 eight different search tree implementations and their
correctness proofs are discussed. In a final section it is shown how the framework
can be generalized from sets to maps.

Related work is discussed in the body of the paper. With one exception, the
proofs in previous work are not automatic. We refrain from stating this each
time and we do not descibe how far from automatic they are, although this
varies significantly (from a few to more than a hundred lines).

2 Lists and Trees

Lists (type ′a list) are constructed from the empty list [] via the infix cons-
operator “·”. The notation [x ,y ,z] is short for x · y · z · []. The infix @ concate-
nates two lists.

Binary trees are defined as the data type ′a tree with two constructors: the
empty tree or leaf 〈〉 and the node 〈l , a, r〉 with subtrees l , r :: ′a tree and
contents a :: ′a.

There is also a type ′a set of sets with their usual operations.

3 Set Implementations

We require that an implementation of sets provides some type ′a t (where ′a is
the element type) and the operations

empty :: ′a t
insert :: ′a ⇒ ′a t ⇒ ′a t
delete :: ′a ⇒ ′a t ⇒ ′a t
isin :: ′a t ⇒ ′a ⇒ bool

In the rest of the paper we ignore empty because it is trivial.
In order to specify these operations we assume that there is also an abstraction

function set :: ′a t ⇒ ′a set and a data type invariant invar :: ′a t ⇒ bool. These
are not part of the interface and need not be executable but have to be provided
in order to prove an implementation correct w.r.t. the specification in Fig. 1.
Specifications phrased in terms of abstraction functions that are required to be
homomorphisms go back to Hoare [11] and became an integral part of the model-
oriented specification language VDM [13]. In the first-order context of universal
algebra it was shown that there are always fully abstract models such that any
concrete implementation can be shown correct with a homomorphism [16]. In
Isabelle, implementations that satisfy such specifications can automatically be
plugged in for the abstract type by regarding the abstraction function as a
constructor [9]. For example, turning the equation isin s x = (x ∈ set s) around
tells us how to evaluate x ∈ set s with the help of isin.

From now on we assume that the element type ′a is linearly ordered.

2

invar s =⇒ set (insert x s) = {x} ∪ set s
invar s =⇒ set (delete x s) = set s − {x}
invar s =⇒ isin s x = (x ∈ set s)
invar s =⇒ invar (insert x s)
invar s =⇒ invar (delete x s)

Fig. 1. Specification of set implementations

3.1 The Standard Approach

The most compact form of the standard approach to the verification of search
tree implementations of sets consists of the following items:

– An abstraction function set that extract the set of elements in a tree.
– A recursively defined (binary) search tree invariant

bst 〈l ,a,r〉 = (bst l ∧ bst r ∧ (∀ x ∈ set l . x < a) ∧ (∀ x ∈ set r . a < x)
– Proof of the correctness conditions in Fig. 1 where invar is bst, possibly

conjoined with additional structural invariants.

There are many variations of the above setup, some of which address two compli-
cations that arise when automating the proofs, the quantifiers and the non-free
data type of sets:

– In the definition of bst, quantifiers are replaced by auxiliary functions that
check if all elements in a tree are less/greater than a given element.

– Instead of extensional equality of sets, e.g. set (insert x s) = {x} ∪ set s,
pointwise equality is proved, e.g. isin (insert x s) y = (x = y ∨ isin s y).

– The predicate bst is defined inductively rather than recursively.

We subsume all of these variations under the “standard approach”. Unless stated
otherwise, all related work follows the standard approach.

3.2 The inorder Approach

Why is it perfectly obvious that the following equation (where R/B construct
red/black nodes) preserves sortedness and the set of elements of a tree?

balance (R (R t1 a t2) b t3) c t4 = R (B t1 a t2) b (B t3 c t4)

Because the sequence of subtrees and elements is the same on both sides! We
merely need to make the machine see this as well as we do.

The key idea of our approach is to base it on the inorder traversal of trees.
That is, we use lists as an intermediate data type between sets and trees. To
this end we need four auxiliary functions on lists:

– ↑ :: ′a list ⇒ bool
↑ means that the list is sorted in ascending order w.r.t. <.

