Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Linear Quantifier Elimination

Tobias Nipkow

Received: date / Accepted: date

Abstract This paper presents verified quantifier elimination procedures for dense linear
orders (two of them novel), for real and for integer linear arithmetic. All procedures are
defined and verified in the theorem prover Isabelle/HOL, are executable and can be applied
to HOL formulae themselves (by reflection). The formalization of the different theories is
highly modular.

1 Introduction

This paper is about the concise implementation of quantifier elimination (QE) procedures
(QEPs) for linear arithmetics. QE is a venerable logical technique which yields decision pro-
cedures if ground atoms are decidable. The focus of our work is the compact implementation
of QEPs (for linear arithmetics) inside a theorem prover. All our QEPs have been defined
and verified in Isabelle/HOL [22]. We do not discuss these formal proofs here. They are
detailed, mostly structured and available online at afp.sf.net, together with the QEPs them-
selves. Because the informal proofs of these QEPs can be found in the literature, they need
not be discussed either. The exception are our novel QEPs, for which informal correctness
proofs are given.
The main contributions of this paper are:

— Two novel QEPs for dense linear orders (DLO) inspired by QEPs for linear real arith-
metic.

— Presentation of 8 verified implementations of QEPs: three for DLO, three for linear real
arithmetic and two for Presburger arithmetic. We show everything but the most trivial
details, providing reference implementations and convincing the reader that nothing has
been swept under the carpet.

— Extremely compact formalizations due to the almost excessive use of lists and list com-
prehensions.

— A common reusable QE framework using Isabelle’s structuring facility of locales, thus
factoring out the common parts of the different QEPs.

T. Nipkow
Institut fiir Informatik, Technische Universitit Miinchen
E-mail: www.in.tum.de/~nipkow

afp.sf.net
www.in.tum.de/~nipkow

This paper is a contribution to the growing body of verified theorem proving algorithms. In
spirit it is close to Harrison’s book [13] which presents all algorithms in OCaml.

Why this obsession with executable and verified QEPs? The context of this research is
the question of how to implement trustworthy and efficient decision procedures in founda-
tional theorem provers, i.e. without having to trust an external oracle. Reflection, originally
proposed by Boyer and Moore [2] and used to great effect in systems like Coq (e.g. [10])
and Isabelle (e.g. [4]) has become a standard approach. Suffice it to say that we follow this
approach, too, and that all the algorithms in this paper can be used directly on formulae in
Isabelle — details can be found elsewhere (e.g. [21]).

It should be emphasized that the presentation is streamlined for succinctness. In partic-
ular, we always restrict attention to two of the four relations =, <, <, #. For example, in
DLOs it suffices to consider = and < because x < y is equivalent with x < yVx =y and
X # y is equivalent with x < yVy < x. An efficient implementation would always work with
all four relations. The corresponding generalization of our code is straightforward.

The paper is structured as follows. In §3 we describe a HOL model of logical formulae
parameterized by a language of atoms and present two generic QEPs, one based on NNF, one
on DNF. Both are parameterized by a QEP for a single quantifier. The remaining sections
present a succession of single-quantifier QEPs for different linear theories: each section
starts with a simple DNF-based algorithm and proceeds to more efficient NNF-based ones.

2 Basic Notation

HOL conforms largely to everyday mathematical notation. This section introduces further
non-standard notation and in particular a few basic data types with their primitive operations.

The types of truth values, natural numbers, integers and reals are called bool, nat, int
and real. The space of total functions is denoted by =-. Type variables are denoted by o, 3,
etc. The notation #::T means that term ¢ has type 7.

Sets over type a, type o set, follow the usual mathematical conventions.

Lists over type a, type o list, come with the empty list [], the infix constructor -, the
infix @ that appends two lists, and the conversion function set from lists to sets. Variable
names ending in s usually stand for lists. In addition to the standard functions map and
filter, Tsabelle/HOL also supports Haskell-style list comprehension notation. For example,
in Haskell [2*x | x <- xs, x > 0] denotes the list of all 2*x, where x iterates over all
elements of the list xs such that x > 0. Instead of [e | x <- xs, ...] asin Haskell we
write [e. x < xs, ...], and [x<xs. ...] is short for [x. x<uxs, ...].

Note that = on type bool means “ift” and that If P then Q is synonymous with P =—> Q.

During informal explanations we often switch to everyday mathematical notation where
(a,b) can be a pair or an open interval.

3 Logic

Formulae are defined as a recursive datatype with a parameter type o of atoms:
datatypeafm = T|L|A«
| (ocfm) A (afm) | (o fm) V (afin) | = (o fin) | 3 (o fin)

The boldface symbols A, V, = and 3 are ordinary constructors chosen to resemble the
logical operators they represent. Constructor A encloses atoms. The type of atoms is left

open by making it a parameter . Variables are represented by de Bruijn indices: quantifiers
do not explicitly mention the name of the variable being bound because that is implicit. For
example, 3 (3...0...1...) represents a formula Jx;.3xg. ...xp...x] Note that the only
place where variables can appear is inside atoms. The only distinction between free and
bound variables is that the index of a free variable is larger than the number of enclosing 3.

3.1 Auxiliary Functions

The constructors A, V and — have optimized (‘“‘short-circuit”) versions and, or and neg:

and T @ =¢ orTo=T neg T =1
and @ T =¢ orppT=T neg L =T
and L ¢ =1 orlo=¢ negQ =-¢
and o L =1 orp L=¢

and @1 @2 = (@1 A Q2) or @1 02 = (@1 V ¢2)

Conjunctions and disjunctions of lists of formulae are easily defined:

list-conj [@1,...,¢n] = and @y (and ... @)
list-disj [@1,...,@n] = or @1 (or ... @)

For convenience the following abbreviation is also introduced:
Disj us f = list-disj (map f us)

More interesting is the conversion to DNF:
dnf :: a fm = « list list

dnf T = [[ll

dnf L =

dnf (A @) = [[¢]]

dnf (@1 V @2) = dnf @1 @ dnf ¢,

dnf (@1 A @2) = [di @ dy. dy —dnf @1, dy — dnf @]

The resulting list of lists represents the disjunction of conjunctions of atoms. Working with
lists rather than type fim has the advantage of a well-developed library and notation.

Note that dnf assumes that its argument contains neither quantifiers nor negations. Most
of our work will be concerned with quantifier-free formulae where all negations have not
just been pushed right in front of atoms but actually into them. This is easy for linear orders
because —(x < y) is equivalent with y < x. This conversion will be described later on because
it depends on the type of atoms. The (trivial to define) predicates

gfree, nqfree :: & fim = bool

check whether their argument is free of quantifiers (gfree), and free of negations and quan-
tifiers (ngfree).
There are also two mapping functionals

mapp, (o= B)= afm=fm
amapgy, :: (06 = B fim) = a fim = B fin

where mapg,, f is the canonical one that simply replaces A a by A (f @), whereas amapgy,
may also simplify the formula via and, or and neg:

amapg, h T =T
amapg, h L =1
amapygy, h (A a) =ha

amapgy, h (@1 A ¢2) = and (amapg, h 1) (amapgy, h ¢2)
amapg, h (91 V @2) = or (amapgy, h @1) (amapg, h ¢2)
amapgy h (= 9) = neg (amapgy h @)
Both mapping functionals are only defined and needed for gfree formulae.
The set of atoms in a formula is computed by the function atoms :: ¢ fin = « set.

