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Abstract. This article presents detailed implementations of quantifier
elimination for both integer and real linear arithmetic for theorem provers.
The underlying algorithms are those by Cooper (for Z) and by Ferrante
and Rackoff (for R). Both algorithms are realized in two entirely different
ways: once in tactic style, i.e. by a proof-producing functional program,
and once by reflection, i.e. by computations inside the logic rather than
in the meta-language. Both formalizations are generic because they make
only minimal assumptions w.r.t. the underlying logical system and theo-
rem prover. An implementation in Isabelle/HOL shows that the reflective
approach is between one and two orders of magnitude faster.

1 Introduction

Decision procedures have become an integral part of most automatic
and interactive theorem provers. Their implementations come in three
flavours: those that just say Yes or No, those that accompany their an-
swer with a proof in some logical system, and those that have been defined
and verified in a theorem prover. This paper is concerned with decision
procedures of the latter two flavours for linear arithmetic over Z and R.
In our discussion we focus on proof-producing procedures first.

The obsession with proofs comes from the simple fact that complicated
decision procedures, just like any tricky piece of software, are error prone.
This can be a bit of an embarrassment in systems that are meant to raise
the notion of logical correctness to a new level. Hence many theorem
provers either produce proofs of some form or another or are based on
the LCF paradigm, where theorems are an abstract data type whose
interface are the inference rules of the logic.

The implementation of proof-producing decision procedures is very
subtle because one needs to ensure that when theorems are plugged to-
gether they really fit together. For example, combining 0 < x + 0 and
0 < x→ 0 < 2·x by modus ponens will not produce the theorem 0 < 2·x
but will fail, since futher inference is needed to prove that 0 < x + 0 and



0 < x are equivalent. Such bugs do not endanger soundness but are still
quite annoying. They may lurk in the code for a long time because they
are not caught by a standard static type system which cannot express the
precise form the theorem produced or expected by some function must
have (but see [32]). This problem is exacerbated by the fact that decision
procedures are re-implemented time and again for different systems, and
that in the literature these implementations are only sketched if discussed
at all because it is not considered scientific enough. If we want to make
progress we need to increase the amount of sharing in this area drasti-
cally. Unfortunately the actual implementation level is unsuitable for that
because it is too intertwined with the specifics of the theorem prover a
decision procedure is written for.

Hence we argue that the field is in need of descriptions of proof-
producing decision procedures at a level that is abstract enough to be
sharable across different theorem provers yet close enough to the imple-
mentation level to be readily implemented. In this paper we give two
examples of such detailed yet generic descriptions: proof-producing quan-
tifier elimination procedures for linear arithmetic over Z and R. These
theories are ubiquitous and tricky to implement. We hope that over time
a library of such decision procedures will be published. This should be one
way of bridging the gap between the many different theorem provers cur-
rently in use, at least by reducing the amount of work that is duplicated
time and again.

Our description of the decision procedures tries to be as abstract as
possible by using some generic functional programming language and
assuming only a minimal set of capabilities of the underlying theorem
prover. Neither are we very specific about the underlying logic, except
that we assume it is classical. As evidence of the genericity of our code
we can offer that the procedure for Presburger arithmetic is derived from
an implementation for Isabelle/HOL [40] by the first author [8], yet is
quite close to an implementation in the HOL system [25].

Producing proofs requires no meta-theory but has many disadvan-
tages: (a) the actual implementation requires intimate knowledge of the
internals of the underlying theorem prover; (b) there is no way to check at
compile type if the proofs will really compose; (c) it is inefficient because
one has to go through the inference rules in the kernel; (d) if the prover
is based on proof objects this can lead to excessive space consumption
(proofs may require (super-) exponential space [20, 43]).

These shortcomings can be overcome by defining and verifying the
decision procedure inside the logic, provided one can perform the compu-



tations thus expressed in an efficient manner, typically by compiling them
into some programming language, executing them there, and importing
the result back into the logic. This is often called reflection. The draw-
backs are that it requires a logic that contains an executable subset, it
requires the user to prove the correctness of the decision procedure, and it
does not yield a proof term (which may or may not be desirable). Hence
both approaches are common implementation techniques for decision pro-
cedures. The technical contributions of the paper are the application of
both techniques to quantifier elimination over Z and R. We provide

– the first exposition of a generic proof-producing implementation of
Cooper’s algorithm;

– the first completely reflective implementation of Cooper’s algorithm;
– the first proof-producing and reflective implementations of Ferrante

and Rackoff’s algorithm.

It should be emphasized that although we are fully aware of the compu-
tational complexity of especially Cooper’s algorithm, we have refrained
from optimizing our implementations. They are meant as easy to under-
stand starting points for other people’s implementations, not as highly
competitive pieces of code.

The paper is structured as follows. After an introduction to the two
quantifier elimination algorithms (§2) they are first formalized as proof-
producing functions in the meta-language (§3) and then formalized and
verified in logic (§4).

Related work

Fourier [21] presented an extension of Gauss-elimination to cope with in-
equalities. His method has been rediscovered several times [17, 37] and
is today referred to as Fourier-Motzkin elimination. Tarski’s result for
real closed fields [50] also yields a decision procedure for linear real arith-
metic. More efficient quantifier elimination procedures have been devel-
oped by Ferrante and Rackoff [19], the work on which we rely, and later
by Weispfenning [51] and Loos and Weispfenning [33]. Quantifier elimina-
tion procedures for Presburger Arithmetic have been discovered by Pres-
burger [45] and Skolem [49] independently and improved by Cooper [13],
Reddy and Loveland [47] and extended to deal with parameters by Weispfen-
ning [52]. Pugh [46] presented an adaptation of Fourier-Motzkin elimina-
tion to cope with integers. An automata based method is presented in
[55].



Linear arithmetic enjoys exciting complexity results. Fischer and Ra-
bin [20] proved lower bounds which were later refined [3, 4, 23] using al-
ternation [11]. Upper bounds can be found in [43, 19, 51, 33]. The com-
plexity of subclasses of Presburger arithmetic is also well studied [48,
26]. Weispfenning [53, 52, 51, 33] provides precise bounds for the quanti-
fier elimination problem allowing (non linear) parameters. A bound on
the automata size is due to Klaedtke [31].

The first implementation of a decision procedure for Presburger arith-
metic, and in fact the first theorem prover, dates back to 1957 [16]. But
in the following we mostly focus on those papers that are concerned with
proof-producing decision procedures.

Norrish [41] discusses proof-producing implementations in HOL [25]
of Cooper’s algorithm (in tactic-style) and Pugh’s algorithm (by reflec-
tion of a proof trace found on the meta-level). The key difference to
our paper is that he discusses design principles on an abstract level but
omits the details of proof synthesis. For that he refers to the actual code,
which we would argue is much too system specific to be easily portable.
Crégut [14] presents an implementation of Pugh’s method for Coq [5],
using the same technique as Norrish. His implementation only deals with
quantifier-free Presburger arithmetic and is even there incomplete. For
the reals most theorem provers implement Fourier-Motzkin elimination
and only deal with quantifier-free formulae. HOL Light [28] includes full
quantifier-elimination for real closed fields [30, 36]. Verifying the CAD al-
gorithm [12] is on-going work [34]. An alternative approach already used
in [38] is based on checking certificates for Farkas’s lemma. This technique
is very efficient, but is not complete for the integers and does not allow
quantifier elimination, which is the main focus of this paper.

The method of reflection goes back at least to the meta-functions used
by Boyer and Moore [7] and later became popular in theorem provers
based on type theory [5]. It has been studied by several researchers [29,
1]. Our use of reflection is rather computational and has nothing to do
with “logical reflection” [29]. Laurent Théry verified Presburger’s original
algorithm in Coq (see the Coq home page). We also verified Cooper’s
algorithm in Isabelle [10].

Finally note that the first-order theory of linear arithmetic over both
reals and integers also admits quantifier elimination [54]. We verified this
algorithm in Isabelle [9]. An automata based algorithm [6] has also been
presented to solve the decision problem (not the quantifier elimination
problem).



2 Quantifier elimination for linear arithmetic

This section provides an informal introduction to linear arithmetic over Z
and R and to their quantifier elimination procedures due to Cooper [13]
and Ferrante and Rackoff [19] respectively.