3

invar t =⇒ binsert x tc = inslist x btc (1)
invar t =⇒ bdelete x tc = dellist x btc (2)
invar t =⇒ isin t x = (x ∈ elems btc) (3)
invar t =⇒ inv (insert x t) (4)
invar t =⇒ inv (delete x t) (5)

Fig. 2. Specification of set implementations over ordered types

↑ [] = True
↑ [x] = True
↑ (x · y · zs) = (x < y ∧ ↑ (y · zs))

– inslist :: ′a ⇒ ′a list ⇒ ′a list
inslist inserts an element at the correct position into a sorted list if the
element is not present in the list yet.

inslist x [] = [x]
inslist x (a · xs) =
(if x < a then x · a · xs else if x = a then a · xs else a · inslist x xs)

– dellist :: ′a ⇒ ′a list ⇒ ′a list
dellist deletes the first occurrence of an element from a list.

dellist x [] = []
dellist x (a · xs) = (if x = a then xs else a · dellist x xs)

– elems :: ′a list ⇒ ′a set
elems turns a list into the set of its elements.

elems [] = ∅
elems (x · xs) = {x} ∪ elems xs

A new specification of sets (over a linearly ordered type ′a) is shown in Fig. 2.
The crucial ingredient is an additional specification function

inorder :: ′a t ⇒ ′a list

As the name inorder suggests, you should now think of ′a t as a type of trees.
We abbreviate inorder t by btc.

The fact that some t is a search tree, i.e. sorted, can now be expressed as
↑ btc. This invariant will be dealt with automatically. Of course search trees
frequently have additional structural invariants. These can be supplied via yet
another specification function inv :: ′a t ⇒ bool. Both kinds of invariants are
combined into invar :

invar t = (inv t ∧ ↑ btc)

The first three propositions in Fig. 2 demand the functional correctness of
insert, delete and isin w.r.t. inslist , dellist and elems. The next two propositions
demand that inv is invariant. If we interpret function set as elems ◦ inorder it
is easy to show that Fig. 2 implies Fig. 1 with the help of the following simple
inductive lemmas:

4

elems (inslist x xs) = {x} ∪ elems xs
↑ xs =⇒ distinct xs
distinct xs =⇒ elems (dellist x xs) = elems xs − {x}
↑ xs =⇒ ↑ (inslist x xs)
↑ xs =⇒ ↑ (dellist x xs)

In summary: the functional correctness of an implementation of insert, delete
and isin on some data structure can be verified by proving the properties in
Fig. 2 for some suitable definition of inorder and inv. In the following section
we introduce a library of lemmas about ↑, inslist and dellist that allows us to
automate the proofs of (1)–(3).

Note that although we equate (1)–(3) with “functional correctness”, it is
more: (1)–(3) also imply that sortedness is an invariant.

4 The Verification Framework

We do not claim to provide a framework that can prove any implementation
of sets by search trees automatically correct. Instead we provide lemmas that
work in practice (they automate the correctness proofs for a list of benchmark
implementations presented in Section 5) and are well motivated by general con-
siderations concerning the shape of formulas that arise in the verification.

As a motivating example we consider ordinary unbalanced binary trees ′a tree.
The textbook definitions of insert, delete and isin are omitted. Let us examine
how to prove

↑ btc =⇒ binsert x tc = inslist x btc

The proof is by induction on t and we consider the case t = 〈l , a, r〉 such that
x < a. Ideally the proof looks like this:

binsert x tc = binsert x lc @ a · brc = inslist x blc @ a · brc
= inslist x (blc @ a · brc) = inslist x t

The first and last step are by definition, the second step by induction hypothesis,
but the third step requires two lemmas:

↑ (xs @ y · ys) = (↑ (xs @ [y]) ∧ ↑ (y · ys))
↑ (xs @ [a]) ∧ x < a =⇒ inslist x (xs @ a · ys) = inslist x xs @ a · ys

The first lemma rewrites the assumption ↑ btc to ↑ (blc @ [a]) ∧ ↑ (a · brc),
thus allowing the second lemma to rewrite the term inslist x (blc @ a · brc) to
inslist x blc @ a · brc.

It may seem that the two lemmas just shown are rather arbitrary, but we
will see that in the context of trees, where each node is a tuple 〈s0,a1,s1,. . .,sn〉
of subtrees si alternating with elements ai, there is an underlying principle. In
the properties in Fig. 2 the following three terms are crucial: ↑ btc, inslist x btc
and dellist x btc. Assuming that the properties are proved by induction, t will be
some (possibly complicated) tree constructor term. Evaluating btc will thus lead
to a list of the following form where sublists and individual elements alternate:

5

↑ (xs @ y · ys) = (↑ (xs @ [y]) ∧ ↑ (y · ys)) (6)
↑ (x · xs @ y · ys) = (↑ (x · xs) ∧ x < y ∧ ↑ (xs @ [y]) ∧ ↑ (y · ys)) (7)
↑ (x · xs) =⇒ ↑ xs (8)
↑ (xs @ [y]) =⇒ ↑ xs (9)

↑ (xs @ [a]) =⇒ inslist x (xs @ a · ys) = (10)
(if x < a then inslist x xs @ a · ys else xs @ inslist x (a · ys))

↑ (xs @ a · ys) =⇒ dellist x (xs @ a · ys) = (11)
(if x < a then dellist x xs @ a · ys else xs @ dellist x (a · ys))

elems (xs @ ys) = elems xs ∪ elems ys (12)
↑ (y · xs) ∧ x ≤ y =⇒ x /∈ elems xs (13)
↑ (xs @ [y]) ∧ y ≤ x =⇒ x /∈ elems xs (14)

Fig. 3. Lemmas for ↑, inslist , dellist and elems

bt1c @ a1 · bt2c @ a2 · . . . · btnc

Now we discuss a set of lemmas (see Fig. 3) that allow us to simplify the appli-
cation of ↑, inslist and dellist to such terms.