3.2 Interpretation

The interpretation or semantics of a fin is defined via the obvious homomorphic mapping to
an HOL formula: A becomes A, V becomes V, etc. The interpretation of atoms is a parameter
of this mapping. Atoms may refer to variables and are thus interpreted w.r.t. a valuation.
Since variables are represented as natural numbers, the valuation is naturally represented as
a list: variable i refers to the ith entry in the list (starting with 0). This leads to the following
interpretation function interpret :: (o0 = B list = bool) = o fm = B list = bool:

interpret h T xs = True
interpret h 1 xs = False
interpret h (A a) xs = haxs

interpret h (@1 A Q2) xs = interpret h Q| xs N\ interpret h Q3 xs
interpret h (@1 V @Q2) xs = interpret h Q| xs \ interpret h Q3 xs
interpret h (- @) xs = —interpret h @ xs

interpret h (3 @) xs = dx. interpret h @ (x-xs)

In the equation for 3 the value of the bound variable x is added at the front of the valuation.
De Bruijn indexing ensures that in the body O refers to x and i + 1 refers to bound variable i
further up.

3.3 Atoms

Atoms are more than a type parameter o. They come with an inferpretation (their seman-
tics), and a few other specific functions. These functions are also parameters of the generic
part of quantifier elimination. Thus the further development will be like a module param-
eterized with the type of atoms and some functions on atoms. These parameters will be
instantiated later on when applying the framework to various linear arithmetics.

In Isabelle this parameterization is achieved by means of a locale [1], a named context
of types, functions and assumptions about them. We call this context ATOM. It provides the
following functions

1, o= B list = bool
aneg o= ofm
dependsy 1 o0 = bool

decr T = o

with the following intended meaning:

I, a xs is the interpretation of atom a w.r.t. valuation xs, where variable i (note i :: nat
because of de Bruijn) is assigned the ith element of xs.

aneg negates an atom. It returns a formula which should be free of negations. This is strictly
for convenience: it means we can eliminate all negations from a formula. In the worst
case we would have to introduce negated versions of all atoms, but in the case of linear
orders this is not necessary because we can turn, for example, =(x < y) into (y < x) V
(y="x).

dependsgy a checks if atom a contains (depends on) variable 0.

decr a decrements every variable in a by 1.

Within context ATOM we introduce the abbreviation I = interpret I,. The assumptions
on the parameters of ATOM can now be stated quite succinctly:

I (aneg a) xs = (= 1, a xs)

nqfree (aneg a)
- dependsy a = 1, a (x-xs) =1, (decr a) xs

Function aneg must return a quantifier and negation-free formula whose interpretation is the
negation of the input. And when interpreting an atom not containing variable O we can drop
the head of the valuation and decrement the variables without changing the interpretation.

These assumptions must be discharged when the locale is instantiated. We do not show
this in the text because the proofs are straightforward in all cases.

In the context of ATOM we define two auxiliary functions: atomsy ¢ computes the list
of all atoms in ¢ that depend on variable 0. The negation normal form (NNF) of a gfree
formula is defined in the customary manner by pushing negations inwards. We show only a
few representative equations:

nnf (- (A a)) = aneg a

nnf (@1 V ¢2) = nnf @1V nnf @,

nnf (= (@1 V @2)) = nnf (= Q1) Annf (= ¢2)
nif (2 (@1 A @2)) = nnf (2 @1) Vnnf (2 @2)

The first equation differs from the usual definition and gets rid of negations altogether —
see the explanation of aneg above.

3.4 Quantifier Elimination

The elimination of all quantifiers from a formula is achieved by eliminating them one by one
in a bottom-up fashion. Thus each step needs to deal merely with the elimination of a single
quantifier in front of a quantifier-free formula. This step is theory-dependent and hard. The
lifting to arbitrary formulae is simple and can be done once and for all. We assume we are
given a function ge :: o fin = o fin for the elimination of a single 3, 1.e. I (ge) =1 (3)
if gfree @. Note that ge is not applied to 3 ¢ but just to ¢, 3 remains implicit. Lifting ge is
straightforward:

lift-nnf-ge :: (ot fim = o fin) = o fm = o fm

lift-nnf-ge ge (@1 A 92) = and (lift-nnf-ge ge 1) (lifi-nnf-ge ge 2)
lift-nnf-ge ge (91 V 92) = or (lift-nnf-ge ge 1) (lifi-nnf-ge ge 92)

lift-nnf-ge ge (< @) = neg (lift-nnf-ge ge ¢)
liftnnf-ge ge (39) = qge (nnf (lift-nnf-ge ge ¢))
lift-nnf-ge ge = ¢

Note that ge is called with an argument already in NNF.

3.4.1 DNF

We can go even further and put the argument of ge into DNF. This can lead to non-elementary
complexity but allows particularly straightforward algorithms because then we can push ex-
istential quantifiers through disjunctions as follows (using customary logical notation):

(EX.VAaij) = (\/ﬂx./\aij)

i

where a;; are the atoms of the DNF. Thus ge can be applied directly to a conjunction of
atoms. Using
(3x. AAB(x)) = (AA(Tx. B(x)))

where A does not depend on x, we can push the quantifier right in front of a conjunction of
atoms all of which depend on x. This simplifies matters for ge as much as possible.
Now we look at the formalization of this second lifting procedure:

lift-dnf-ge :: (a list = a fm) = a fm = o fim

Because we represent the DNF via lists of lists of atoms, the first argument of /ift-dnf-ge
takes a list rather than a conjunction of atoms.

The separation of a list (conjunction) of atoms into those that do contain 0 and those that
do not, and the application of ge to the former is performed by an auxiliary function:

gelim ge as = (let qf = ge [a < as. depends al;
indep = [A(decr a). a «— as, — depends a
in and qf (list-conj indep))

Because the innermost quantifier is eliminated, all references to other quantifiers need to be
decremented. For the atoms independent of the innermost quantifier this needs to be done
explicitly, for the other atoms this must happen inside ge.

The main function /ift-dnf-qe recurses down the formula (we omit the obvious equations)
until it finds an 3 @, removes the quantifiers from ¢, puts the result into NNF and DNF, and
applies gelim ge to each disjunct:

lift-dnf-ge ge (3) = Disj (dnf (nnf (lif--dnf-qe ge 9))) (gelim ge)
3.4.2 Equality

We can generalize quantifier elimination via DNF even further based on the predicate cal-
culus law

(Fx.x=tA¢)=9t/x] (H

provided x does not occur in ¢. In some theories this enables us to remove equalities com-
pletely: in linear real arithmetic, any equation containing variable x is either independent of
the value of x (e.g. x = x or x = x+ 1) or can be brought into the form x = ¢ with x not in
t. But even if one cannot remove all equalities, as in most non-linear theories, it is useful to
deal with x = ¢ separately for obvious efficiency reasons. Hence we extend locale ATOM to
locale ATOM-EQ containing the following additional parameters

solvabley :: o0 = bool
trivial ;o = bool
substy Toe=a=0

with the following intended meaning expressed by the corresponding assumptions:

— For solvable atoms, any valuation of the variables > 0 can be extended to a satisfying
valuation: solvabley eq = x. I, eq (x-xs).