2.1 Linear arithmetic

We consider Z+ and R+, the first-order theories of linear arithmetic over
Z and R respectively. The formulae are defined by means of first order
logic over the atoms s = t and s < t, where s and t are terms built
up from variables (x, y, z . . . ), 0, 1 and addition +. To permit quantifier
elimination Z+ also includes atoms of the form d | t, where d ∈ Z, which
expresses that d divides t. We also use d - t as a shorthand for ¬(d | t).
We allow the use of constants c ∈ Z for Z+ and c ∈ Q for R+ respectively,
and allow multiplication by these constants.

2.2 Quantifier elimination and normalized formulae

Both Z+ and R+ admit quantifier elimination [45, 49, 47, 19, 51, 33]. Note
that if qe is a method for eliminating ∃ from ∃x.P (x), where P (x) is
quantifier-free, then applying qe recursively to the innermost quantifiers
first yields a quantifier elimination procedure for the whole theory. In fact
P (x) has only to be in a representative syntactical subset of quantifier-
free formulae. Hence in the following we only describe how to eliminate
one ∃ from ∃x.P (x), for a normalized formula P (x).

Normalized formulae

A quantifier-free formula P (x) is x-normalized if it is built up from ∧,∨
and atomic formulae of type (A) x = t, (B) x < t, (C) t < x or (N) those
not depending on x. For Z+ the atoms (D) d | x + t and (E) d - x + t are
also allowed. The term t, in (A)-(E), does not involve x.

In the case of R+ it is easy to see that any quantifier-free formula P (x)
can be transformed into x-normalized form by means of negation normal
form (NNF), elimination of negations and multiplication by appropriate
rational numbers. For Z+ this is performed as follows:

1. Put P (x) in NNF and transform ¬(s < t) into t < s + 1 and ¬(s = t)
into t < s ∨ s < t.



2. Transform every atom according to the coefficient of x into (A’) c·x =
t, (B’) c·x < t, (C’) t < c·x, (D’) d | c·x + t, (E’) d - c·x + t or (N),
where c > 0, d > 0 and x does not occur in t. Note that d | t = −d | t
and d | t = d | −t hold in Z+.

3. Compute l = lcm{c | ‘c·x’ occurs in an atom} and multiply every
atom containing c·x by l

c . Note that the resulting formula Q(x) is
equivalent to P (x) and that the coefficient of x is now l everywhere.
Hence we can view Q(x) as Q′(l·x) for an appropriate Q′.

4. Return l | x ∧Q′(x) according to the generic theorem

unitcoeff : (∃x. Q(l·x))↔ (∃x. l | x ∧Q(x))

See also [18] for good examples of normalization.
We restrict the atomic relations to = and > only for the sake of

presentation. In practice it is important though to include ≤ and 6=,
which prevent a fatal blow up in normalization such as the reduction of
s 6= t to s > t∨t < s above. It is straightforward to extend the algorithms
in §2.3 and §2.4 to deal with ≤ and 6= in addition to < and =.

Elimination sets

An important technical device shared by both algorithms are elimina-
tion sets [33]. Given an x-normalized formula P (x), Cooper’s algorithm
computes BP and P−∞ (alternatively AP and P+∞) and Ferrante and
Rackoff’s algorithm computes UP , P−∞ and P+∞ as defined in Fig. 1.
Note that the table in Fig. 1 is a compact representation of a set of re-
cursive equations. In more conventional notation we would have written
U(F ∧G) = U(F ) ∪ U(G) for the entry under UP and F ∧G. Note that
the definitions are recursive and implicitly depend on the bound variable
x: the final line applies in case the sub-formula under consideration does
not match any of the previous lines.

Example 1. Consider the formula P (implicitly depending on the bound
variable x) x < t ∧ x > 2 ∨ x < t + y ∧ y < 1. Then UP = {t, 2, t + y} is
the set of all lower and upper bounds of x (considered as a real number).
Analogously AP = { t, t+y} is the set of all upper bounds of x (considered
as an integer), and BP = {2} is the set of all lower bounds of x (considered
as an integer). The formulae P−∞ = True ∧ False ∨ True ∧ y < 1 and
P+∞ = False ∧ True ∨ False ∧ y < 1 represent the substitution of very
large negative and positive numbers, respectively, for x in P .

Cooper’s algorithm inspired Ferrante and Rackoff [19], which explains
the similiarities of the computed sets.



P UP BP AP P−∞ P+∞

F ∧ G UF ∪ UG BF ∪ BG AF ∪ AG F−∞ ∧ G−∞ F+∞ ∧ G+∞
F ∨ G UF ∪ UG BF ∪ BG AF ∪ AG F−∞ ∨ G−∞ F+∞ ∨ G+∞
t < x {t} {t} ∅ False True
x < t {t} ∅ {t} True False
x = t {t} {t − 1} {t + 1} False False

∅ ∅ ∅ P P

Fig. 1. Definition of UP , BP , AP , P−∞ and P+∞

The underlying idea is to compute a finite set S of terms such that
∃x.P (x) is equivalent to

∨
t∈S P (t). The terms in S are sometimes called

Skolem terms [51, 33] because they are the concrete witnesses as opposed
to abstract Skolem functions. The formula P+∞ represents the result of
substituting “large” potential witnesses for x in an x-normalized formula
P (x).

This completes the exposition of the common basis of the two al-
gorithms. Now we study their particularities. In both presentations, we
include proofs for the main theorems. These already outline the general
strategies for the proof-procedures and are important for subsequent de-
tails.

2.3 Cooper’s algorithm

The input to Cooper’s algorithm is a formula ∃x.P (x), where P (x) is an
x-normalized Z+-formula. Besides AP , BP , P−∞ and P+∞, cf. Fig. 1, the
algorithm computes

δ = lcm{d | ‘d | x + t’ occurs in P}. (1)

The result is obtained by applying either (2) or (3) in Cooper’s Theorem:

Theorem 1 (Cooper [13]) If P (x) is an x-normalized Z+ formula then

∃x.P (x) ↔ ∃j ∈ [δ].P−∞(j) ∨ ∃j ∈ [δ], b ∈ BP .P (b + j) (2)
∃x.P (x) ↔ ∃j ∈ [δ].P+∞(j) ∨ ∃j ∈ [δ], b ∈ AP .P (a− j) (3)

The right-hand side is quantifier-free, since ∃ ranges over finite sets: BP

and [δ] = {1..δ}. The choice of which of the two equivalences to apply,
(2) or (3), is normally determined by the relative size of AP and BP .

Proof. We give a simpler version of the proof by Norrish [41]. We only
show the proof of (2). The proof of (3) is analogous.

Obviously, if ∃j ∈ [δ], b ∈ BP .P (b + j) holds then ∃x.P (x) trivially
holds. Hence to finish the proof we only need to prove ∃j ∈ [δ].P−∞(j)→
∃x.P (x) and (∃x.P (x))∧¬(∃j ∈ [δ], b ∈ BP .P (b+ j))→ ∃j ∈ [δ].P−∞(j).



1. ∃j ∈ [δ].P−∞(j) → ∃x.P (x) To prove this, we need the following
properties of P−∞:

∃z.∀x < z.P (x)↔ P−∞(x) (4)
∀x, k.P−∞(x)↔ P−∞(x− k·δ). (5)

These properties are proved by induction on P : (4) states that P (x) and
P−∞(x) coincide over arguments that are small enough ; (5) states that
P−∞(x) is unaffected by the substraction of any number of multiples of
δ, i.e. {x | P−∞(x)} is a periodic set. Note that only divisibility relations
d | x + r occur in P−∞, where d | δ (cf. (1)).

Now assume that P−∞(j) holds for some 1 ≤ j ≤ δ, then using (5) we
can substract enough multiples of δ to reach a number below the z from
(4), and thus obtain by (4) a witness for P .

2. (∃x.P (x)) ∧ ¬(∃j ∈ [δ], b ∈ BP .P (b + j)) → ∃j ∈ [δ].P−∞(j)
Again due to (5) and (4), i.e. the argument above of decreasing witnesses
by multiples of δ, it is sufficient to prove

∀x.¬(∃j ∈ [δ], b ∈ BP .x = b + j)→ P (x)→ P (x− δ). (6)

The proof of (6) is by induction on P . The cases ∧ and ∨ are trivial. In
the case x = t we derive a contradiction by taking j = 1, since t−1 ∈ BP .
In the cases x < t and d | x + t the claim is immediate since since δ > 0
and d | δ, respectively. For the case t < x, assume that t + δ ≥ x. Hence
x = t + j for some 1 ≤ j ≤ δ, which contradicts the assumption since
t ∈ BP .

