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Abstract We describe and verify an elegant equivalence checker for regular expres-

sions. It works by constructing a bisimulation relation between (derivatives of) regular

expressions. By mapping regular expressions to binary relations, an automatic and

complete proof method for (in)equalities of binary relations over union, composition

and (reflexive) transitive closure is obtained.

1 Introduction

The equational theory of regular expressions is convenient for reasoning about binary

relations. For example, the theories of Thiemann and Sternagel [9] contain the lemma

S ◦ (S ◦ S∗ ◦ R∗ ∪ R∗) ⊆ S ◦ S∗ ◦ R∗,

followed by a long-winded low-level proof. Here, R and S are binary relations, ◦ is re-

lation composition and ∗ is the reflexive transitive closure. However, this is just an in-

equality of regular expressions (interpreted over relations instead of regular languages),

which is a decidable theory.

The purpose of this article is to a verify a simple decision procedure for regular

expression equivalences, and to show how to reduce equations between binary relations

to equations over languages. Put together, this yields an automatic proof procedure for

relation algebra equalities (and inequalities, since A ⊆ B is equivalent to A ∪ B = B)

that proves statements like the one above automatically. We formalized and verified

the procedure in the theorem prover Isabelle/HOL.

The standard theory to achive the above goes like this.

1. Convert both regular expressions into finite automata.

2. Make the automata deterministic, and possibly minimize them, and then compare

them for language equality.

This proves that the two expressions denote the same regular language. Due to Kozen’s

theorem [5], the equality must then be a theorem in all Kleene Algebras, since regular

languages are the initial model of Kleene Algebras. Thus, to apply the procedure to

relations, one can
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3. Formalize Kozen’s theorem.

4. Prove that relations are Kleene Algebras.

This is the path followed by Braibant and Pous [2], who also motivate their work by

proofs in relation algebra. However, formalizing Kozen’s theorem is not easy—the proof

amounts to replaying the well-known automaton constructions in an algebraic setting,

using matrices. Moreover, the automata theory needed for steps 1 and 2 does not come

for free either.

This inspired us to look for a more direct approach to achieve the same goal. The

approach involves “derivatives” and does not need automata or matrices. We do not

cover the general case of arbitrary Kleene algebras, since the main practical application

are proofs about relations. For this application, our 750 line development [6] offers a

low-cost and elegant alternative to the 19 000 line development by Braibant and Pous

at http://sardes.inrialpes.fr/∼braibant/atbr/.

1.1 Equivalence Checking with Derivatives

In 1964, Brzozowski [3] showed how to convert a regular expression directly into a

deterministic automaton whose states are derivatives of the intitial expression. The

derivative Da(r) of a regular expression r w.r.t. a symbol a is a regular expression that

describes the language of all words w for which aw is in the language of r. That is,

Da(r) is what is left of r after an initial a, which corresponds to an a-transition from

a “state” r to a “next state” Da(r). The derivative of a regular expression is easy to

compute recursively (see Sect. 3).

This yields a procedure for building up the automaton transition by transition until

we reach a closure. This happens after finitely many steps because Brzozowski showed

that modulo associativity, commutativity and idempotence of + there are only finitely

many iterated derivatives reachable from any given r.

Owens et al. [7] have implemented Brzozowski’s algorithm in functional languages.

They write

Regular expression derivatives have been lost in the sands of time

because standard textbooks do not refer to them. However, researchers do, for example

Rutten [8]. He informally describes a neat algorithm for deciding equivalence of regular

expressions r and s: incrementally construct the relation of all (Dw(r), Dw(s)) between

the two state spaces, where Dw(r) are iterated derivatives of r, and w is extended

symbol by symbol. This process enumerates all pairs of states that must behave the

same w.r.t. acceptance of input words, provided r and s are equivalent. The process

must terminate by the above finiteness argument. It must either terminate with a

bisimulation relation (in which case r and s are equivalent) or it must find a pair

(r′, s′) where one of them is a final state while the other is not.

1.2 Overview

For the sake of minimality we concentrate on proving equivalence (When did you

last want to prove r 6≡ s?) and verify partial correctness. Proving termination and

completeness belongs in the realm of meta-theory and is not required to obtain actual

equivalence proofs — it merely lets you sleep better.

http://sardes.inrialpes.fr/~braibant/atbr/
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We first introduce the basics of regular languages and expressions (§§2–3). After

introducing some normalization functions and the derivative operation itself (§4), we

define bisimulations (§5) and an algorithm that computes them (§6). §7 combines the

parts to an equivalence checker. The bridge from regular languages to relations is made

in §8, which finally introduces our new proof method regexp.