— Trivial atoms satisfy every valuation: trivial eq = 1, eq xs.

— Function substy substitutes its first argument, a solvable equality, into its second argu-
ment. This is expressed by requiring that substg satisfies the substitution lemma under
certain conditions: If solvabley eq and — trivial eq and 1, eq (x-xs) and dependsy a
then 1, (substy eq a) xs =1, a (x-xs). And substituting a solvable atom into itself results
in a trivial atom: solvabley eq = trivial (substy eq eq).

Now we can define a lifting function that takes a quantifier elimination procedure ge
on lists of atoms and extends it to lists containing trivial atoms (by filtering them out) and
solvable atoms (by substituting them in):

lift-eq-qe qe as =
(let as = [a—as. — trivial a]
in case [a<as. solvableg a] of
[= geas
| eq - eqs = (let ineqs = [a—as. — solvabley a
in list-conj (map (A o substg eq) (eqs @ inegs))))

3.5 Correctness

Correctness of these lifting functions is roughly expressed as follows: if ge eliminates one
existential while preserving the interpretation, then /ift ge eliminates all quantifiers while
preserving the interpretation.

For compactness we employ a set theoretic language for expressing properties of func-
tions: A — B is the set of functions from A to B. Note that sets and predicates are identified
in HOL.

First we look at lift-nnf-qge. Elimination of all quantifiers is easy:

Lemma 1 [f ge € ngfree — gfree then gfree (lift-nnf-ge ge Q).
Preservation of the interpretation is slightly more involved:

Lemma 2 [f ge € ngfree — gfree and ¥ @€ngfree. Vxs. I (ge @) xs = (3x. [¢ (x-xs))
then I (lift-nnf-ge ge @) xs =1 @ xs.

For lift-dnf-qe the statements are a bit more involved, but essentially analogous to those
for lift-nnf-qge. The only difference is that ge applies to lists of atoms as instead of a formula
¢. Function lists yields the set of lists over a given set.

Lemma 3 [f ge € lists dependsy — qgfree then gfree (lift-dnf-qe qe @).

Lemma 4 If ge € lists dependsy — qfree and ¥ as€< lists dependsy. is-dnf-ge ge as, then
I (lift-dnf-ge qe @) xs = I @ xs.

where is-dnf-ge ge as = Vxs. I (ge as) xs = (Ix. Va€Eset as. I, a (x-xs)). The right-hand
side is equal to Jx. I (list-conj (map A as)) (x-xs).

Finally we consider the extension to equality. From the assumptions of locale ATOM-EQ
it is not hard to prove that if ge performs quantifier elimination on any list of unsolvable
atoms depending on variable 0, then lift-eq-qge ge is a quantifier elimination procedure on
any list of atoms depending on 0:

Lemma 5 [f Vas € list(dependsy N —solvabley). is-dnf-qe ge as then
Yas € list dependsy. is-dnf-ge (lift-eq-qe ge) as.

In our instantiations, the unsolvable atoms will be the inequalities (<) and ge will only need
to deal with them; = is taken care of completely by this lifting process.
Finally we compose lift-dnf-qge and lift-eq-qe

lift-dnfeq-qe = lift-dnf-qe o lift-eq-qe
and obtain a corollary to lemmas 4 and 5:

Corollary 1 If ge € lists dependsy — qfree and Yas € lists(dependsy N —solvabley).
is-dnf-qe qe as then I (lift-dnfeq-qe ge @) xs =1 @ xs.

In the same manner we obtain
Corollary 2 If ge € list dependsy — gfree then gfree (lift-dnfeq-ge ge @).

All proofs in this subsection are straightforward inductions using a number of simple
additional lemmas.

In the following sections we define a number of quantifier elimination functions called
ge-fi (for different names f) that eliminate a single 3. In each case

— we have proved that ge-f] satisfies the assumptions of lemmas 1 and 2 (or lemmas 3 and
4, or corollaries 1 and 2), with ge-f] for ge,

— we define ge-f = lift-nnf-qe ge-f (or via lift-dnf-qe, or via lift-dnfeq-qe),

— we obtain gfree (ge-f @) and I (ge-f @) xs = I @ xs as corollaries of the above lemmas
and corollaries.

Because of this uniformity and because the correctness proofs are either discussed infor-
mally beforehand or are well-known from the literature, we suppress all of this in the pre-
sentation. Thus it may look as if we merely present code, but the proofs are all there.

4 Dense Linear Orders

The theory of dense linear orders (without endpoints) is an extension of the theory of linear
orders with the axioms

x<z=3dy.x<yNy<z Ju.x<u dl.l<x

It is the canonical example of quantifier elimination [14]. The equivalence (Jy. x <y Ay <
z) = (x < z) is an easy consequence of the axioms and the essence of Fourier’s elimination
method. It generalizes to arbitrary conjunctions of inequalities containing the quantified
variable: partition the inequalities into those of the form /; < x and those of the form x < u;
and combine all pairs:

(Hx. (/\li<x)A(/\x<uj)) = (Ali<uj) 2)
i j ij

We formalize this DNF-based (and thus non-elementary) quantifier elimination procedure
in §4.2.

More interesting are two new NNF-based algorithms developed in §4.3-4.5. They are
based on the test point method (originally due to Cooper [5] and Ferrante and Rackoff [8]
and later generalized by Weispfenning [26]). The idea is to find a finite set of test points T
(depending on @) such that (3x. @(x)) = (V,er @(¢)). The complication is that (conceptu-
ally) T may contain values like infinity, infinitesimals or intermediate points, values that are
not representable in the given term language. The challenge is to define special versions of
substitution for these values.

4.1 Atoms

There are just the two relations < and = and no function symbols. Thus atomic formulae
can be represented by the following datatype:

datatype atom = nat < nat | nat = nat

Note the bold infix constructors < and =. Because there are no function symbols, the argu-
ments of the relations must be variables. For example, i < j represents the atom x; < x; in
de Bruijn notation.

Now we can instantiate locale ATOM. Type parameter o becomes type atom. The inter-
pretation function /, becomes /;;, where

Idlo (i =]) X§ = (JCS[,-] = XSU])

Lyto (i <) xs = (xs < xs}j)
The notation xsj;; means selection of the ith element of xs. The type of 14, is explicitly
restricted such that xs must be a list of elements over a dense linear order, where the latter

is formalized as a type class [11] with the axioms shown at the start of this section. Thus all
valuations in this section are over dense linear orders. Parameter aneg becomes neg;;,:

negaio (i <j)=(A(j<i) VA (i=]))
negaio (i=j) = (A (i <j) VA (j <i))
The parameters adepends and adecr are instantiated with depends;;, and decrg;,:
dependsqi, (i=j)=({=0Vj=0)
dependsg, (i<j)=(i=0Vj=0)
decrd,,,(i<j):(if]<jf])
decrgi, (i=j)=(—-1=j—1)

This instantiation satisfies all the axioms of ATOM.