2.4 Ferrante and Rackoff’s algorithm

The input to Ferrante and Rackoff’s algorithm is a formula ∃x.P (x),
where P (x) is an x-normalized R+-formula. The algorithm just applies
Ferrante and Rackoff’s theorem.

Theorem 2 (Ferrante and Rackoff [19]) If P (x) is an x-normalized
R+-formula then

∃x.P (x)↔ P−∞ ∨ P+∞ ∨ ∃(u, u′) ∈ U2
P .P (

u + u′

2
).

Proof. Although the proof in [19] is mathematically clear we give a more
formal proof, which is suitable in a theorem prover setting.



First we show the “←”-direction. Obviously ∃(u, u′) ∈ U2
P .P (u+u′

2 )→
∃x.P (x) holds. The cases P−∞ → ∃x.P (x) and P+∞ → ∃x.P (x) follow
directly from (4) and and its dual (7) for P+∞, i.e. the fact that P+∞
simulates the behavior of P for arbitrarily large positive real numbers.

∃y.∀x > y.P (x)↔ P+∞ (7)

For the “→”-direction assume P (x) for some x and ¬P−∞ and ¬P+∞,
i.e. x is neither “too large” nor “too small” a witness for P . We first prove
that x must lie between two points in UP , a trivial consequence of (8)
and (9), both proved by induction.

∀x.¬P−∞ ∧ P (x)→ ∃l ∈ UP .l ≤ x (8)
∀x.¬P+∞ ∧ P (x)→ ∃u ∈ UP .x ≤ u (9)

Now we conclude that either x ∈ UP , in which case we are done since
x+x

2 = x, or we can find the smallest interval with endpoints in UP con-
taining x, i.e. lx < x < ux ∧ ∀y.lx < y < ux → y 6∈ UP for some
(lx, ux) ∈ U2

P . The construction of this smallest interval is simple since
UP is finite and reals are totally ordered.

Now we prove P (y) for all y ∈ (lx, ux), and hence finish the proof by
taking u = lx and u′ = ux. This property shows the expressive limitations
of R+: P does not change its truth value over smallest intervals with
endpoints in UP , i.e.

∀x, l, u.(∀y.l < y < u→ y 6∈ UP ) ∧ l < x < u ∧ P (x)
→ ∀y.l < y < u→ P (y)

(10)

The proof of (10) is by induction on P . If P is of type (A) the result holds
because the premise is contradictory. For the case x < t, fix an arbitrary
y and assume l < y < u. Note that y 6= t since t ∈ UP . Hence y < t, i.e.
P (y), for if y > t then l < t < u, which contradicts the premises since
t ∈ UP . The x > t case is analogous and the ∧ and ∨-cases are trivial.

3 Proof synthesis

This section introduces an abstract generic framework for describing de-
cision procedures as functional programs in a meta-language for manip-
ulating theorems. Then the algorithms by Cooper and by Ferrante and
Rackoff are described in this meta-language.



3.1 Notation

Logic Terms and formulae follow the usual syntax of predicate calculus.
However, there are two levels that we must distinguish. On the program-
ming language level, i.e. the implementation level, the type of formulae is
an ordinary first-order recursive datatype. In particular, the formula ∃x.A
can be decomposed (e.g. by pattern matching) into the bound variable x
and the formula A, which may contain x. On the logic level, we assume
that our language allows predicate variables, as is the case in all higher-
order systems. On this level ∃x.A is a formula where A does not depend
on x, whereas P in ∃x.P (x) is a predicate variable, i.e. a function from
terms to formulae, which is applied to x, thus expressing the dependence
on x. One advantage of the higher-order notation is that substituting x
by t is expressed by moving from P (x) to P (t).

Theorems can only be proved with a fixed set of functions which we
discuss now. If there is no danger of confusion we identify a theorem with
the formula it proves. But in order not to blur the distinction too much,
we usually display theorems in an inference rule style

JA1; . . . ;AnK =⇒ A (11)

where the Ai are the premises and A is the conclusion. Logically this is
equivalent to A1 → · · · → An → A but it emphasizes that it is a theorem.

We will now discuss the interface of the theorem data type which of-
fers the following functions: a generalized form of modus ponens (fwd),
instantiation of free variables, generalization (gen), and some basic arith-
metic capabilities.

If th is (11), and th1, . . . , thn are theorems that match the premises
A1,. . . , An, then fwd th [th1, . . . , thn] produces the corresponding instance
of A. That is, if B1,. . . , Bn are the formulae proved by the theorems th1,
. . . , thn, and if θ is a matching substitution for the set of equations
A1 = B1, . . . , An = Bn, i.e. θ(Ai) = Bi, then fwd th [th1, . . . , thn] yields
the theorem θ(A).

The free variables in a theorem th can be instantiated from left to
right with terms t1, . . . , tn by writing th[t1, . . . , tn]. For example, if th is
the theorem m ≤ m + n·n then th[1, 2] is the theorem 1 ≤ 1 + 2·2.

Function gen performs ∀-introduction: it takes a variable x and a
theorem P (x) and returns the theorem ∀x.P (x).

Note that we assume that fwd performs higher-order matching, but
only of a very simple kind. Its first argument th may be a theorem con-
taining a predicate variable P . In this case there must be one occurrence



of P (x) among the premises of th such that x is a bound variable. This
guarantees that there is at most one matching substitution because it is
a special case of pattern-unification [39]. Further occurrences of P among
the premises cannot lead to further matching substitutions but can only
rule some out. Hence it is justified to speak of the matcher. Furthermore
this kind of higher-order matching is straightforward to implement.

Programming language All algorithms are expressed in generic func-
tional programming notation. We assume the following special features.
Lambda-abstraction uses a bold λ (in contrast to the ordinary λ on the
logic level) and permits pattern-matching (where most uses are of the
form λ[].t, where [] is the empty list). Because formulae (a concrete recur-
sive type) and theorems (some abstract type) are quite distinct, we need a
way to refer to the formula proved by some theorem. This is done by pat-
tern matching: a theorem can be matched against the pattern th as ‘f ’,
where th is a theorem variable and f a formula pattern, thus binding the
formula variables in f . For example, matching the theorem 0 = 0∧ 1 = 1
against the pattern th as ‘A ∧B’ binds th to the given theorem, A to the
term 0 = 0 and B to the term 1 = 1.

Patterns may be guarded by boolean conditions as in Haskell: p | b1, b2

is the pattern p that is guarded by the conditions b1 and b2.

3.2 The theorem extraction model

Many of our proofs are performed by the following generic function:

thm decomp t =
let

(ts,recomb) = decomp t
in recomb (map (thm decomp) ts)

It takes a problem decomposition function of type α→ α list× (β list→
β) and a problem t of type α, decomposes t into a list of subproblems ts
and a recombination function recomb, solves the subproblems recursively,
and combines their solution into an overall solution.

In our applications, problems are formulae to be proved, solutions are
theorems, and termination will be guaranteed because all decompositions
yield smaller terms. This style of theorem proving was invented with the
LCF system [24, 44], where decomp is called a tactic. Hence we refer to
it as tactic-style theorem proving. Note that the interface of our theorem
data type is quite abstract. Theorems may be implemented as full-blown



proof terms, where the whole derivation is stored, or as in LCF, where
only the proved formula is retained.