Terms of the form ↑ (xs1 @ a1 · xs2 @ a2 · . . . · xsn) are decomposed into
the following basic formulas

↑ (xs @ [a]) (simulating ∀ x∈set xs. x < a)
↑ (a · xs) (simulating ∀ x∈set xs. a < x)
a < b

by the rewrite rules (6)–(7). Lemmas (8)–(9) enable deductions from basic for-
mulas.

Terms of the form inslist x (xs1 @ a1 · xs2 @ a2 · . . . · xsn) are rewritten
with equation (10) (and the defining equations for inslist) to push inslist inwards.
Terms of the form dellist x (xs1 @ a1 · xs2 @ a2 · . . . · xsn) are rewritten with
equation (11) (and the defining equations for dellist) to push dellist inwards.

Finally we need lemmas (12)–(14) about elems on sorted lists.
The lemmas in Fig. 3 form the complete set of basic lemmas on which the

automatic proofs of almost all search trees in the paper rest; only splay trees
need additional lemmas.

4.1 Proof Automation by Rewriting

The automatic proofs rely on conditional, contextual term rewriting with the
following bells and whistles (which Isabelle’s simplifier provides):

– Conjunctions in the context are split up into their conjuncts.
– Conditionals and case-expressions can be split automatically.
– A decision procedure for linear orders that can decide if some literal (a

possibly negated atom a < b or a ≤ b) follows from a set of literals in the
context.

6

– Implications (8)–(9) lead to nontermination when used as conditional rewrite
rules. It must be possible to direct the simplifier to solve the preconditions of
those rules by assumptions in the context rather than a recursive simplifier
invocation. In Isabelle there is a constant ASSUMPTION = (λx . x) that can
be wrapped around a precondition of a rewrite rule and prevents recursive
applications of the simplifier to that precondition.

5 An Arboretum

In the rest of this section we focus on (1) and (2) when discussing the proofs of
the properties in Fig. 2. This is because requirement (3) can always (except for
splay trees) be proved automatically without further lemmas and (4) and (5) are
specific to the individual data structures and not part of functional correctness.

Because there is not enough space to present all definitions and proofs, Ta-
ble 1 gives an overview in terms of lines of code and numbers of functions needed
for each data structure. Because isin is (almost) the same for all of them (except
splay trees), it is excluded. The table shows that there is at most one lemma per
function, except for splay trees.

Unbal. AVL Red-Black 2-3 2-3-4 Brother AA Splay

l.o. code 17 45 61 88 143 66 55 46
functions 3 8 11 12 16 10 8 4

lemmas 3 6 11 10 14 10 6 5

Table 1. Code and proof statistics for insert + delete (l.o. = lines of)

The majority of lemmas about auxiliary functions follow a simple pattern.
Typical examples are balancing functions, e.g. bbal tc = btc, or smart construc-
tors, e.g. bnode l a rc = blc @ a · brc. We call these trivial lemmas. More
complicated lemmas are discussed explicitly in the text; we call them non-trivial.

All our implementations compare elements with a comparison operator cmp
that returns an element of the datatype cmp = LT | EQ | GT.

5.1 Unbalanced Trees

Function insert is trivial and (1) is proved directly. Function delete is more
interesting because it is defined with the help of an auxiliary function:

delete x 〈〉 = 〈〉
delete x 〈l , a, r〉 =
(case cmp x a of LT ⇒ 〈delete x l , a, r〉
| EQ ⇒ if r = 〈〉 then l else let (x , y) = del min r in 〈l , x , y〉
| GT ⇒ 〈l , a, delete x r〉)

7

del min 〈l , a, r〉 =
(if l = 〈〉 then (a, r) else let (x , l ′) = del min l in (x , 〈l ′, a, r〉))

The proof of (2) requires the following lemma about del min that the user has
to formulate himself; the proof is again automatic.

del min t = (x , t ′) ∧ t 6= 〈〉 =⇒ x · bt ′c = btc

This is one of the more “difficult” lemmas to invent.