4.2 DNF-Based Quantifier Elimination

First we consider the special case of a list (conjunction) of < atoms as. We may assume they
all depend on variable 0, the variable to be eliminated:

ge-dloy as =
(if (0 < 0) € set as then L else
let Ibs = [i. (Suc i < 0) < as];
ubs = [j. (0 < Suc j) < as];
pairs = [A(i < j). i < Ibs, j < ubs]
in list-conj pairs)

10

This is an executable version of (2), except that we also take care of the unsatisfiable atom
xo < xp and we decrement the variables to compensate for the eliminated quantifier. Instead
of detecting only the contradiction xg < xo one could (and should) return L upon finding
any x; < X;.

The extension with equality is provided by instantiating ATOM-EQ (see §3.4.2): solv-
abley becomes A(i = j) = i=0 V j=0 | a = False," trivial becomes A(i = j) = i=j | a =
False and subst is defined as follows:

substy (i =j) (m < n) = (subst i jm < substijn)

substy (i =j) (m = n) = (subst i j m = substijn)

substijk = (ifk =0 then ifi = 0 thenj elsei else k) — 1
Discharging the assumptions of ATOM-EQ is straightforward.

4.3 The Interior Point Method

Ferrante and Rackoff [8] realized (for linear real arithmetic) that when eliminating x from ¢
it (essentially) suffices to collect all lower bounds / of x (i.e. [< x occurs in ¢) and all upper
bounds # of x (i.e. x < u occurs in ¢) and try all such (I +u)/2 as test points. This method
is implemented in §5.3.

Now we present a novel quantifier elimination method for DLOs based on Ferrante and
Rackoff’s idea. The problem with DLOs is that one cannot name any point between two
variables x and y. Hence a special form of substitution must be defined that behaves as if
some intermediate point was substituted without requiring such a point. We use the symbolic
notation x|y to denote some arbitrary but fixed point in the interval (x,y). Substitution with
x]y is defined as follows:

(xly<z) =<2 (xly=z) = False
(z<xly) =(z<x) (z=xly) = False
(xly < xly) = False (xly=xly) = True

Note that x|y = z is false because we can always choose x|y to be different from z. Note
also that these definitions only work as expected if x < y.

We also need the fictitious values —eo and oo first used by Cooper. Then we can formu-
late the interior point method as a logical equivalence in test point form, where ¢ must be
quantifier-free and in NNF:

(Fr. 9(x)) = (9(==)Vo(=x)V \ o)V \ (<zA9(312)) (©)
yeE YEL,zeU
E is the set of y such that x =y or y = x occur in ¢ (x), L is the set of y such that y < x occurs
in ¢(x), U is the set of y such that x < y occurs in ¢ (x), where x is the bound variable and y
is different from x.
We sketch a proof of (3), details can be found in the Isabelle proof. The if-direction is
easy as in each case a witness is given. Except that —eo, co and y|z are not proper values.
But by induction on ¢ one can show that ¢ (—eo) etc imply ¢ (x) for suitable x:

IeVy <x. ¢(—o0) = d(y)
BVy > x. ¢(e0) = ¢ (v)
y<zA9(ylz) = Vx € (y,2). ¢(x)

! The notation A pat = e | ... is short for Av. casev ofpat = e

11

For the only-if-direction assume ¢ (x) and not ¢ (—o0) VV ¢ (c0) V Vg ¢(y). We have to show
that ¢(y|z) for some y € L and z € U. From the assumptions it follows by induction on ¢
that there must be yg € L and 79 € U such that x € (y,z0). Now we show (by induction on
¢) the lemma that innermost intervals (y,z) completely satisfy ¢:

Lemma 6 Ifx € (y,2), x ¢ E, (y,x) NL =0 and (x,z) NU = 0, then ¢(x) implies that
Vu € (v,2). ¢(u).

Given x € (yo,20) we define y =max{y € L | y <x} and z=min{z € U | x < z}. It is easy
to see that this satisfies the premises of the lemma and hence Vu € (y,z). ¢ (u). Again by
induction on ¢ one can show that this actually implies ¢ (y|z):

Lemma7 [fx € (y,z), x¢E, (y,x)NL=0and (x,z) NU = 0, then Vx € (y,z). ¢(x) implies
¢(vl2).

4.4 A Verified Implementation of the Interior Point Method

The executable version of (3) is short

ge-interiory ¢ =

(let as = atomsy @; Ibs = lbounds as; ubs = ubounds as; ebs = ebounds as;
intrs = [A(l < u) A (substy lu @). l—Ibs, u—ubs]

in list-disj (inf— @ - inf4 @ - intrs @ map (subst @) ebs))

but requires some auxiliary functions:
The implementation of substituting /|« in atoms is given below. Please note that substi-
tution must not just substitute for variable O but must also decrement the other variables.

asubsty [u (0 < 0) =1

asubsty L u (0 < Suc j) =AWu<j)VA (u=j)
asubsty Lu (Suci < 0) =A(<)VA(i=]
asubsty Lu (Suc i < Sucj) = A (i <}j)

asubsty lu (0 =0) =T

asubsty lu (0= Sucv) = 1

asubsty L u (Sucv =0) = 1

asubsty lu (Suci= Sucj) = A (i=}))

From atoms to formulae is a short step: substy l u ¢ = amapyy, (asubsty L u) @
Plain old substitution of a variable k for O is defined first on variables, then on atoms and
finally on formulae:

isubstk 0=k
isubst k (Suc i) =i

asubst k (i < j) = (isubst k i < isubst k j)
asubst k (i = j) = (isubst k i = isubst k j)

subst @ k = mapy;, (asubst k) ¢

Substituting —oo for 0 is implemented by amin-inf and inf _:

amin-inf (- < 0) =
amin-inf (0 < Suc _) =
amin-inf (Suci < Sucj) = A (i <})
amin-inf (0 =0) =

amin-inf (0 = Suc _) =

amin-inf (Suc - = 0) =
amin-inf (Suci= Sucj) = A (i=})

inf_ @ = amapy, amin-inf @

e

Dually there is inf for substituting oo. Lower bounds, upper bounds and equalities are
conveniently collected from a list of atoms by list comprehension:

Ibounds as = [i. (Suc i < 0) — as]
ubounds as = [i. (0 < Suc i) < as]
ebounds as = [i. (Suc i = 0) < as] @ [i. (0 = Suc i) < as]

4.5 The Method of Infinitesimals

Loos and Weispfenning [15] proposed a quantifier elimination procedure for linear real arith-
metic (see §5.4) where test points are x + € (for x a lower bound) or y — € (for y an upper
bound) where € is an infinitesimal. That is, the test points are arbitrarily close to the lower
or upper bounds of the eliminated variable. In particular, it is not necessary to pair all lower
and upper bounds but one can choose either set, typically the smaller one. For succinctness
we ignore this duality and concentrate on the lower bounds only.