Example 2. As a first example we present a generic function qelim which
eliminates all quantifiers from a first-order formula provided it is given a
function qe which can eliminate a single existential quantifier. That is, if
qe applied to a formula ∃x.P , where P is quantifier free, yields a theorem
(∃x.P (x))↔ Q, where Q is quantifier free, then qelim qe applied to any
first-order formula F yields a theorem F ↔ F ′, where F ′ is quantifier
free. Elimination proceeds from the innermost quantifier to the outermost
one. The function is theory independent. It uses the following predicate
calculus tautologies:

cong♦ : JP ↔ P ′;Q↔ Q′K =⇒ P ♦Q↔ P ′ ♦Q′, for ♦ ∈ {∧,∨,→,↔
}

cong¬ : JP ↔ P ′K =⇒ ¬P ↔ ¬P ′

cong∃ : J∀x.P (x)↔ Q(x)K =⇒ ∃x.P (x)↔ ∃x.Q(x)
qe∀ : J(∃x.¬P (x))↔ RK =⇒ (∀x.P (x))↔ ¬R

trans: JP ↔ Q;Q↔ RK =⇒ P ↔ R

refl : P ↔ P

The actual function definition is straightforward:
decomp qe qe P =
case P of

F ♦G | ♦ ∈ {∧,∨,→,↔} ⇒ ([F,G], fwd cong♦)
¬F ⇒ ([F ], fwd cong¬)
∃x.F ⇒ ([F ],λ[th as ‘ ↔ G’]. let lift = fwd cong∃ [gen x th]

in fwd trans [lift, qe x G])
∀x.F ⇒ ([∃x.¬F ], fwd qe∀)
⇒ ([],λ[]. fwd refl[P ])

qelim qe = thm (decomp qe qe)
As an example, assume that we have a quantifier elimination function

g to perform Gauß-elmination and consider the formula P = (∃z.3·x =
z ∧ 2·z = 5). The call qelim g P becomes thm (decomp qe g) P . By
definition of thm we first compute decomp qe g P. Because P starts
with ∃, this yields ([F ], f) where F = (3·x = z ∧ 2·z = 5) and f is
the recombination function given in the ∃-case of decomp qe. By defini-
tion of thm this yields f(map (thm(decomp qe g)) [F ]). The expression
thm (decomp qe g) F performs elimination of all quantifiers inside F : F



is split in two subformulae 3·x = z and 2·z = 5 which lead to the triv-
ial theorems 3·x = z ↔ 3·x = z and 2·z = 5 ↔ 2·z = 5 (via the last
case in decomp qe) which are then combined via cong∧ into the theo-
rem F ↔ F . Thus the call f(map (thm(decomp qe g)) [F ]) has become
f(F ↔ F ). Now the f from the ∃-case in decomp qe kicks in to eliminate
the topmost quantifier ∃z. Because f is defined by pattern matching, G
becomes F . First F ↔ F is generalized to ∀z.F ↔ F which cong∃ turns
into lift = (∃z.F ) ↔ (∃z.F ). The subterm g z G calls Gauß-elmination
and yields the theorem (∃z.F ) ↔ 3·x = 5

2 . By transitivity with lift, the
same theorem is produced and the evaluation of f(F ↔ F ) (and thus of
qelim g P ) terminates.

Example 3. As a second example we use thm to implement the normal-
ization step, see §2.2.

nnf→: J¬P ↔ P1;Q↔ Q1K =⇒ ((P → Q)↔ (P1 ∨Q1))
nnf↔: J(P ∧Q)↔ (P1 ∧Q1); (¬P ∧ ¬Q)↔ (P2 ∧Q2)K

=⇒ (P ↔ Q)↔ (P1 ∧Q1) ∨ (P2 ∧Q2)
nnf ¬¬: JP ↔ QK =⇒ ¬¬P ↔ Q
nnf ¬∧: J¬P ↔ P1;¬Q↔ Q1K =⇒ ¬(P ∧Q)↔ (P1 ∨Q1)
nnf ¬∨: J¬P ↔ P1;¬Q↔ Q1K =⇒ ¬(P ∨Q)↔ (P1 ∧Q1)
nnf ¬→: JP ↔ P1;¬Q↔ Q1K =⇒ ¬(P → Q)↔ (P1 ∧Q1)
nnf ¬↔: J(P ∧ ¬Q)↔ (P1 ∧Q1); (¬P ∧Q)↔ (P2 ∧Q2)K

=⇒ ¬(P ↔ Q)↔ ((P1 ∧Q1) ∨ (P2 ∧Q2))

With these predicate calculus tautologies we obtain decomposition for
NNF:

decomp nnf lf P =
case P of

F ♦G | ♦ ∈ {∧,∨,→,↔} ⇒ ([F,G], fwd cong♦)
¬¬F ⇒ ([F ], fwd nnf¬¬)
¬(F ∧G)⇒ ([¬F,¬G], fwd nnf¬∧)
¬(F ∨G)⇒ ([¬F,¬G], fwd nnf¬∨)
¬(F → G)⇒ ([F,¬G], fwd nnf¬→)
¬(F ↔ G)⇒ ([F ∧ ¬G,¬F ∧G], fwd nnf¬↔)
⇒ ([],λ[]. lf P )

Literals are taken care of by parameter lf which, when applied to a literal
L returns a theorem L ↔ F , where F should be in NNF. In our case
we pass the function proveL as argument for lf. It takes a variable x and
a literal L and returns the theorem L ↔ F where F is in NNF and



its atoms are of type (A)-(C) or (N) if x is a real variable and of type
(A’)-(E’) or (N) if x is an integer variable (see page 5 for (A), (A’) etc).
This requires the manipulation of individual (in)equalities between linear
terms. How this is best handled depends on the infrastructure of the
underlying theorem prover: rewriting or quantifier-free linear arithmetic
are possible implementation tools. Details are explained in the reflective
approach. Hence we refrain from giving a generic solution for proveL. The
normalization for R+ is hence simply defined by

normalizeR+ x P = thm (decomp nnf (proveL x)) P.

Normalization for Z+ is performed by normalizeZ+ and it proceeds as in
§2.2: the first and second step are performed by decomp nnf and proveL.
The third step, adjusting the coefficient of x, is performed by decomp ac:

ac./: Jk > 0K =⇒ (c·x ./ t)↔ (k·c·x ./ k·t), for ./ ∈ {=, <, >}
ac./: Jk > 0K =⇒ (d | c·x + t)↔ (k·d | k·c·x + k·t), for ./ ∈ {|, -}

decomp ac x ldiv> P =
case P of

F ♦G | ♦ ∈ {∧,∨} ⇒ ([F,G], fwd cong♦)
c·y ./ t | y = x, ./{=, <, >} ⇒ ([], (fwd ac./ [ldiv> c])[c, x, t])
d ./ c·y + t | ./ ∈ {|, -}, y = x ⇒ ([], (fwd ac./ [ldiv> c])[d, c, x, t])
⇒ ([],λ[].refl[P ])

The argument ldiv> is a function that, given c, returns the theorem ‘k >
0’, where k is numeral representing l

c and l = lcm{c | as ‘c·x’ occurs in P}.
The final step takes place in normalizeZ+ :

normalizeZ+ x P =
let

nnf as ‘P ↔ Q’ = thm (decomp nnf (proveL x)) P
ac as ‘Q↔ R’ = thm (decomp ac x (termlcm x Q)) Q

in fwd trans [fwd cong∃ [gen x (fwd trans [nnf, ac])], unitcoeff [R, l]]
The auxiliary function termlcm computes l the lcm of all coefficients

of x in Q and returns a function ldiv>, which given c returns a theorem
k > 0, where k is the result of dividing l by c. Its implementation is trivial
and thus not shown.

In the last line of normalizeZ+ we cheat a bit to avoid excessive techni-
calities. For a start, we assume that in R all occurrences of the quantified
variable are l·x, whereas in reality they are k·c·x, where k·c = l is easily
proved. As a result, x is indeed multiplied by l everywhere. The sec-
ond cheat is that we have taken the liberty to employ a simple form of



higher-order matching: matching the pattern R(l·x), where x is consid-
ered bound, against a formula f succeeds if and only if all occurrences
of x in f are of the form l·x, in which case function R is the result of λ-
abstracting over all the occurrences of l·x. Although on the programming
language level formulae are a first-order data type and do not directly
support higher-order matching, this simple instance of it is readily imple-
mented.

3.3 Proof synthesis for Cooper’s algorithm

The first step to prove (2) is to generalize it from the specific δ, P−∞ and
BP to arbitrary ones subject to certain assumptions:

cooper−∞ : J 0 < δ;
∃z.∀x < z.P (x)↔ Q(x);
∀x, k.Q(x)↔ Q(x− k·δ);
∀x.¬(∃j ∈ [δ], b ∈ B.x = b + j)→ P (x)→ P (x− δ) K

=⇒ ∃x.P (x)↔ (∃j ∈ [δ].Q(j) ∨ ∃j ∈ [δ], b ∈ B.P (b + j))

For the synthesis of the premises we use two functions:

delta computes δ as in (1) and returns δ, a theorem 0 < δ and a function
dvdδ that, given a divisor d of δ, returns the theorem d | δ.

bset computes BP and returns B, its representation, and a function inB
that, given a term t ∈ BP returns a theorem t ∈ B.