5.2 AVL Trees

Our starting point was an existing formalization [20] which follows the standard
approach. Functional correctness of AVL trees can be proved without assuming
any structural (height) invariants. The only non-trivial lemma we require is

del max t = (t ′, a) ∧ t 6= 〈〉 =⇒ bt ′c @ [a] = btc

Related work Filliâtre and Letouzey [6] report on a verification of AVL trees in
Coq. They follow the standard approach, except that the executable functions
are extracted from constructive proofs. An updated version of their proofs in the
Coq distribution gives the functions explicitly. Ralston [26] reports a proof with
ACL2. The verification by Clochard [4] in Why3 is interesting because he also
abstracts trees to their inorder traversal and reports that the proofs for AVL
trees are automatic.

5.3 Red-Black Trees

Red-black trees were invented by Bayer [3]. Guibas and Sedgewick [8] introduced
the red/black color convention. Red-black trees can be seen as an encoding of
2-3-4 trees as binary trees.

Our starting point was an existing formalization in the Isabelle distribution
(in HOL/Library/RBT Impl.thy, by Reiter and Krauss) which in turn is based
on the code by Okasaki [22] (for insert) and Stefan Kahrs [14] (for delete see
the URL given in the article). The original verification has a certain similarity
to ours because it also involves an inorder listing of the tree (function entries),
but a number of the proofs are distinctly long and manual. In contrast, the only
non-trivial lemmas we require are the following ones that need to be proved
simultaneously about three auxiliary functions:

↑ btc =⇒ bdel x tc = dellist x btc
↑ blc =⇒ bdelL x l a rc = dellist x blc @ a · brc
↑ brc =⇒ bdelR x l a rc = blc @ a · dellist x brc

Of course the proof is automatic, as usual.
Functional correctness of red-black trees can be proved without assuming

any structural (red-black) invariants.

8

Related work Filliâtre and Letouzey [6] and Appel [2] verified red-black trees in
Coq.

5.4 2-3 Trees

In a 2-3 tree (invented by Hopcroft in 1970 [5]), every non-leaf node has either
two or three children: 〈l , a, r〉 or 〈l , a, m, b, r〉 where l , m, r are trees and a,
b are elements. One can view 〈l , a, m, b, r〉 as a more compact representation
of 〈l , a, 〈m, b, r〉〉 (see AA trees). Their structural invariant is that they are
balanced, i.e. all leaves occur at the same depth.

Our code is based on the lecture notes by Turbak [29], who presents the
key transformations in a graphical format. We present the more complex delete
function in Fig 4. Function del descends into the tree until the element (or a
leaf) is found. Modified subtrees are recombined with smart constructors nodeij
that combines i subtrees where subtree j has been modified and is wrapped up
in either T d (if the height of the subtree is unchanged) or Upd (if the height
of the subtree has decreased). We only show the functions nodei1 because the
other nodeij are symmetric.

The lemmas required for the correctness proof are similar to what we have
seen already, with one new complication: the balancedness invariant bal is fre-
quently required as a precondition, e.g. here:

del min t = (x , t ′) ∧ bal t ∧ 0 < height t =⇒ x · btreed t ′c = btc

Our automatic framework can cope because bal and height are defined in a
straightforward manner by primitive recursion.

Related work The existing formalization of 2-3 trees in the Isabelle distribution
(in HOL/ex/Tree23.thy, by Huffman and Nipkow) proves invariants but not
functional correctness. Hoffmann and O’Donnell [12] give an equational defini-
tion of insertion. Reade [27] gives a similar equational definition of insertion and
adds deletion; Turbak’s version of deletion appears a bit simpler. Reade sketches
(because there are too many cases) a pen-and-paper correctness proof and writes:
“Mechanical support for such reasoning and the potential for partial automation
of similar proofs are topics currently being investigated by the author.”

5.5 2-3-4 Trees

2-3-4 trees are an extension of 2-3 trees where nodes may also have 4 children:
〈t1, a, t2, b, t3, c, t4〉. Their structural invariant is that they are balanced, i.e.
all leaves occur at the same depth. The code for 2-3-4 trees can also be viewed
as an extension of that for 2-3 trees with additional cases. There are also new
smart constructors node4j, e.g. node41:

node41 (T d t1) a t2 b t3 c t4 = T d 〈t1, a, t2, b, t3, c, t4〉
node41 (Upd t1) a 〈t2, b, t3〉 c t4 d t5 = T d 〈〈t1, a, t2, b, t3〉, c, t4, d , t5〉