All definitions and lemmas in this paper are direct renderings of their formal coun-

terparts in Isabelle/HOL. We sometimes give informal proof sketches to help intuition;

the full proofs can be found online [6].

2 Languages

Languages are sets of words, and words are lists of atoms (characters). The empty

list is denoted by [ ], adding an element x to the front of a list xs is written x :xs,

and concatenation of two lists is written xs @ ys. Thus, [ ] replaces the symbol ε that

textbooks often use for the empty word. Lists denoting words are written using the

variables v, w instead of xs, ys.

On languages, the operations of concatenation (@@), power (An) and Kleene star

are defined in the usual manner:

A @@ B = {v @ w | v ∈ A ∧ w ∈ B}

A0 = {[ ]}
An+1 = A @@ An

A∗ = (
S

n An)

In addition we have the derivative operation w.r.t. a single character a:

deriv a L = {w | a:w ∈ L}

Derivation obeys the following lemmas:

deriv a ∅ = ∅
deriv a {[ ]} = ∅
deriv a {[b]} = (if a = b then {[ ]} else ∅)
deriv a (A ∪ B) = deriv a A ∪ deriv a B

deriv a (A @@ B) =

(if [ ] ∈ A then deriv a A @@ B ∪ deriv a B else deriv a A @@ B)

deriv a (A∗) = deriv a A @@ A∗

Equality of two languages can be shown by coinduction. The following lemma is

the key to the correctess proof of our decision procedure.

Lemma 1 Let ∼ be a binary relation between languages such that

1. for all A and B, A ∼ B =⇒ [ ] ∈ A ←→ [ ] ∈ B, and

2. for all A and B and x, A ∼ B =⇒ deriv x A ∼ deriv x B.

Then A ∼ B implies A = B.

Proof By symmetry, it is enough to show that for all A and B, A ∼ B and w ∈ A imply

w ∈ B. We proceed by induction on w. For w = [ ], we have w ∈ B using property 1.

For w = a:w ′, we have w ′ ∈ deriv a A and by induction hypothesis w ′ ∈ deriv a B

(since deriv a A ∼ deriv a B due to property 2.). Thus, w ∈ B.
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A relation ∼ with the properties 1. and 2. above is called a bisimulation.

Thus, to prove that two languages are equal, we must show that they are contained

in a bisimulation. Our algorithm will construct such a bisimulation explicitly, as a list

of pairs of regular expressions.

3 Regular Expressions

Regular expressions are defined as a recursive datatype α rexp where α is the un-

derlying alphabet. The constructors are �·� (for single characters), + (for sum), ·
(for concatenation), ∗ (for Kleene star), and 0 and 1 as additive and multiplicative

identities.

The language of a regular expression is defined in the standard way, as is the set

of atoms in an expression:

L(0) = ∅
L(1) = {[ ]}
L(�a�) = {[a]}

L(r + s) = L(r) ∪ L(s)

L(r · s) = L(r) @@ L(s)

L(r∗) = (L(r))∗

atoms 0 = ∅
atoms 1 = ∅
atoms �a� = {a}

atoms (r + s) = atoms r ∪ atoms s

atoms (r · s) = atoms r ∪ atoms s

atoms (r∗) = atoms r

We will also need a function final, which determines if the language of an expression

contains the empty word, i.e., corresponds to a final state.

final 0 ←→ False

final 1 ←→ True

final �a� ←→ False

final (r + s) ←→ final r ∨ final s

final (r · s) ←→ final r ∧ final s

final (r∗) ←→ True

By induction we obtain the characteristic property final r ←→ [ ] ∈ L(r).

4 Normal Forms and Derivatives

Before we define the derivative of a regular expression, we first introduce a normaliza-

tion function, which rewrites expressions with a number of equational laws.

Most importantly, the normalization function must identify expressions that are

equivalent modulo associativity, commutativity and idempotence (ACI) of +, which

will ensure termination of the closure computation (due to Brzozowski, see §1.1). How-

ever, we also include a few other simplifications, such the laws for 0 and 1 and asso-

ciativity of ·. Having more simplifications is a good thing, since it can only make the

resulting automaton smaller.