The implementations of delta and bset are simple and omitted. But there
is one optimization that is worth pointing out. For this we focus on dvdδ.
Let δ = lcm{d1, . . . , dn}. For each occurrence of one of the di we need the
theorem di | δ. To avoid recomputation, delta creates a mapping from the
di to the theorems di | δ and dvdδ simply looks up the relevant theorem.
We have applied the same optimization to various functions throughout
the paper.

Now we show how to prove the last three premises of cooper−∞, which
correspond to (4),(5) and (6) respectively.

Derivation of ∃z.∀x < z.P (x) ↔ P−∞(x) First we prove the fol-
lowing theorems:

(4)♦: J∃z1.∀x < z1.P1(x)↔ P2(x);∃z2.∀x < z2.Q1(x)↔ Q2(x)K
=⇒ ∃z.∀x < z.(P1(x) ♦Q1(x))↔ (P2(x) ♦Q2(x)), for ♦ ∈ {∧,∨}

(4)=: ∃z.∀x < z.(x = t)↔ False (4)>: ∃z.∀x < z.t < x↔ False



(4)<: ∃z.∀x < z.x < t↔ True (4)(N): ∃z.∀x < z.P ↔ P
(4)./: ∃z.∀x < z.(d ./ x + t)↔ (d ./ x + t), for ./ ∈ {|, -}

Instances of (4) are derived by prove(4):
decomp(4) x P =
case P of

F ♦F | ♦ ∈ {∧∨} ⇒ ([F,G], fwd (4)♦)
t < y | y = x⇒ ([],λ[]. (4)>[t])
y < t | y = x⇒ ([],λ[]. (4)<[t])
y = t | y = x⇒ ([],λ[]. (4)=[t])
d ./ y + t | y = x, ./ ∈ {|, -} ⇒ ([],λ[]. (4)./[t])
⇒ ([],λ[]. (4)(N)[P ])

prove(4) x P = thm (decomp(4) x) P

Derivation of ∀x, k.P−∞(x) ↔ P−∞(x − k·δ) First we prove the
following theorems:

(5)♦: J∀x, k.P (x)↔ P (x− k·δ); ∀x, k.Q(x)↔ Q(x− k·δ)K
=⇒ ∀x, k.(P (x) ♦Q(x))↔ (P (x− k·δ) ♦Q(x− k·δ)) for ♦ ∈ {∧,∨}.

(5)./: d | δ =⇒ ∀x, k.(d ./ x + t)↔ (d ./ x− k·δ + t), for ./ ∈ {|, -}
(5)(N): ∀x, k. P ↔ P

Instances of (5) are derived by prove(5):
decomp(5) x dvdδ P =
case P of

F ♦G | ♦ ∈ {∧,∨} ⇒ ([F,G], fwd (5)♦)
t < x⇒ ([],λ[]. (5)(N)[False])
c < t⇒ ([],λ[]. (5)(N)[True])
x = t⇒ ([],λ[]. (5)(N)[False])
d ./ x + t | ./ ∈ {|, -} ⇒ ([],λ[]. (fwd (5)./ [dvdδ d])[t])
⇒ ([],λ[]. (5)(N)[P ]);

prove(5) x dvdδ P = thm (decomp(5) x dvdδ) P

Derivation of ∀x.¬(∃j ∈ [δ], b ∈ BP .x = b + j) → P (x) →
P (x − δ) First we prove the following theorems:

(6)♦: J∀x.¬(∃j ∈ [δ], b ∈ B.x = b + j)→ P (x)→ P (x− δ);
∀x.¬(∃j ∈ [δ], b ∈ B.x = b + j)→ Q(x)→ Q(x− δ)K

=⇒ ∀x.¬(∃j ∈ [δ], b ∈ B.x = b + j)
→ (P (x) ♦Q(x))→ (P (x− δ) ♦Q(x− δ)), for ♦ ∈ {∧,∨}



(6)(N): ∀x.¬(∃j ∈ [δ], b ∈ B.x = b + j)→ F → F
(6)<: J0 < δK =⇒ ∀x.¬(∃j ∈ [δ], b ∈ B.x = b + j)→ x < t→ x− δ < t
(6)>: Jt ∈ BK =⇒ ∀x.¬(∃j ∈ [δ], b ∈ B.x = b + j)→ t < x→ t < x− δ

(6)=:
J0 < δ; t− 1 ∈ BK
=⇒ ∀x.¬(∃j ∈ [δ], b ∈ B.x = b + j)→ x = t→ (x− δ) = t

(6)./:
Jd | δK =⇒
∀x.¬(∃j ∈ [δ], b ∈ B.x = b + j)→ d ./ x + t→ d ./ (x− δ) + t, for ./ ∈ {|, -}

Instances of (6) are derived by prove(6):
decomp(6) x (δ, δ>, dvdδ) (B, inB) P =
case P of

F ♦G | ♦ ∈ {∧,∨} ⇒ ([F,G], fwd (6)♦)
t < y | y = x⇒ ([],λ[]. fwd ((6)>[t, B, δ]) [inB t])
y < t | y = x⇒ ([],λ[]. fwd ((6)<[δ,B, t]) [δ>])
y = t | y = x⇒ ([],λ[]. fwd ((6)=[δ, t, B]) [δ>, inB t− 1])
d ./ y + t | y = x, ./ ∈ {|, -} ⇒ ([],λ[]. fwd ((6)./[d, δ,B, t]) [dvdδ d])
⇒ ([],λ[]. (6)(N)[δ,B, P ])

prove(6) x (δ, δ>, dvdδ) (B, inB) P =
thm (decomp(6) x (δ, δ>, dvdδ) (B, inB)) P

The overall proof Quantifier elimination for Z+ is finally implemented
by qelimZ+

.
proveδ∞B x P =
let

(δ, δ>, dvdδ) = delta x P
(B, inB) = bset x P
th(4) = prove(4) x P
th(5) = prove(5) x dvdδ P
th(6) = prove(6) x (δ, δ>, dvdδ) (B, inB) P

in [δ>, th(4), th(5), th(6)]

cooper ∃x.P =
let

nth as ‘∃x.P ↔ ∃x.Q’ = normalizeZ+ x P
cpth = fwd cooper−∞ (proveδ∞B x Q)

in fwd trans [nth, expand∃ cpth]

qelimZ+
= qelim cooper

The function proveδ∞B returns exactly the list of premises of cooper−∞.
For efficiency it should traverse the formula only once and synthesize (4),



(5) and (6) at once. This is easy to achieve by “merging” the different
decomp(.) functions. At the end we apply a function expand∃ which takes
some theorem and returns an equivalent one where all occurrences of
∃x ∈ I, where I is some finite set, have been expanded into finite dis-
junctions. Typically this is performed by rewriting and we do not discuss
the details. We assume that at the same time rewriting also evaluates all
ground arithmetic and logical expressions.

3.4 Proof synthesis for Ferrante and Rackoff’s algorithm

To derive an instance of Theorem 2 we first generalize it from the specific
UP , P−∞ and P+∞ to arbitrary ones subject to certain assumptions:

fr :Jfinite U ; ∃y.∀x < y.P (x)↔ Q ; ∃y.∀x > y.P (x)↔ R ;
∀x.¬Q ∧ P (x)→ ∃l ∈ U.l ≤ x ; ∀x.¬R ∧ P (x)→ ∃u ∈ U.x ≤ u ;
∀x, l, u.(∀y.l<y<u→ y 6∈ U) ∧ l<x<u ∧ P (x)→ ∀y.l<y<u→ P (y)K

=⇒ ∃x.P (x)↔ (Q ∨R ∨ ∃(u, u′) ∈ U2.P (
u + u′

2
))

In order to prove the premises of fr, we use a function uset, analogous
to bset, which computes the set UP and returns a theorem finite U and a
function inU which, given a t ∈ UP , returns a theorem t ∈ U , where U
represents UP .