9

datatype ′a upd = T d (′a tree23) | Upd (′a tree23)

treed (T d t) = t
treed (Upd t) = t

node21 (T d t1) a t2 = T d 〈t1, a, t2〉
node21 (Upd t1) a 〈t2, b, t3〉 = Upd 〈t1, a, t2, b, t3〉
node21 (Upd t1) a 〈t2, b, t3, c, t4〉 = T d 〈〈t1, a, t2〉, b, 〈t3, c, t4〉〉

node31 (T d t1) a t2 b t3 = T d 〈t1, a, t2, b, t3〉
node31 (Upd t1) a 〈t2, b, t3〉 c t4 = T d 〈〈t1, a, t2, b, t3〉, c, t4〉
node31 (Upd t1) a 〈t2, b, t3, c, t4〉 d t5 = T d 〈〈t1, a, t2〉, b, 〈t3, c, t4〉, d , t5〉

del min 〈〈〉, a, 〈〉〉 = (a, Upd 〈〉)
del min 〈〈〉, a, 〈〉, b, 〈〉〉 = (a, T d 〈〈〉, b, 〈〉〉)
del min 〈l , a, r〉 = (let (x , l ′) = del min l in (x , node21 l ′ a r))
del min 〈l , a, m, b, r〉 = (let (x , l ′) = del min l in (x , node31 l ′ a m b r))

del x 〈〉 = T d 〈〉
del x 〈〈〉, a, 〈〉〉 = (if x = a then Upd 〈〉 else T d 〈〈〉, a, 〈〉〉)
del x 〈〈〉, a, 〈〉, b, 〈〉〉 =
T d (if x = a then 〈〈〉, b, 〈〉〉 else if x = b then 〈〈〉, a, 〈〉〉 else 〈〈〉, a, 〈〉, b, 〈〉〉)
del x 〈l , a, r〉 =
(case cmp x a of LT ⇒ node21 (del x l) a r
| EQ ⇒ let (a ′, t) = del min r in node22 l a ′ t | GT ⇒ node22 l a (del x r))
del x 〈l , a, m, b, r〉 =
(case cmp x a of LT ⇒ node31 (del x l) a m b r
| EQ ⇒ let (a ′, m ′) = del min m in node32 l a ′ m ′ b r
| GT ⇒ case cmp x b of LT ⇒ node32 l a (del x m) b r

| EQ ⇒ let (b ′, r ′) = del min r in node33 l a m b ′ r ′

| GT ⇒ node33 l a m b (del x r))

delete x t = treed (del x t)

Fig. 4. Deletion in 2-3 trees

node41 (Upd t1) a 〈t2, b, t3, c, t4〉 d t5 e t6 =
T d 〈〈t1, a, t2〉, b, 〈t3, c, t4〉, d , t5, e, t6〉
node41 (Upd t1) a 〈t2, b, t3, c, t4, d , t5〉 e t6 f t7 =
T d 〈〈t1, a, t2〉, b, 〈t3, c, t4, d , t5〉, e, t6, f , t7〉

Related work It appears that the only (partially) published functional imple-
mentations of 2-3-4 trees is one in Maude [15] where the full code is available
online. No formal proofs are reported.

5.6 1-2 Brother Trees

A 1-2 brother tree [23,24] is a binary tree with one further constructor N1 from
trees to trees for unary nodes. The structural invariant is that the tree is balanced

10

(all leaves at the same depth) and that every unary node has a binary brother.
Unary nodes allow us to balance any tree. There is a bijection between 1-2
brother trees and AVL trees: remove the unary nodes from a 1-2 brother tree and
you obtain an AVL tree. Our formalization is based on the article by Hinze [10]
where all code and invariants can be found. Hinze captures the invariant by two
sets B h and U h, the sets of brother trees of height h that have a binary (or
nullary) respectively unary root node. The actual brother trees are captured by
B ; U is an auxiliary notion. The correctness lemmas (1)–(3) for insert, delete
and isin employ the abbreviation T h = B h ∪ U h:

t ∈ T h ∧ ↑ btc =⇒ binsert a tc = inslist a btc
t ∈ T h ∧ ↑ btc =⇒ bdelete x tc = dellist x btc
t ∈ T h ∧ ↑ btc =⇒ isin t x = (x ∈ elems btc)

The non-trivial but automatic auxiliary lemmas are

t ∈ T h ∧ ↑ btc =⇒ bins a tc = inslist a btc
t ∈ T h ∧ ↑ btc =⇒ bdel x tc = dellist x btc

t ∈ T h =⇒
(del min t = None) = (btc = []) ∧
(del min t = Some (a, t ′) −→ btc = a · bt ′c)

5.7 AA Trees

Arne Anderson [1] invented a particularly simple form of balanced trees, named
AA trees by Weiss [30]. They encode 2-3 trees as binary trees (with the help of
an additional height field, although a single bit would suffice). Their main selling
point is simplicity and compactness of the code. Our verification started from
the functional version of AA trees published by Ragde [25] without proofs. The
proofs for insertion were automatic as usual, but deletion posed problems.