Our normalization function maps the constructors + and · to functions ⊕ and �,

which combine already normalized subterms into a normalized term.

norm 0 = 0

norm 1 = 1

norm �a� = �a�

norm (r + s) = norm r ⊕ norm s

norm (r · s) = norm r � norm s

norm (r∗) = (norm r)∗

Function � does the obvious thing with 0 and 1 and parenthesizes nested concatena-

tions to the right. Function ⊕ also parenthesizes expressions to the right, i.e., turns

them into a list, but in addition sorts the list w.r.t some total order �, and eliminates

duplicates and 0s:
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0 � = 0

� 0 = 0

1 � r = r

r � 1 = r

(r · s) � t = r · s � t

r � s = r · s

0 ⊕ r = r

r ⊕ 0 = r

(r + s) ⊕ t = r ⊕ (s ⊕ t)

r ⊕ (s + t) =

(if r = s then s + t

else if r � s then r + (s + t)

else s + r ⊕ t)

r ⊕ s =

(if r = s then r

else if r � s then r + s else s + r)

The relation � can be some arbitrary total order on regular expressions. Our con-

crete definition (omitted) works as follows. Expressions with different constructors at

the root are compared according to some arbitrary fixed total order of the construc-

tors. Expressions with the same constructor at the root are compared according to the

lexicographic order of the arguments. Atoms are assumed to be totally ordered. More

precisely, � is restricted to regular expressions over natural numbers.

It is easy to prove the following two lemmas by induction, with the help of similar

properties for the auxiliary functions ⊕ and �, which we omit here.

Lemma 2 L(norm r) = L(r)

Lemma 3 atoms (norm r) ⊆ atoms r

We now proceed to define the derivative Da(r) of a regular expression r. The

following definition reflects the properties of language derivatives from §2, but we use

⊕ and � instead of + and ·, thus ensuring that normal forms are preserved.

Da(0) = 0

Da(1) = 0

Da(�b�) = (if a = b then 1 else 0)

Da(r + s) = Da(r) ⊕ Da(s)

Da(r · s) = (if final r then Da(r) � s ⊕ Da(s) else Da(r) � s)

Da(r∗) = Da(r) � r∗

By induction we show the characteristic property L(Da(r)) = deriv a (L(r)).

5 Bisimulations Between Regular Expressions

The predicate is-bisimulation checks if a list of pairs of regular expressions forms a

bisimulation, and if all expressions in ps contain only atoms from the list as:

is-bisimulation as ps ←→
(∀ (r , s)∈set ps.

atoms r ∪ atoms s ⊆ set as ∧
(final r ←→ final s) ∧ (∀ a∈set as. (Da(r), Da(s)) ∈ set ps))

Function set converts a list into a set.

Compared to the relation ∼ in Lemma 1, this finitary notion of bisimulation as a

list of pairs is executable. Thus, ps and as act as a certificate for the equivalence of

two expressions. The following is a consequence of Lemma 1:

Lemma 4 If is-bisimulation as ps and (r , s) ∈ set ps then L(r) = L(s).
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6 Computing the Bisimulation Closure

Strictly speaking, Lemma 4 is all we need to generate formal proofs of regular expression

equivalences. We could generate the list of pairs ps using some untrusted piece of code,

and then run the predicate is-bisimulation to check that it really is a bisimulation.

In other settings, where checking a certificate is much easier than producing it,

this approach can be a great advantage. But in our case, checking that a relation is a

bisimulation is about as expensive as generating it, so we will spend a little bit of effort

on verifying the closure algorithm that produces the bisimulation. Then, no dynamic

check is needed.

6.1 The while-option Combinator

We want to define and reason about a closure computation without having to prove its

termination. For such situations, Isabelle’s library defines a variant of the well-known

while combinator, which is called while-option. It takes a test b :: α ⇒ bool, a function

c :: α ⇒ α, and a “state” s :: α, and obeys the recursion equation

while-option b c s = (if b s then while-option b c (c s) else Some s)

This equation is executable, but the execution diverges if b s, b (c s), b (c (c s)), . . .

are all true. In this case, the result of the function is specified as None (this is the

logical specification; the actual execution will loop infinitely).

The definition of the combinator shall not concern us here. We merely use the

recursion equation, together with an invariant-based proof rule for the case where the

loop terminates (thus returning Some):

Lemma 5 (While-rule) If

1. P is an invariant (for all s, P s =⇒ b s =⇒ P (c s)),

2. the execution terminates (while-option b c s = Some t), and

3. the invariant holds initially (P s)

then P t.