The derivation of the premises follows Cooper’s algorithm. In fact the
second premise is derived by prove(4), the third by its (omitted) dual
prove(7). The derivation of the fourth and the fifth premise are dual and
we only show the synthesis of ∀x.¬P−∞ ∧ P (x) → ∃l ∈ UP .l ≤ x, which
is the result of prove(8). First we prove a few easy lemmas:

(8)♦: J∀x.¬P ′ ∧ P (x)→ ∃l ∈ U.l ≤ x;∀x.¬Q′ ∧Q(x)→ ∃l ∈ U.l ≤ xK
=⇒ ∀x.¬(P ′ ♦Q′) ∧ (P (x) ♦Q(x))→ ∃l ∈ U.l ≤ x, for ♦ ∈ {∧,∨}

(8)< : ∀x.¬True ∧ x < t→ ∃l ∈ U.l ≤ x
(8)./ : Jt ∈ UK =⇒ ∀x.¬False ∧ t ./ x→ ∃l ∈ U.l ≤ x, for ./ ∈ {=, >}
(8)(N) : ∀x.¬F ∧ F → ∃l ∈ U.l ≤ x.

Function prove(8) performs the derivation:
decomp(8) x inU P =
case P of

F ♦G | ♦ ∈ {∧,∨} ⇒ ([F,G], fwd (8)♦)
y < t | y = x} ⇒ ([],λ[].(8)<[t])
y ./ t | y = x, ./ ∈ {=, >} ⇒ ([],λ[].fwd (8)./ [inU t])



⇒ ([],λ[].(8)(N)[P ])

prove(8) x inU P = thm (decomp(8) x inU) P

The derivation of the last premise of fr is the result of prove(10), which
uses the following theorems:

(10)♦ : J∀x, l, u.(∀y.l < y < u→ y 6∈ U) ∧ l < x < u ∧ P (x)

→ ∀y.l < y < u→ P (y);
∀x, l, u.(∀y.l < y < u→ y 6∈ U) ∧ l < x < u ∧Q(x)
→ ∀y.l < y < u→ Q(y)K =⇒
∀x, l, u.(∀y.l < y < u→ y 6∈ U) ∧ l < x < u ∧ P (x) ♦Q(x)
→ ∀y.l < y < u→ P (y) ♦Q(y), for ♦ ∈ {∧,∨}

(10)./ : t ∈ U =⇒ ∀x, l, u.(∀y.l < y < u→ y 6∈ U) ∧ l < x < u ∧ x ./ t

→ ∀y.l < y < u→ y ./ t, for ./ ∈ {=, <, >}
(10)(N) : ∀x, l, u.(∀y.l<y<u→ y 6∈ U) ∧ l<x<u∧ P→ ∀y.l < y < u→ P

decomp(10) x inU P =
case P of

F ♦G | ♦ ∈ {∧,∨} ⇒ ([F,G], fwd (10)♦)
y ./ t | y = x, ./ ∈ {=, <, >} ⇒ ([],λ[].fwd (10)./ [inU t])
⇒ ([],λ[].(10)(N)[P ])

prove(10) x inU P = thm (decomp(10) x inU) P

We merge all the functions that derive the premises into prove±∞U,
which returns a 6-element list corresponding to the premises of fr. The
overall quantifier elimination procedure for R+ is implemented by qelimR+

.

ferrack ∃x.P =
let nth as ‘∃x.P ↔ ∃x.Q’ = normalizeR+ x P
in expand∃(fwd trans [nth, fwd fr (prove±∞U x Q)])

qelimR+
= qelim ferrack

4 Reflection

After a simplified explanation of reflection we show its application to both
Cooper’s algorithm and the one by Ferrante and Rackoff. The content of
this section is a minimally revised version of [9] and [10].



4.1 An informal introduction to reflection

Reflection means to perform a proof step by computation inside the logic
rather than inside some external programming language. The latter is
traditionally referred to as a meta-language (ML) and is what we have
relied on so far. Inside the logic it is not possible to write functions by pat-
tern matching over the syntax because two syntactically distinct formulae
may be logically equivalent. Hence the relevant fragment of formulae must
be represented (reflected) inside the logic as a datatype. Sometimes this
datatype is called the shadow syntax [30]. We call it rep, the representa-
tion.

The two levels of formulae must be connected by two functions:

interp, a function in the logic, maps an element of rep to the formula it
represents, and

reify , a function in ML, maps a formula to its representation.

The two functions should be inverses of each other. Informally interp(reify P )↔
P should hold. More precisely, taking the ML representation of a formula
P and applying reify to it yields an ML representation of a term p of type
rep such that interp p↔ P holds.

Typically, the formalized proof step is some equivalence P ↔ P ′ where
P is given and P ′ is some simplified version of P (e.g. the elimination of
quantifiers). This transformation is now expressed as a recursive function
simp of type rep → rep. We prove (typically by induction on rep) that
simp preserves the interpretation:

interp p↔ interp(simp p)

To apply this theorem to a given formula P we proceed as follows:

1. Create a rep-term p from P using reify . This is the reification step
which must be performed in ML.

2. Prove P ↔ interp p. Usually this is trivial by rewriting with the
definition of interp.

3. Instantiate simp’s correctness theorem above, compute p′ = simp p
and obtain the theorem interp p ↔ interp p′. This is the evaluation
step.

4. Simplify interp p′, again by rewriting with the definition of interp,
yielding a theorem interp p′ ↔ P ′

The final theorem P ↔ P ′ holds by transitivity.
The evaluation step is crucial for efficiency as all other steps are typ-

ically linear-time. In our work we employ Isabelle’s built-in ground term



evaluator [2] which generates executable code from the definition of simp
and “runs” simp p. The fact that the executable code is again ML is a
coincidence. A similar approach is adopted in PVS [15] and in ACL2 [7].
Other approaches include the the use of an internal λ-calculus evaluator
[27] as in Coq [5]. One could also perform the evaluation step by rewrit-
ing inside the theorem prover, but the performance penalty is usually
prohibitive.

There is also the practical issue of where reify comes from. In general,
the implementor of the reflected proof procedure must program it in ML
and link it into the above chain of deductions. But because reify must be
the inverse of interp, it is often possible to automate this step. Isabelle
implements a sufficiently general inversion scheme for interp (which even
covers bound variables represented by de Bruijn indices) such that for all
of the examples in this paper, reify is dealt with automatically.

4.2 Reflecting linear arithmetic

In this section we represent linear arithmetic formulae inside the logic. We
also give a generic quantifier elimination, sketch normalization of formulae
and present the common parts of both algorithms.

Terms and Formulae We define the syntax of terms and formulae as
follows:

datatype τ = α̂ | vnat |− τ | τ + τ | τ − τ | α ∗ τ
datatype φ = T | F | τ < τ | τ ≤ τ | τ = τ | τ 6= τ | int | τ | int --- τ

| ¬ φ | φ ∧φ | φ∨φ | φ→ φ | φ↔ φ | ∃ φ | ∀ φ

In the logic, datatypes are declared using datatype. Lists are built up from
the empty list [] and consing ·; the infix @ appends two lists. For a list l,
{{l}} denotes the set of elements of l, and l!n denotes its nth element. For
a finite set S, |S| denotes the cardinality of S.

The constant c in the logic is represented by the term ĉ. Constants are
integers for Z+, i.e. α = int, and rational numbers for R+, i.e. α = rat.
That is, τ and φ are really parameterized by type α. Bound variables are
represented by de Bruijn indices: vn represents the bound variable with
index n (a natural number). Hence quantifiers need not carry variable
names. The bold symbols +, ≤, ∧ etc are constructors and reflect their
counterparts +, ≤, ∧ etc in the logic. We use ./ (resp. ./) as a place-
holder for =, 6=,≤ or < (resp. =, 6=,≤ or <). We also use ♦♦♦ (resp. ♦) as
place-holder for ∧,∨,→ or ↔ (resp. ∧,∨,→,↔). In the following p and
q (resp. s and t) are of type φ (resp. τ).



LbcMvs
τ = c

LvnMvs
τ = vs!n

L− tMvs
τ = −LtMvs

τ

Lt + sMvs
τ = LtMvs

τ + LsMvs
τ

Lt − sMvs
τ = LtMvs

τ − LsMvs
τ

Lc ∗ tMvs
τ = c·LtMvs

τ

LT Mvs = True
LF Mvs = False
Lt./sMvs = (LtMvs

τ ./LsMvs
τ )

L¬pMvs = (¬LpMvs)
Lp ♦♦♦ qMvs = (LpMvs ♦LqMvs)
L∃ pMvs = (∃x.LpMx·vs)
L∀ pMvs = (∀x.LpMx·vs)

Fig. 2. Semantics of the shadow syntax

The interpretation functions (L.M.
τ and L.M.) in Fig. 2 map the repre-

sentations back into logic. They are parameterized by an environment vs
which is a list of integer expressions for Z+, and a list of real expressions
for R+. The de Bruijn index vn picks out the nth element from that list.
Since Z+ includes divisibility relations, we define Li | tMvs = (i | LtMvs

τ ) and
Li --- tMvs = i - LtMvs

τ .