The use of non-linear patterns in the Haskell code for delete was easily
fixed. Then a failed correctness proof revealed that function dellrg goes down
the wrong branch in the recursive case. After this bug was corrected the next
complication was the fact that the definition of function adjust (which is sup-
posed to restore the invariant after deletion) does not cover certain trees that
cannot arise. Therefore I needed to introduce the following invariant correspond-
ing to the textual invariants AA1–AA3 in [25]; function lvl returns the height
field of a node:

invar 〈〉 = True
invar 〈h, l , a, r〉 =
(invar l ∧ invar r ∧ h = lvl l + 1 ∧
(h = lvl r + 1 ∨ (∃ lr b rr . r = 〈h, lr , b, rr〉 ∧ h = lvl rr + 1)))

Proving that insertion and deletion preserve the invariant was non-trivial, in
particular because there were two more bugs:

11

– Function dellrg fails to call adjust to restore the invariant. This is the
correct code (we call dellrg del max):

del max 〈lv , l , a, 〈〉〉 = (l , a)
del max 〈lv , l , a, r〉 = (let (r ′, b) = del max r in (adjust 〈lv , l , a, r ′〉, b))

– The auxiliary function nlvl is incorrect. The correct version is as follows:
nlvl t = (if sngl t then lvl t else lvl t + 1)

For the verification of functional correctness of deletion the domain of the
partial adjust had to be characterized by a predicate pre adjust (not in [25]).
With its help we can formulate and prove the trivial inorder -lemma for adjust :

t 6= 〈〉 ∧ pre adjust t =⇒ badjust tc = btc

The main correctness theorem (2) requires a number of further lemmas:

del max t = (t ′, x) ∧ t 6= 〈〉 ∧ invar t =⇒ bt ′c @ [x] = btc
invar 〈lv , l , a, r〉 ∧ post del l l ′ =⇒ pre adjust 〈lv , l ′, b, r〉
invar 〈lv , l , a, r〉 ∧ post del r r ′ =⇒ pre adjust 〈lv , l , a, r ′〉
invar t ∧ (t ′, x) = del max t ∧ t 6= 〈〉 =⇒ post del t t ′

invar t =⇒ post del t (delete x t)

As usual, the proofs of the inorder -lemmas and theorems are automatic. The last
four lemmas and the pre- and post-conditions involved are part of the invariant
proofs and are merely reused. Hence they are not included in Table 1.

5.8 Splay Trees

Splay trees [28] are self-adjusting binary search trees where query and update
operations modify the tree by rotating the accessed element to the root of the
tree. The logarithmic amortized complexity of splay trees has been verified be-
fore [18]. The functional correctness proofs [17] followed the standard approach.
Starting from the same code we automated those proofs.

Splay trees are different from the other trees we cover. All operations are
based on a function splay :: ′a ⇒ ′a tree ⇒ ′a tree that rotates the given element
(or an element close to it) to the root of the tree. For example, this is isin:

isin t x = (case splay x t of 〈〉 ⇒ False | 〈l , a, r〉 ⇒ x = a)

See elsewhere [17,18] for insert and delete. Note that isin should return the new
tree as well to achieve amortized logarithmic complexity. This is awkward in a
functional language and gives the data structure an imperative flavour.

The verification is more demanding than before and we present all the re-
quired lemmas in Fig. 5. Lemmas (15)–(20) extend our lemma library in Fig. 3
but are only required for splay trees. With the help of these lemmas, the proofs
of (1)–(3) are automatic.

12

↑ (x · xs) ∧ y ≤ x =⇒ ↑ (y · xs) (15)
↑ (xs @ [x]) ∧ x ≤ y =⇒ ↑ (xs @ [y]) (16)
↑ (x · xs) =⇒ inslist x xs = x · xs (17)
↑ (xs @ [x]) =⇒ inslist x xs = xs @ [x] (18)
↑ (x · xs) =⇒ dellist x xs = xs (19)
↑ (xs @ [x]) =⇒ dellist x (xs @ ys) = xs @ dellist x ys (20)

(splay a t = 〈〉) = (t = 〈〉)
(splay max t = 〈〉) = (t = 〈〉)
splay x t = 〈l , a, r〉 ∧ ↑ btc =⇒ (x ∈ elems btc) = (x = a)
bsplay x tc = btc
↑ btc ∧ splay x t = 〈l , a, r〉 =⇒ ↑ (blc @ x · brc)
splay max t = 〈l , a, r〉 ∧ ↑ btc =⇒ blc @ [a] = btc ∧ r = 〈〉

Fig. 5. Lemmas for splay tree verification

invar m =⇒ lookup (update a b m) = (lookup m)(a := Some b)
invar m =⇒ lookup (delete a m) = (lookup m)(a := None)
invar m =⇒ invar (update a b m)
invar m =⇒ invar (delete a m)