In this section we adapt the idea of infinitesimals to derive a new quantifier elimination
procedure for DLOs. We merely need to explain what substitution of x 4 € means:

(x+e<y) =(x<y) (x+e=y) = False
(y<x+e€) = (y<x) (y=x+¢) = False
(x+&<x+¢g) = False (x+e=x+¢€) =True

where x and y are different variables.
The test point method with infinitesimals is justified by the following equivalence,
where, as usual, ¢ is quantifier free and in NNF:

(T 9(x) = (9(==)V \/ o)V 9(v+e)) 4

YEE yeEL

where E and L are defined as in (3). The proof is also similar. The main differences are: For
the if-direction we need to show (by induction on @) that y + € represents a proper witness:

P(y+e) = >y Vxe (1)) o(x)
The two lemmas for the only-if-direction become
Lemma8 [fy<x x¢E, (y,x)NL=0and ¢(x), then Vu € (y,x]. ¢ (u).
Lemma9 [fy<x x¢E, (y,x) NL=0andu € (y,x]. ¢(u), then ¢ (y+¢).

Our verified implementation of (4)

ge-eps) @ = (let as = atomsy @; lbs = Ibounds as; ebs = ebounds as
in list-disj (inf — @ - map (substy @) lbs @ map (subst @) ebs))

requires only one new concept, subst. ¢ y, the substitution ¢ (y + €):

asubsty k (0 < 0) =1

asubsty k (0 < Suc j) = A (k<))

asubsty k (Suc i < 0) = ifi=kthenT elseA (i<k)VA (i=k)
asubsty k (Suci < Sucj) = A (i <}j)

asubst; k (0= 0) =T

asubst; k (0 = Suc _) =1

asubst k (Suc = 0) =1

asubsty k (Suc i = Sucj) = A (i =))
substy. @ k = amapg, (asubst; k) ¢

4.6 Complexity

We analyze the complexity of the interior point and the infinitesimal method. A formula of
size n can contain at most n variables. The set of variables decreases by one in each step. In
the worst case all of them are bound and need to be eliminated. In each step of the quantifier
elimination processes (3) and (4) the sets E, L and U are at most as large as k, the current
number of variables.

The interior point method makes at most (k — 1) copies of the formula in each step.
Hence the size of the output formula and also the amount of working space required is
O(n-(n—1)%---12) = O(n- (n—1)!?). The method of infinitesimals, however, only makes at
most k— 1 copies, thus requiring only O(n-(n—1)--- 1) = O(n!) space. The time complexity
of both algorithms is linear in their space complexity, i.e. time and space coincide.

5 Linear Real Arithmetic

Linear real arithmetic is concerned with terms built up from variables, constants, addition,
and multiplication with constants. Relations between such terms can be put into a normal
form r < co * xo + - - - cp % X, With 1 € {=,<} and r,cp,...,c, € R. It is this normal form
we work with in this section. Note that although we phrase everything in terms of the real
numbers, the rational numbers work just as well. In fact, any ordered, divisible, torsion free,
Abelian group will do.

We present verified implementations of three quantifier elimination procedures due to
Fourier [9], Ferrante and Rackoff [8] and Loos and Weispfenning [15].

5.1 Atoms

Type atom formalizes the normal forms explained above:
datatype atom = real < (real list) | real = (real list)

The second constructor argument is the list of coefficients [co,...,c,] of the variables O to
n — remember de Bruijn! Coefficient lists should be viewed as vectors and we define the
usual vector operations on them:

X *g xs is the componentwise multiplication of a scalar x with a vector xs.

14

xs + ys and xs — ys are componentwise addition and subtraction of vectors.
(xs,ys) = (¥ (x,y) < zip xs ys. xxy) is the inner product of two vectors, i.e. the sum over
the componentwise products.

If the two vectors involved in an operation are of different length, the shorter one is padded
with Os (as in Obua’s treatment of matrices [24]). Although only the set of vectors of the
same length form a vector space, we can prove all the algebraic properties we need, for
example (xs + ys,zs) = (xs,z5) + (s,25).

Now we instantiate locale ATOM just like for DLO in §4.1. The main function is the
interpretation I of atoms, which is straightforward:

Ig (r<ecs)xs=(r<{cszxs))
Ig (r=cs)xs = (r = (cs,xs))

5.2 Fourier-Motzkin Elimination

Fourier-Motzkin Elimination is a procedure discovered by Fourier [9]. Motzkin [19] (but
also Farkas [7]) cited Fourier but were concerned with the algebraic background, not the
algorithm. You put the formula into DNF and for each conjunct the inequalities are split into
those of the form / < x and those of the form x < u, and then you “multiply out” exactly as
in (2) for DLOs. Except that one has to transform the inequalities into the form / < x and
x < u explicitly and the / and u can be proper terms, not just variables.

Quantifier elimination for the special case of a list of < atoms as, all of which depend
on variable 0, is a one-liner

ge-liny as = list-conj [A(combine p q). p—lbounds as, g—ubounds as]

where [bounds and ubounds select the inequalities where variable O has respectively a posi-
tive and a negative coefficient

Ibounds as = [(r/c, (—1/c) x5 cs). (r < c-cs) < as, ¢>0]
ubounds as = [(r/c, (—1/c) *5 ¢s). (r < c-cs) < as, c<0)

and they are combined as explained above:
combine (ry, csy) (ra, cs2) = (r1 — rp < csy — csy)

Instead of transforming the inequalities into / < x and x < u by dividing by the coefficient
of x one can combine r| < cjx+1¢ and r, < cox+1 into ¢1rp — cary < c1tp — ¢ty provided
c1 >0, ¢3 <0, and x does not occur in the ¢;.