6.2 The closure computation

We use a standard iterative algorithm to compute the bisimulation. It uses a list ws

of expression pairs that are not yet processed (the worklist), and another list of pairs

ps, which works as an accumulator. In each step we move a pair (r , s) from ws over to

ps, and for every atom a we add the pair of successors (Da(r), Da(s)) to ws provided

it does not yet occur in ps or ws. The process terminates if either ws becomes empty

(then ps holds the bisimulation) or when we encounter a pair where final r ←→ final s

is false (then there is no bisimulation containing the initial ws). We define this process

with the help of while-option:

closure as = while-option test (step as)

Parameter as is the list of all atoms. The process continues while test is true:

test (ws, ) ←→ (case ws of [ ] ⇒ False | (p, q):vs ⇒ final p ←→ final q)

Each step is defined like this:
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step as (ws, ps) =

(let ps ′ = hd ws:ps;

new = [p←succs as (hd ws) . p /∈ set ps ′ ∪ set ws]

in (new @ tl ws, ps ′))

Functions hd and tl take the head and tail of a list. The notation [x ← xs . P ] is short

for filter (λx . P) xs. The successor state pairs are computed by function succs:

succs as (r , s) = map (λa. (Da(r), Da(s))) as

To show that successful runs of closure find a bisimulation, we need to specify the

invariant. The predicate pre-bisim characterizes when (ws, ps) contains the original

pair (r , s), uses only atoms from as, and is on the way to a bisimulation:

pre-bisim as r s (ws, ps) ←→
(r , s) ∈ set ws ∪ set ps ∧
(∀ (r , s)∈set ws ∪ set ps. atoms r ∪ atoms s ⊆ set as) ∧
(∀ (r , s)∈set ps.

(final r ←→ final s) ∧ (∀ a∈set as. (Da(r), Da(s)) ∈ set ps ∪ set ws))

It is easy to show that pre-bisim as r s is an invariant of step as. Using the while rule

and because pre-bisim as r s ([ ], ps) implies the premises of Lemma 4, we obtain

Lemma 6 If closure as ([(r , s)], [ ]) = Some ([ ], ps) and atoms r ∪ atoms s ⊆ set

as then L(r) = L(s).

7 The Equivalence Checker

The overall equivalence checker check-eqv takes two expressions, normalizes them, feeds

them together with their atoms into closure, and checks that closure has terminated

with an empty worklist:

check-eqv r s =

(case closure (add-atoms r (add-atoms s [ ])) ([(norm r , norm s)], [ ]) of

Some([], ) ⇒ True | ⇒ False)

add-atoms 0 as = as

add-atoms 1 as = as

add-atoms �a� as = (if a ∈ set as then as else a:as)

add-atoms (r + s) as = add-atoms s (add-atoms r as)

add-atoms (r · s) as = add-atoms s (add-atoms r as)

add-atoms (r∗) as = add-atoms r as

The final soundness result is a simple consequence from Lemma 6 and the definition

of check-eqv.

Lemma 7 check-eqv r s =⇒ L(r) = L(s)

We can now reduce any proof obligation L(r) = L(s) to check-eqv r s. Since the latter is

executable, the proof is reduced to a mere computation. This computation can either be

performed by Isabelle’s simplifier, which is fast enough for small examples, or Isabelle

can compile it to ML [4] where it can be evaluated efficiently.
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8 Proving Equalities in Relation Algebra

Equivalences between regular expressions remain valid when interpreted over binary

relations. This interpretation is relative to a valuation v of type α ⇒ (β × β) set,

which maps atoms to (homogenous) binary relations. Then, the relation of a regular

expression is defined as follows, where Id is the identity relation and ◦ is relation

composition.

Rv(0) = ∅
Rv(1) = Id

Rv(�a�) = v a

Rv(r + s) = Rv(r) ∪ Rv(s)

Rv(r · s) = Rv(r) ◦ Rv(s)

Rv(r∗) = (Rv(r))∗

We define an auxiliary function W, which interprets a single word as a relation:

Wv([ ]) = Id Wv(a:as) = v a ◦ Wv(as)

The following crucial lemma, proved by induction, connects Rv(r), L(r), and Wv(r).

Lemma 8 Rv(r) = (
S

w∈L(r) Wv(w))

As an immediate corollary, we obtain that the relation interpretation preserves equal-

ities that hold over languages:

Lemma 9 L(r) = L(s) =⇒ Rv(r) = Rv(s)

Now we use our procedure to prove equality of binary relations constructed by

union, composition and reflexive transitive closure by a generic process often called

reflection and originally developed by Boyer and Moore [1]. For example, the goal (R∗

◦ S)∗ = (R ∪ S)∗, where R and S are relations, is proved in two steps. First it is

transformed into its canonical interpretation under R, resulting in the goal Rv(lhs) =

Rv(rhs), where lhs and rhs are the expressions (�0�∗ · �1�)∗ and (�0� + �1�)∗

(over the alphabet {0 , 1} ⊆ IN), and v is the valuation that maps 0 to R and 1 to S.