Fig. 6. Specification of map implementations

6 Maps

6.1 Specifications

Search trees can implement maps as well as sets. Although sets are a special
case of maps, we presented sets first because their simplicity facilitates the ex-
planation of the basic concepts. Now we present the modifications required for
maps. An implementation of maps must provides a type (′a, ′b) t (where ′a are
the keys and ′b the values) with the operations

empty :: (′a, ′b) t
update :: ′a ⇒ ′b ⇒ (′a, ′b) t ⇒ (′a, ′b) t
delete :: ′a ⇒ (′a, ′b) t ⇒ (′a, ′b) t
lookup :: (′a, ′b) t ⇒ ′a ⇒ ′b option

where datatype ′a option = None | Some ′a is predefined. Function lookup
also plays the role of the abstraction function. In addition there is a data type
invariant invar :: (′a, ′b) t ⇒ bool. The specification of maps is shown in Fig. 6
(corresponding to Fig. 1). It uses the function update notation

f (a := b) = (λx . if x = a then b else f x)

Now we assume that the keys are linearly ordered. Search trees are abstracted
to a list of key-value pairs sorted by their keys. The auxiliary functions ↑, ins list
and del list are replaced by

13

invar t =⇒ bupdate a b tc = updlist a b btc
invar t =⇒ bdelete a tc = dellist a btc
invar t =⇒ lookup t a = map of btc a
invar t =⇒ inv (update a b t)
invar t =⇒ inv (delete a t)

Fig. 7. Specification of map implementations over ordered types

↑1 :: (′a × ′b) list ⇒ bool
updlist :: ′a ⇒ ′b ⇒ (′a × ′b) list ⇒ (′a × ′b) list
dellist :: ′a ⇒ (′a × ′b) list ⇒ (′a × ′b) list

– ↑1 xs = ↑ (map fst xs) where fst (a, b) = a.
– updlist a b updates a sorted (w.r.t. ↑1) list by either inserting (a, b) at the

correct position (w.r.t. <) if no (a,) is in the list, or replacing the first
(a,) by (a, b) otherwise.

– dellist a deletes the first occurrence of a pair (a,) from a list.

Our second specification of maps (over a linearly ordered type ′a) is shown
in Fig. 7 (corresponding to Fig. 2). It is again based on an inorder function:

inorder :: (′a, ′b) t ⇒ (′a × ′b) list

Again, we abbreviate inorder t by btc.
The search tree invariant is now expressed as ↑1 btc. Structural invariants

can be added via the specification function inv :: (′a, ′b) t ⇒ bool and we define

invar t = (inv t ∧ ↑1 btc)

The first three propositions in Fig. 7 express functional correctness of update,
delete and lookup w.r.t. updlist , dellist and map of. The latter is a predefined
function on key-value lists:

map of [] = (λ . None)
map of ((a, b) · ps) = (map of ps)(a := b)

The next two propositions demand that inv is invariant. It is easy to show that
Fig. 7 implies Fig. 6.

6.2 Proof Automation

Fig. 8 (corresponding to Fig. 3) shows the set of lemmas used to automate the
correctness proofs of implementations of maps. There are no lemmas about ↑1
because its definition is simply unfolded and the lemmas (6)–(9) about ↑ apply.

The litmus tests for the lemma collection are the correctness proofs for the
map-variants of all the search trees discussed in Section 5. The code of the map-
variants is structurally the same as their set-counterparts. The same is true for
the lemmas required in the verification. In the end, the proofs of the map-variants
are just as automatic as the ones of their set-counterparts.

14

↑1 (ps @ [(a, b)]) =⇒ updlist x y (ps @ (a, b) · qs) =
(if x < a then updlist x y ps @ (a, b) · qs else ps @ updlist x y ((a, b) · qs))

↑1 (ps @ (a, b) · qs) =⇒ dellist x (ps @ (a, b) · qs) =
(if x < a then dellist x ps @ (a, b) · qs else ps @ dellist x ((a, b) · qs))

map of (ps @ qs) x =
(case map of ps x of None ⇒ map of qs x | Some y ⇒ Some y)
↑ (a · map fst ps) ∧ x < a =⇒ map of ps x = None
↑ (map fst ps @ [a]) ∧ a ≤ x =⇒ map of ps x = None

Fig. 8. Lemmas for updlist , dellist and map of

7 Conclusion

Our proof method works well because all the trees we considered follow the same
ordering principle: inorder traversal yields a sorted list. Two referees suspected
that for Trie-like trees [7] it would not work so well. I formalized binary trees
where nodes are addressed by bit lists indicating the path to the node. A direct
correctness proof is easy. The methods of this paper can also be applied (the list
of addresses of the nodes in a tree, in prefix order, is lexicographically ordered)
but the proof is more complicated and less automatic. Our approach seems
overkill and awkward for such search trees.