The extension with equality is provided by instantiating ATOM-EQ (see §3.4.2, and see
earlier footnote for A-notation): solvable is any = atom whose head coefficient is nonzero
(A(r = c-cs) = ¢ # 0| a = False), trivial is any = atome where both sides are zero
A(r=-cs) = r=0A (Vc € set cs. ¢c=0) | a = False), and substy is defined as follows:

substy (r=c-cs) (s<d-ds)=(s—rxd/c<ds—(d/c)x*scs)
substy (r=c-cs) (s=d-ds)=(s—rxd/c=ds— (d/c)*scs)
5.3 Ferrante and Rackoff

Ferrante and Rackoff [8], inspired by Cooper [5], avoided DNF conversions by the test point
method explained in §4. We have already explained the key idea of Ferrante and Rackoff in

15

§4.3. If you replace y|z in (3) by (y+2z)/2 you almost obtain their algorithm. In principle
any point between y and z works but (y+z)/2 also takes care of equalities: they lump E, L
and U together (to be avoided in an implementation) but because (y+y)/2 =y this recovers
E. As their algorithm is well-known, we present its optimized and verified implementation
right away:

qe-FR) ¢ =

(let as = atomsy @; Ibs = lbounds as; ubs = ubounds as; ebs = ebounds @;

intrs = [subst ¢ (between lu) .l — Ibs, u < ubs];

in list-disj (inf — @ - inf 4 @ - intrs @ map (subst @) ebs))
Except for the definition of intrs this looks identical to the definition of ge-interior; in §4.4.
However, all auxiliary functions are different: they operate on pairs (r, ¢s) which, under a
valuation xs, represent the value r + (cs,xs). First the various bounds are extracted:

Ibounds as = [(r/c, (—1/c) 5 cs). (r < c-cs) < as, ¢>0]

ubounds as = [(r/c, (—1/c) x5 ¢s). (r < c-cs) <« as, c<0)

ebounds as = [(r/c, (—1/c) *g cs). (r = c-cs) < as, c¢#0]
The intermediate point between two such points is easy:

between (r, cs) (s, ds) = ((r+s) /2, (1] 2) %5 (cs + ds))
We also need both ordinary substitution of (r, ¢s) pairs

asubst (r,cs) (s < d-ds) = (s —d xr <d s cs + ds)

asubst (r,cs) (s=d-ds) = (s —d xr=d %5 cs + ds)

asubstrcsa=a

subst @ rcs = mapy, (asubst rcs) @
and substitution inf_ of —eo (and the analogous version inf ;. for co):

inf - (@1 A @2) = and (inf - @1) (inf - 92)

inf_ (@1 V @2) = or (inf— ¢1) (inf- ¢2)

inf- (A(r<c-cs))=(ifc<OthenT elseif0 < cthen L elseA (r < cs))

inf- (A(r=c-cs))=(ifc=0thenA (r=cs) else L)

inf_ @ =¢
This concludes the definition of the auxiliary functions.

5.4 Loos and Weispfenning

The method of infinitesimals described in §4.5 was inspired by the analogous method for
linear real arithmetic proposed by Loos and Weispfenning [15] who also showed practical
examples where it outperforms Ferrante and Rackoff. For a recent comparison of related
QEPs see [18]. Our implementation ge-eps; is textually identical to the one for DLOs in
§4.5. But the auxiliary functions differ. Luckily we have seen all of them already, except
subst

asubsty (r,cs) (s < d-ds) =

(ifd =0thenA (s < ds)

elseletu=s—dx*r,v=dx*scs+ds;lessa=A (u<v)
in ifd < O then lessa else lessa V A (u=v))
asubsty res (r=d-ds) = (ifd =0 then A (r = ds) else L)
asubsty rcsa=Aa

substy. @ rcs = amapyy, (asubst. rcs) @

16

6 Presburger Arithmetic

Presburger Arithmetic is linear integer arithmetic. Presburger [25] showed that this theory
has quantifier elimination. In contrast to linear real arithmetic we need an additional pred-
icate to obtain quantifier elimination: there is no quantifier-free equivalent of dx. x+x =y
if we restrict to linear arithmetic. The way out is to allow the divisibility predicate as well,
but only of the form d | ¢ where d is a constant. Now Jx. x4+ x =y is equivalent with 2 | x.
Alternatively one can introduce congruence relations s = ¢ (mod d) instead of divisibility.
On the other hand we do not need both < and = on the integers but can restrict our at-
tention to <. Thus we may assume all atoms are of the form i < kg *xp + - - - + ky, * X, or
d || i+ ko*xo+ - ky*x,, where || is | or {, and d,i,ko,...,k, € Z and d > 0. The negated
atom i £ j is equivalent with j+ 1 <.

6.1 Atoms

The above language of atoms is formalized as follows:
datatype atom = Le int (int list) | Dvd int int (int list) | NDvd int int (int list)

We have avoided infix constructors because they work less well for ternary operations.
Atoms are interpreted w.r.t. a list of variables as usual:

Iz (Le i ks) xs = (i < (ks,xs))
Iz (Dvddiks)xs=d | (i + (ks,xs))
Iz (NDvddiks)xs=(—d| (i + (ks,xs)))

Note that we reuse the polymorphic vector, i.e. list operations like {.,.) introduced for linear
real arithmetic: they are defined for arbitrary types with 0, + and .

The parameters of locale ATOM are instantiated as follows. The interpretation of atoms
is given by function Iz above, their negation by

negz (Leiks) =A (Le (1 — i) (— ks))
negz (Dvddiks)=A (NDvd d i ks)
negz (NDvd diks) =A (Dvd d i ks)

and their decrementation by

decrz (Leiks) = Le i (1l ks)
decrz (Dvd diks)=Dvdd i (tl ks)
decrz (NDvd d i ks) = NDvd d i (il ks)

where # is the tail of a list: #/ [| = [] and #/ (x-xs) = xs.
Parameter dependsg becomes Aa. hd-coeff a # 0 where

hd-coeff (Leiks) = (caseks of [| = 0| k-x = k)
hd-coeff (Dvd d i ks) = (caseks of [| = 0| k-x = k)
hd-coeff (NDvd d i ks) = (caseks of [| = 0| k-x = k)

There is a slight complication here: We want to exclude atoms of the form Dvd 0 i ks
and NDvd 0 i ks because they behave anomalously and the algorithms do not generate them
either. In order to restrict attention to a subset of atoms, locale ATOM in fact has another
parameter not mentioned so far: anormal :: @ = bool with the axioms

anormal a = Y b€atoms (aneg a). anormal b
- dependsy a =—> anormal a = anormal (decr a)

17

In words: negation and decrementation do not lead outside the normal atoms. With the help
of these axioms the following refined versions of lemmas 2 and 4 can be proved, where
normal @ = (Yacatoms @. anormal a):

Lemma 10 If ge € nqfree — qfree and ge € nqfree N normal — normal and ¥ ¢ Enormal
N ngfree. Vxs. I (ge @) xs = (3x. I @ (x-xs)), then normal @ implies I (lift-nnf-ge ge @) xs
=1 ¢ xs.

Lemma 11 If ge € lists dependsy — qfree and qe € lists (dependsy N anormal) —
normal and Yas € lists(dependsy N anormal). is-dnf-ge ge as, then normal @ implies

I (lift-dnf-qe qe @) xs =1 @ xs.

The analogous versions of lemmas 1 and 3 are straightforward and omitted.
For Presburger arithmetic, parameter anormal becomes Aa. divisor a # 0 where

divisor (Le i ks) =1
divisor (Dvd d i ks) =d
divisor (NDvd diks) =d

6.2 DNF-based Algorithm

The algorithm we are going to describe differs from Presburger’s original algorithm because
that one covers only = (and congruence) — Presburger merely states that it can be extended
to <. Our algorithm resembles Enderton’s version [6], except that the main case split is
different: Enderton distinguishes if there are congruences or not, we distinguish if there are
lower bounds or not.