This first step is automatic, given the definition of R. The second step applies Lemmas

9 and 7 to obtain the goal check-eqv lhs rhs and solves this by evaluation.

Our Isabelle theories offer a proof method regexp that combines the two steps, and

in addition turns inequalities into equalities (using A ⊆ B ←→ A ∪ B = B) and

eliminates transitive closure (using R+ = R ◦ R∗). This means that the lengthy proof

of our motivating example is now fully automated:

lemma S ◦ (S ◦ S∗ ◦ R∗ ∪ R∗) ⊆ S ◦ S∗ ◦ R∗

by regexp

9 Discussion

Termination and Completeness Although we have argued why we did not not verify

termination and completeness of our algorithm, we should still outline why they hold.

Termination of the closure procedure follows along the lines of Brzozowski’s original

proof [3]. We define the set D(r) inductively by the following rules.

norm r ∈ D(r)

s ∈ D(r) =⇒ Da(s) ∈ D(r)
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By induction on the structure of r one can prove that D(r) is always finite. The

interesting part of the proof is the case for r∗. Here we observe that each element of

D(r∗) must be a sum of expressions of the form s · r∗, where s ∈ D(r). Since D(r) is

finite by induction hypothesis, D(r∗) must be finite, too. Since there are only finitely

many different iterated derivatives, the closure algorithm must terminate. The main

tedium in the formalization of this proof would be to show that norm really maps

ACI-equivalent expressions to the same normal form, which is not necessary for the

soundness proof.

Completeness of the procedure is now easy to see. If the closure algorithm termi-

nates with a non-empty worklist, then it implicitly found a counterexample: Each pair

of expressions in the worklist corresponds to a pair of reachable states for some word

w. Thus, if a pair is found where final r ←→ final s does not hold, then w is in one

of the languages but not the other. Extending the algorithm to actually output that

counterexample is a simple exercise.

How about the completeness of the transition between relations and languages from

§8? In fact there is a corner case where it is not complete. If the relations are over a

type with only finitely many elements, then there also exist only finitely many different

relations, and the beautiful structure of regular expressions is destroyed. In particular,

if there are only n different relations, then the equation R0 ∪ R1 ∪ · · · ∪ Rn = R∗

holds (one of the relations on the left hand side must occur twice, so there is a cycle),

but it is not valid over languages. However, this is really just nitpicking, as for the

interesting case—relations over an infinite type— the procedure is complete. If an

equality holds for all relations then we can interpret each atom a as the relation v a

=
S

w {(f (a:w), f w)}, where f is some injective mapping from words to elements,

which must exist since the type is infinite. Then for each expression r, w ∈ L(r) ←→
(f w , f [ ]) ∈ Rv(r) and thus Rv(r) = Rv(s) =⇒ L(r) = L(s).

Performance In the large range of algorithms that turn regular expressions into au-

tomata, Brzozowski’s procedure is on the elegant side, not the efficient one. The same

is probably true for our equivalence checker. But our goal is to have a tool that quickly

solves goals about relations. These goals arise in interactive proofs and aren’t very large,

so there is little point in optimizing performance. Equations involving a handful of vari-

ables, as they typically appear in proofs are solved instantly. We have not experimented

much with scaling up, but it seems that for larger expressions, the automata-based im-

plementation by Braibant and Pous clearly outperforms our checker.

10 Conclusion

We presented a decision procedure for regular expression equivalence and used it to

prove equations in relation algebra in Isabelle/HOL. What makes this a proof pearl

is the surprising ease with which this is achieved. Compared to the development by

Braibant and Pous, we cut corners in three places.

1. Our equivalence checker using derivatives is “more algebraic” than automata and

can be formalized with less conceptual and notational overhead.

2. We only formalized the soundness proof, which is sufficient for providing the proof

method regexp. While the termination and completeness properties are not hard to

formalize, they would not make the method more useful in practice.



10

3. Instead of general Kleene algebras, we concentrate on the main use case: binary

relations. Thus, the full generality of Kozen’s theorem is not needed, and we can

use the simple reasoning of §8.

In a nutshell, the succinctness of our development is the result of the chosen formal-

ization and of concentrating on the essentials.

Acknowledgement We thank Georg Struth for pointing us to the work of Jan Rutten.
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