Example 4.

L∀ ∃∃(3 ∗ v0 + 5 ∗ v1 − v2 = 0̂)M[] ↔ (∀x.∃y, z.3·z + 5·y − x = 0)
L3 ∗ v0 + 5 ∗ v1 ≤ v2M[x,y,z] ↔ (3·x + 5·y ≤ z)

qelim qe (∀ p) = ¬qe¬(qelim qe p)
qelim qe (∃ p) = qe(qelim qe p)
qelim qe (p ♦♦♦ q) = (qelim qe p) ♦♦♦(qelim qe p)
qelim qe p = p

Fig. 3. Quantifier elimination for φ-formulae

Generic quantifier elimination Assume we have a function qe, that
eliminates one ∃ in front of quantifier-free φ-formulae. The function qelim
in Fig. 3 applies qe to all quantified sub-formulae in a bottom-up fashion.
Let qfree p formalize that p is quantifier-free . We automatically prove
the main property (12) of qelim by structural induction on p: if qe takes
a quantifier-free formula q and returns a quantifier-free formula q′ equiv-
alent to ∃ q, then qelim qe is a quantifier-elimination procedure:

(∀vs, q. qfree q → qfree (qe q) ∧ (Lqe qMvs ↔ L∃ qMvs))
→ qfree (qelim qe p) ∧ (Lqelim qe pMvs ↔ LpMvs).

(12)

The implementation of qelim in Fig. 3 is naive and only used for the
sake of presentation. In reality, the definition involves several simplifica-



tions such as distribution of ∃ over ∨, lazy evaluation of ∧,∨,→ and ↔,
etc.

In §4.3 and §4.4 we present cooper and ferrack, two instances of qe
satisfying the premise of (12) for Z+ and R+, respectively.

Normalized formulae and elimination sets Normalized φ-formulae
are defined via predicates isnormZ+ and isnormR+ for Z+ and R+ respec-
tively. The definition of isnormZ+ is as follows:

isnormZ+ (p ♦♦♦ q) = (isnormZ+ l p) ∧ (isnormZ+ l q) for ♦♦♦ ∈ {∧,∨}
isnormZ+ (v0./t) = unboundτ t
isnormZ+ (t ./ v0) = unboundτ t for ./ ∈ {<,≤}
isnormZ+ (d ./ v0 + t) = d > 0 ∧ unboundτ t for ./ ∈ {|, -}
isnormZ+ p = unboundφ p

The predicates unboundτ and unboundφ formalize that a τ -term and a
φ-formula, respectively, do not involve v0. The definition of isnormR+ just
excludes the | and - atoms. Normalization is performed as explained in
§2.2 by the functions normZ+ and normR+ satisfying (13) and (14).

qfree p→ isnormZ+(normZ+ p) ∧ L∃(normZ+ p)Mvs ↔ L∃ pMvs (13)
qfree p→ isnormR+(normR+ p) ∧ L∃(normR+ p)Mvs ↔ L∃ pMvs (14)

Fig. 4 shows the reflected counterparts of the functions defined in
Fig. 1. If P is reflected by p then P−∞ and P+∞ are reflected by p− and
p+, and UP ,BP and AP are reflected by the lists U p, B p and A p.

p U p B p A p p− p+

q ♦♦♦ r U q @ U r B q @ B r A q @ A r q− ♦♦♦ r− q+ ♦♦♦ r+

t < v0 [t] [t] [] F T
v0 < t [t] [] [t] T F

t ≤ v0 [t] [t − b1] [] F T

v0 ≤ t [t] [] [t + b1] T F

v0 = t [t] [t − b1] [t + b1] F F
v0 6= t [t] [t] [t] T T

∅ ∅ ∅ p p

Fig. 4. Definition of U p, B p, A p, p− and p+

Our reflective implementation represents all sets by lists. Because the
complexity of both algorithms depends highly on the size of the elimina-
tion sets (see Theorems 1 and 2), our implementation removes duplicate



elements from the elimination sets via function remdups. This function
compares terms for semantic equality by linearizing them first. We ex-
plain this process in some detail.

A τ -term t is linear (islinτ t) if it has the form

c1 ∗ vi1 + · · · + cn ∗ vin + ĉn+1

where n ∈ N, i1 < · · · < in and ∀j ≤ n.cj 6= 0.

islin’τ n0 î = True
islin’τ n0 (i ∗ vn + r) = i 6= 0 ∧ n0 ≤ n ∧ islin’τ (n + 1) r
islin’τ n0 t = False
islinτ t = islin’τ 0 t

An arbitrary τ -term t is linearized by function linτ t (definition omitted),
which replaces every +,−,∗ and − by −l,+l,−l,∗l and −l. The inter-
pretation of linear terms is preserved by this process (theorems for −l

and −l are omitted):

islinτ t ∧ islinτ s→ ((Lt +l sMvs
τ = Lt + sMvs

τ ) ∧ islinτ (t +l s)) (15)
islinτ t→ (Lc ∗l tMvs

τ Lc ∗ tMvs
τ ) ∧ islinτ (c ∗l t) (16)

The proofs and definitions of +l and ∗l are simple. The key clauses in
the definition are shown below.

(k ∗ vn + r) +l (l ∗ vm + s) =
if n = m then
if k + l = 0 then r +l s else (k + l) ∗ vn + (r +l s)

else if n ≤ m then k ∗ vn + (r +l (l ∗ vm + s)
else l ∗ vm + (k ∗ vn + r) +l s

(k ∗ vn + r) +l b̂ = k ∗ vn + (r +l b̂)
â +l (l ∗ vn + s) = l ∗ vn + (s +l â)
k̂ +l l̂ = k̂ + l

c ∗l î = ĉ·i
c ∗l (i ∗ vn + r) = if c = 0 then 0̂ else (c·i) ∗ vn + (c ∗l r)

−l t = −1 ∗l t
t −l s = t +l (−l s)

Using (15) and (16) we automatically prove linτ ’s main property:

(Llinτ tMvs
τ = LtMvs

τ ) ∧ islinτ (linτ t). (17)



4.3 Reflecting Cooper’s algorithm

In this section we present a verified implementation of Cooper’s algorithm
which differs only slightly from [10].

Cooper’s theorem Now we prove the analogue of cooper−∞ for φ-
formulae:

isnormZ+ p→ (L∃ pMvs ↔ ((∃j ∈ {1..Dp}.Lp−Mj·vs)

∨ (∃j ∈ {1..Dp}, b ∈ {LtMi·vs
τ | t ∈ {{B p}}}.LpM(b+j)·vs))).

(18)

Note that the i in LtMi·vs
τ is free because t does not depend on v0.

In Fig. 5 we define a function Dp to compute the δ in (1) and a
predicate alldvdφ to express δ’s main property (19), which we prove au-
tomatically. It is the predicate alldvdφ we use, when during induction we
need that d | δ for an atom d | v0 + t. Concretely, we prove properties
involving Dp for a general l satisfying alldvdφ l p.

isnormZ+ p→ Dp > 0 ∧ alldvdφ Dp p (19)

p D p alldvdφ l p

q ♦♦♦ r lcm (D q) (D r) (alldvdφ l q) ∧ (alldvdφ l r)
d | v0 + t d d | l
d --- v0 + t d d | l

1 True

Fig. 5. Dp and alldvdφ for normalized φ-formulae

As in §3.3 we prove the (reflected) premises of cooper−∞:

isnormZ+ p→ ∃z.∀x.x < z → (LpMx·vs = Lp−Mx·vs) (20)

isnormZ+ p→ ∀x, k.Lp−Mx·vs = Lp−M(x−k·Dp)·vs (21)

isnormZ+ p→ ∀x.¬(∃j ∈ {{1..Dp}}.∃b ∈ {LtMi·vs
τ | t ∈ {{B p}}}.LpM(b+j)·vs)

→ LpMx·vs → LpM(x−δp)·vs (22)

All these theorems are proved by structural induction on p just as in
§2.3, but now once and for all rather than for each instance. With these
theorems and cooper−∞ we easily prove Cooper’s theorem for φ-formulae.



mirror (p ♦♦♦ q) = (mirror l p) ♦♦♦(mirror l q) for ♦♦♦ ∈ {∧, ∨}
mirror (v0 ./ t) = v0 ./ (− t) for ./ ∈ {=, 6=}
mirror (v0 ./ t) = (− t) ./ v0 for ./ ∈ {<, ≤}
mirror (t ./ v0) = v0 ./ (− t) for ./ ∈ {<, ≤}
mirror (d ./ v0 + r) = d ./ v0 + (− r) for ./ ∈ {|, -}
mirror p = p

Fig. 6. Duality principle for φ-formulae.