Input to the algorithm is P(x), a conjunction of atoms, all depending on x. The algorithm
consists of the following two steps:

1. Set all coefficients of x to the positive least common multiple (Icm) m of all coefficients
of x in P(x). Call the result Q(m *x). Let R(x) = Q(x) Am | x.

2. Let 6 be the lem of all divisors d in R(x) and let L be the set of lower bounds for x in
R(x). If L # 0 then return \/,cr R(t) where T = {I+n |l € LANO<n < 8}.IfL=0
return \/,cy R'(¢) where R’ is R without <-atoms and 7 = {n | 0 <n < 6}.

As usual, upper bounds work just as well as lower bounds.

For example, if P(x) = (I < 2xA3x < u), then Q(6*x) = (31 < 6xA6x < 2u), R(x) =
(31 <xAx <2uN6|x), and the result is Vo<, R(3]+n).

The first step of the algorithm is clearly equivalence preserving. Now we have a con-
junction R(x) of atoms where x has coefficient 1 everywhere. Equivalence preservation of
the second step is proved in both directions separately as follows.

First we assume the returned formula and show R(r) for some ¢. If L # @ then R(¢)
for some ¢t € T and we are done. Now assume L = (). By assumption there must be some
0 < n < & such that R'(n). If there are no upper bounds for x in R(x) either, then R(x) contains
no <-atoms, R’ = R, and hence R(n). Otherwise let U be the set of all upper bounds of x
in R(x), let m be the minimum of U and let t =n — ((n —m)divd + 1)§. We show R(z).
From R'(n) and the definition of R" and ¢, R'(¢) follows. All <-atoms must be upper bound
constraints x < u and hence m < u. Because (n —m)mod § < 6 we obtain t < m < u. Thus
t satisfies all <-atoms, and hence R(¢).

Now assume that R(z) for some z. In this direction it is important to note that (non)divisi-
bility atoms a(x) are cyclic in their divisor d, i.e. a(x) is equivalent with a(xmod d) because

18

the coefficient of x is 1. This carries over to any multiple of d, in particular 6. If L =0
we obtain R'(zmod &) with 0 < zmod & < & as required because R'(x) consists only of
(non)divisibility atoms. If L # @ we show R(¢) where r = m + n where m is the maximum of
L and n = (z—m)mod 8. Let a(x) be some atom in R(x). If a is a lower bound atom for x,
a(t) follows because ¢ > m and m is the maximum of L. If a is an upper bound atom for x,
a(r) follows because 7 < z and a(z). If a is a (non)divisibility atom, a(z) follows from a(z)
because 1 mod 6 = zmod d.

6.3 Formalization

First, head coefficients are set to 1 or -1 (-1 is needed because variables may only appear on
the lhs of <). This is achieved by multiplying each atom a with m/k, where m is the lcm of
all head coefficients and k& is a’s head coefficient (assuming k > 0 for simplicity).

hd-coeffl m (Le i (k-ks)) =
(ifk=0thenLei (k-ks)
else let m' = m div |k| in Le (m’ x i) (sgn k-m’ %, ks))

hd-coeffl m (Dvd d i (k-ks)) =
(ifk=0thenDvd d i (k-ks)
else letm'=m div k in Dvd (m' * d) (m’ % i) (1-m’ %, ks))

(/
hd-coeffl m (NDvd d i (k-ks)) =
(ifk =0 then NDvd d i (k-ks)

else let m' = m div k in NDvd (m’ x d) (m’ * i) (1-m’ * ks))

hd-coeffl ma = a
sgni= (ifi=0 then 0 else if0 < ithenl else — I)

Note that hd-coeff] is well-defined even if the head coefficient is 0. The DNF-based quan-
tifier elimination framework guarantees that all atoms under consideration have non-0 head
coefficients, but below we reuse hd-coeffI in a context where this is not the case.

Function hd-coeffs1 sets the head coefficients of a list of atoms as to 1 or -1 and adds
the divisibility constraint m | xo:

hd-coeffsl as =
(let m = zlems (map hd-coeff as) in Dvd m 0 [1]-map (hd-coeffl m) as)

Remember that hd-coeff extracts the head coefficient from an atom (see §6.1); zlcms com-
putes the positive lcm of a list of integers.
We prove that hd-coeffs1 leaves the interpretation unchanged in the following sense:

Lemma 12 [f Va€set as. hd-coeff a # 0 then I (3 (list-conj (map A (hd-coeffsl as)))) =
I (3 (list-conj (map A as))).

In the second step, quantifier elimination is performed:

ge-pres| as =
(let ds = [a—as. is-dvd a]; d = zlems(map divisor ds); s = lbounds as
in ifls = ||
then Disj [0..d—1] (An. list-conj(map (A o asubst n []) ds))
else Disj Is (A (i,ks).
Disj [0..d—1] (An. list-conj(map (A o asubst (i+n) (—ks)) as))))

19

where is-dvd a is true iff a is of the form Dvd or NDvd, and lbounds collects the lower
bounds for variable 0

Ibounds as = [(i,ks). Le i (k-ks) — as, k>0)
and asubst performs substitution for variable 0:
asubsti'ks' (Le i (k-ks)) = Le (i — ki) (ks ks’ + ks)
asubsti'ks' (Dvd d i (k-ks)) = Dvdd (i + k xi’) (k *; ks'+ ks)
asubst i" ks’ (NDvd d i (k-ks)) = NDvd d (i + k * i’) (k *g ks’ + ks)
asubst i' ks’ a =a
The following lemma shows precisely in which sense asubst is substitution:
Iz (asubstiks a) xs =1z a ((i + (ks,xs)) - xs)
The actual quantifier elimination procedure is the lifted composition of the two basic steps:
ge-pres = lift-dnf-ge (qe-pres) o hd-coeffsI)

The correctness proof of ge-pres; o hd-coeffsl was given in the previous subsection. In
order to apply lemma 11 we also need to show that the algorithm preseves normality of
atoms, which is straightforward but tedious and hence omitted.

6.4 Cooper’s Algorithm

Cooper’s algorithm relies on Cooper’s theorem [5] which holds provided all coefficients of
xin ¢(x) are 1 or -1 (or 0):

o) =V o=(DVV V o0+))
)

je0,8—1 yeL je(0,6—1)

where 8 is the lem of all d such that d |t or d tf occurs in ¢(x) and ¢ contains x, L is the set
of lower bounds for x in ¢ (x), and ¢_.(j) is ¢(x) where x has been replaced by —oo in all
inequations and by j in all other atoms.

We start by setting all head coefficients to 1 or -1 (or leaving them at 0):

hd-coeffs] ¢ =
(let m = zilcms (map hd-coeff (atomsy @))
inA (Dvdm 0 [1]) A mapg, (hd-coeffl m) @)

This function supersedes its namesake in the previous subsection defined on lists of atoms.
Remember that atoms is the set of atoms that depend on variable 0, i.e. whose head coeffi-
cient is non-0.