Acknowledgement Daniel Stüwe found and corrected the two invariant-related
bugs in AA trees and proved preservation of the invariant under deletion for AA
trees and 1-2 Brother trees.

References

1. Andersson, A.: Balanced search trees made simple. In: Algorithms and Data Struc-
tures (WADS ’93). LNCS, vol. 709, pp. 60–71. Springer (1993)

2. Appel, A.: Efficient verified red-black trees (2011)
3. Bayer, R.: Symmetric binary B-trees: Data structure and maintenance algorithms.

Acta Informatica 1, 290–306 (1972)
4. Clochard, M.: Automatically verified implementation of data structures based on

AVL trees. In: VSTTE. pp. 167–180 (2014)
5. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT

Press (1990)
6. Filliâtre, J.C., Letouzey, P.: Functors for proofs and programs. In: ESOP. LNCS,

vol. 2986, pp. 370–384. Springer (2004)
7. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)
8. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: 19th

Annual Symposium on Foundations of Computer Science. pp. 8–21. IEEE Com-
puter Society (1978)

9. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isa-
belle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS,
vol. 7998, pp. 100–115. Springer (2013)

15

10. Hinze, R.: Purely functional 1-2 brother trees. J. Functional Programming 19(6),
633–644 (2009)

11. Hoare, C.: Proof of correctness of data representations. Acta Informatica 1, 271–
281 (1972)

12. Hoffmann, C.M., O’Donnell, M.J.: Programming with equations. ACM Trans. Pro-
gram. Lang. Syst. 4(1), 83–112 (1982)

13. Jones, C.B.: Software Development. A Rigourous Approach. Prentice Hall (1980)
14. Kahrs, S.: Red black trees with types. J. Functional Programming 11(4), 425–432

(2001)
15. Mart́ı-Oliet, N., Palomino, M., Verdejo, A.: A tutorial on specifying data structures

in Maude. Electr. Notes Theor. Comput. Sci. 137(1), 105–132 (2005)
16. Nipkow, T.: Are homomorphisms sufficient for behavioural implementations of de-

terministic and nondeterministic data types? In: Brandenburg, F., Vidal-Naquet,
G., Wirsing, M. (eds.) STACS 87. LNCS, vol. 247, pp. 260–271. Springer (1987)

17. Nipkow, T.: Splay tree. Archive of Formal Proofs (Aug 2014), http://isa-afp.org/
entries/Splay Tree.shtml, Formal proof development

18. Nipkow, T.: Amortized complexity verified. In: Urban, C., Zhang, X. (eds.) ITP
2015. LNCS, vol. 9236, pp. 310–324. Springer (2015)

19. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer (2014),
http://concrete-semantics.org

20. Nipkow, T., Kunčar, O., Pusch, C.: AVL trees. Archive of Formal Proofs (Mar
2004), http://isa-afp.org/entries/AVL-Trees.shtml, Formal proof development

21. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

22. Okasaki, C.: Purely Functional Data Structures. Cambridge University Press
(1998)

23. Ottmann, T., Six, H.W.: Eine neue Klasse von ausgeglichenen Binärbäumen. Ange-
wandte Informatik 18(9), 395–400 (1976)

24. Ottmann, T., Wood, D.: 1-2 brother trees or AVL trees revisited. Comput. J. 23(3),
248–255 (1980)

25. Ragde, P.: Simple balanced binary search trees. In: Caldwell, Hölzenspies, Achten
(eds.) Trends in Functional Programming in Education. EPTCS, vol. 170, pp. 78–
87 (2014)

26. Ralston, R.: ACL2-certified AVL trees. In: Proc. 8th Int. Workshop ACL2 Theorem
Prover and Its Applications. pp. 71–74. ACM (2009)

27. Reade, C.: Balanced trees with removals: An exercise in rewriting and proof. Sci.
Comput. Program. 18(2), 181–204 (1992)

28. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–
686 (1985)

29. Turbak, F.: CS230 Handouts — Spring 2007 (2007), http://cs.wellesley.edu/
∼cs230/spring07/handouts.html

30. Weiss, M.A.: Data Structures and Algorithm Analysis. Benjamin/Cummings, 2nd
edn. (1994)

16

http://isa-afp.org/entries/Splay_Tree.shtml
http://isa-afp.org/entries/Splay_Tree.shtml
http://concrete-semantics.org
http://isa-afp.org/entries/AVL-Trees.shtml
http://cs.wellesley.edu/~cs230/spring07/handouts.html
http://cs.wellesley.edu/~cs230/spring07/handouts.html

	Automatic Functional Correctness Proofs for Functional Search Trees