A duality principle We formalize the duality principle (P−∞ and BP

vs. P+∞ and AP ) using a function mirror defined in Fig. 6. The idea behind
mirror is simple: if p reflects P (x) then mirror p reflects P (−x). This,
among other properties, is expressed below and is proved by induction on
p. In §4.3, we use mirror to optimize cooper.

isnormZ+ p → isnormZ+ (mirror p) ∧ (Lmirror pM−i·vs ↔ LpMi·vs)
∧ {LtMvs

τ | t ∈ {{A p}}} = {−LtMvs
τ | t ∈ {{B (mirror p)}}}

An implementation The first step in the implementation of cooper is to
normalize the formula and to choose the smaller elimination set, possibly
mirroring the formula to compensate for this:

choose p =
let q = normZ+ p; (A,B) = (remdups (A q), remdups (B q))
in if |B| ≤ |A| then (q, B) else (mirror q, A)

The main property of choose is that it reduces the +∞ case to the −∞
case:

qfree p ∧ (choose p = (q, S))→
isnormZ+ q ∧ (L∃ pMvs ↔ L∃ qMvs) ∧ ({{S}} = {{B q}})

(23)

For (q, S), we generate the right-hand side of (18) and expand the
finite quantifiers into disjunctions:

explode(q, S) = eval∨ (λi.q−[̂i]) [1..Dq]

∨ eval∨ (λt.q[t]) [t + î | t ∈ S, i ∈ [1..Dq]]

The function call eval∨ f [x1, .., xn] returns the disjunction f x1 ∨ ..∨ f xn

lazily evaluated: as soon as the disjunct T turns up, the whole expression
becomes T ; F is omitted. The substitution of a term t for v0 in a formula
p is performed by p[t]. Substitution also simplifies the formula: it evalu-
ates ground terms and relations and performs some logical simplification.



Finally we decrease the de Bruijn indices of the remaining variables using
function decr; its definition is obvious and omitted.

The composition of decr and explode preserves the interpretation:

isnormZ+ p ∧ {{S}} = {{B p}} →
(L∃ pMvs ↔ Ldecr(explode (p, B))Mvs) ∧ qfree(decr(explode (p, B))).

Finally we can define cooper and qeZ+
:

cooper = decr ◦ explode ◦ choose

qeZ+
= qelim cooper

Their correctness follows easily:

qfree q → qfree (cooper q) ∧ (Lcooper qMvs ↔ L∃ qMvs)
qfree (qeZ+

p) ∧ (LqeZ+
pMvs ↔ LpMvs)

4.4 Reflecting Ferrante and Rackoff’s algorithm

In this section we present a verified implementation of Ferrante and Rack-
off’s algorithm, which differs only slightly from §4 in [9].

Ferrante and Rackoff’s theorem Let U denote {LtMz·vs
τ ) | t ∈ {{U p}}}

and assume isnormR+p. The analogue of Theorem 2 for φ-formulae is

L∃ pMvs ↔ Lp−∨ p+Mx·vs ∨ ∃(u, u′) ∈ U2.LpM
u+u′

2
·vs. (24)

We prove the (reflected) premises of fr, cf. §3.4. Then we have:

finite U p

∃y.∀x < y.LpMx·vs ↔ Lp−Mx·vs

∃y.∀x > y.LpMx·vs ↔ Lp+Mx·vs

¬Lp−Mx·vs ∧ LpMx·vs → ∃l ∈ U.l ≤ x

¬Lp+Mx·vs ∧ LpMx·vs → ∃u ∈ U.x ≤ u

(∀y.l<y<u→ y 6∈ U) ∧ l<x<u ∧ LpMx·vs → ∀y.l<y<u→ LpMy·vs

All of the above lemmas are proved by induction on p. The proof of the
final lemma follows exactly the proof given in §2.4. Using fr we obtain
(24).



ferrack q = let p = normR+ q

U = remdups(map (λ(s, t).b1
2

∗ (s + t)) (allpairs(U p)))
D = eval∨ (λt.p[t]) U

in decr(p− ∨ p+ ∨ D)

qeR+
= qelim ferrack

Fig. 7. An implementation

An implementation Figure 7 shows an implementation of ferrack. It
first normalizes the input (to p) and computes p− and p+ and U p to return
the disjunction justified by (24). The de Bruijn indices in the result are
decreased via decr. The function call allpairs S returns a list of all the
pairs (s, t) such that (s, t) ∈ {{S}}2 or (t, s) ∈ {{S}}2 .

The main correctness theorems for ferrack and qeR+
are:

qfree q → qfree (ferrack q) ∧ (Lferrack qMvs ↔ L∃ qMvs)
qfree (qeR+

p) ∧ (LqeR+
pMvs ↔ LpMvs)

5 A short comparison of the presented methods

5.1 Implementation

In the tactic-style implementation one does not need to formalize meta-
theoretic notions like the syntax of formulae in a particular normal form,
e.g. isnormZ+ above. One just goes ahead and writes the tactics. But it
is precisely this lack of explicitness that makes tactic writing so tedious
and error prone: time and again one finds that tactics fail because the
proofs they produce do not fit together as expected, a problem already
mentioned in §1. This is where a reflection-based implementation wins: it
is developed within the logic and its correctness is proved, i.e. there are
no more surprises at runtime. The explicitness of reflection pays off even
more during maintenance, where tactics can be awkward to modify.

Due to the progress in sharing theorems with other theorem provers
[35, 42], reflected decision procedures are ultimately shared for free. A
final advantage of reflection is that it allows to formalize notions like
duality, cf. §4.3, which reduces the size of the background theory.

A disadvantage of reflection is that we may need to formalize notions
again that are already present on the tactic level. For example, many theo-
rem provers already provide linearization of arithmetic terms as discussed
on page 24.



5.2 Efficiency

Efficiency is often considered the key advantage of reflection, since the
resulting implementation is exported to ML, where execution is much
faster. Coq for instance uses an internal λ-calculus evaluator [27] to per-
form these computations efficiently.

q nq nq0 nq1 nq2 nq3 bcmax speedup

1 40 40 0 0 0 24 20
2 27 20 7 0 0 13 50
3 21 2 19 0 0 129 400
4 6 1 0 0 5 6 103
5 5 3 0 5 0 12 50

Fig. 8. Number of quantifiers and speedup in the test formulae for Z+

q nq nq0 nq1 nq2 nq3 bcmax speedup

2 10 5 5 0 0 500 43
3 15 5 5 5 0 100 44
4 20 5 5 5 5 1200 64

Fig. 9. Number of quantifiers and speedup in the test formulae for R+

Our implementations in Isabelle/HOL confirms the efficiency advan-
tage: on average, the reflection-based decision procedure for Z+ is 130
times faster that the tactic-based one, for R+ the speedup is still 60. The
formulae we tested are either from the literature or encoutered subgoals in
Isabelle theories. The details of our measurements are shown in figures 8
and 9. Each line describes a sample set. Column 1, q, gives the number of
quantifiers in each sample formula. The formulae contain up to five quan-
tifiers and three quantifier alternations. The number nq represents the
number of formulae with q quantifiers. We have nq = nq0+nq1+nq2+nq3,
where nqi is the number of formulae containing q quantifiers and i quanti-
fier alternations. The column ĉmax gives the maximal constant occurring
in the given set of formulae. The last column gives the speedup. The tac-
tic style methods presented in §3.3 and §3.4 needed 463 and 378 seconds,
to solve all the problems by inference. The ML implementations obtained
by Isabelle’s code generator from the formally verified procedures pre-
sented in §4.3 and in §4.4 took 3.48 and 5.96 seconds, a speedup of 133
and 63. All timings were carried out on a PowerBook G4 with a 1.67 GHz
processor running OSX.
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