Now we start to implement Cooper’s theorem. The substitution ¢_ () is implemented
by the composition of

inf— (91 A @2) = and (inf - ¢1) (inf— ¢2)
inf_ (@1 V @2) = or (inf_ ¢1) (inf - ¢2)
inf_ (A (Lei (k-ks))) = (ifk < Othen T else if 0 < k then L else A (Le i (0-ks)))

inf_ @ =¢
and ordinary substitution:

subst i ks ¢ = mapy, (asubst i ks) ¢

20

The right-hand side of Cooper’s theorem now becomes executable:

ge-cooper| @ =
(let as = atomsy @; d = zlcms(map divisor as);
Ibs = [(i,ks). Le i (k-ks) — as, k>0]
in or (Disj [0..d — 1] (An. subst n || (inf— @)))
(Disj Ibs (A(i,ks). Disj [0..d — 1] (An. subst (i + n) (—ks) ¢))))

The two phases of Cooper’s algorithm are simply composed and lifted:
ge-cooper = lift-nnf-ge (ge-cooper; o hd-coeffsI)

Our formal correctness proof follows the literature.

7 Related work

The literature on decision procedures for linear arithmetic is vast. We concentrate on for-
mally verified algorithms.

This paper is a revised combination of [20] and [21], which concentrate on NNF-based
and DNF-based algorithms, respectively. It is an outgrowth of the work by Chaieb and Nip-
kow [4] who present a reflective implementations of Cooper’s algorithm. They lack the
generic framework and they use special purpose data structures for terms instead of relying
on lists as we do. As a result some of their functions are more complicated than ours and
theorems and proofs are littered with linearity assumptions that are implicit in our list rep-
resentation. Hence they can only present part of their implementation. Chaieb [3] presents a
verified combination of Ferrante-Rackoff and Cooper.

Norrish [23] was the first to implement a proof-producing version of Cooper’s algorithm
in a theorem prover. Similar implementation of QE for complex numbers and for real closed
fields are reported by Harrison [12] and McLaughlin [17]. The CAD QE procedure for real
closed fields has been reflected and partly verified by Mahboubi [16].

Acknowledgment Amine Chaieb introduced me to QE and alerted me to the infinitesimal
approach [15]. He and Jeremy Avigad discussed the material with me extensively. John
Harrison’s anonymous comments helped to improve the presentation.

References

1. Clemens Ballarin. Interpretation of locales in Isabelle: Theories and proof contexts. In J. Borwein
and W. Farmer, editors, Mathematical Knowledge Management, volume 4108 of LNCS, pages 31-43.
Springer, 2006.

2. Robert S. Boyer and J Strother Moore. Metafunctions: proving them correct and using them efficiently as
new proof procedures. In R. Boyer and J Moore, editors, The Correctness Problem in Computer Science,
pages 103-184. Academic Press, 1981.

3. Amine Chaieb. Verifying mixed real-integer quantifier elimination. In U. Furbach and N. Shankar,
editors, Automated Reasoning (IJCAR 2006), volume 4130 of LNCS, pages 528-540. Springer, 2006.

4. Amine Chaieb and Tobias Nipkow. Verifying and reflecting quantifier elimination for Presburger arith-
metic. In G. Stutcliffe and A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR 2005), volume 3835 of LNCS, pages 367-380. Springer, 2005.

5. D.C. Cooper. Theorem proving in arithmetic without multiplication. In B. Meltzer and D. Michie,
editors, Machine Intelligence, volume 7, pages 91-100. Edinburgh University Press, 1972.

6. Herbert Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

21

10.
11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

24.

25.

26.

. Julius Farkas. Theorie der einfachen Ungleichungen. Journal fiir die reine und angewandte Mathematik,

124:1-27, 1902.

. Jeanne Ferrante and Charles Rackoff. A decision procedure for the first order theory of real addition

with order. SIAM J. Computing, 4:69-76, 1975.

. Jean Baptiste Joseph Fourier. Solution d’une question particuliére du calcul des inégalités. In Gaston

Darboux, editor, Joseph Fourier - Euvres complétes, volume 2, pages 317-328. Gauthier-Villars, 1888—
1890.

Georges Gonthier. Formal proof—the four-colour theorem. Notices of the AMS, 55:1382-1393, 2008.
Florian Haftmann and Makarius Wenzel. Constructive type classes in Isabelle. In Th. Altenkirch and
C. McBride, editors, Types for Proofs and Programs (TYPES 2006), volume 4502 of LNCS, pages 160—
174. Springer, 2007.

John Harrison. Complex quantifier elimination in HOL. In R. Boulton and P. Jackson, editors, TPHOLs
2001: Supplemental Proceedings, pages 159—174. Division of Informatics, University of Edinburgh,
2001.

John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press,
20009.

C.H. Langford. Some theorems on deducibility. Annals of Mathematics (2nd Series), 28:16—40, 1927.
Riidiger Loos and Volker Weispfenning. Applying linear quantifier elimination. The Computer Journal,
36:450-462, 1993.

Assia Mahboubi. Contributions a la certification des calculs sur R : théorie, preuves, programmation.
PhD thesis, Université de Nice, 2006.

Sean McLaughlin and John Harrison. A proof-producing decision procedure for real arithmetic. In
R. Nieuwenhuis, editor, Automated Deduction — CADE-20, volume 3632 of LNCS, pages 295-314.
Springer, 2005.

David Monniaux. A quantifier elimination algorithm for linear real arithmetic. In Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR 2008), volume 5330 of LNCS, pages 243-257.
Springer, 2008.

Theodor Motzkin. Beitrige zur Theorie der linearen Ungleichungen. PhD thesis, Universitit Basel,
1936.

Tobias Nipkow. Linear quantifier elimination. In A. Armando, P. Baumgartner, and G. Dowek, editors,
Automated Reasoning (IJCAR 2008), volume 5195 of LNCS, pages 18-33. Springer, 2008.

Tobias Nipkow. Reflecting quantifier elimination for linear arithmetic. In O. Grumberg, T. Nipkow, and
C. Pfaller, editors, Formal Logical Methods for System Security and Correctness, pages 245-266. 10S
Press, 2008.

Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, volume 2283 of LNCS. Springer, 2002.

. Michael Norrish. Complete integer decision procedures as derived rules in HOL. In D. Basin and

B. Wolff, editors, Theorem Proving in Higher Order Logics, TPHOLs 2003, volume 2758 of LNCS,
pages 71-86. Springer, 2003.

Steven Obua. Proving bounds for real linear programs in Isabelle/HOL. In J. Hurd, editor, Theorem
Proving in Higher Order Logics (TPHOLs 2005), volume 3603 of LNCS, pages 227-244. Springer,
2005.

Mojzesz Presburger. Uber die Vollstindigkeit eines gewissen Systems der Arithmetik ganzer Zahlen,
in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du I Congres de
Mathématiciens des Pays Slaves, pages 92—101, 1929.

Volker Weispfenning. The complexity of linear problems in fields. J. Symbolic Computation, 5:3-217,
1988.

	Introduction
	Basic Notation
	Logic
	Dense Linear Orders
	Linear Real Arithmetic
	Presburger Arithmetic
	Related work

