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Abstract. We present an implementation and verification in higher-
order logic of Cooper’s quantifier elimination for Presburger arithmetic.
Reflection, i.e. the direct execution in ML, yields a speed-up of a factor of
200 over an LCF-style implementation and performs as well as a decision
procedure hand-coded in ML.

1 Introduction

This paper presents a formally verified quantifier elimination procedure
for Presburger arithmetic (PA) in higher-order logic. There are three
approaches to decision procedures in theorem provers: unverified code
(which we ignore), LCF-style proof procedures programmed in a meta-
language (ML) that invoke the inference rules of the kernel, and reflection,
where the decision procedure is formalized and proved correct inside the
system and is executed not by inference but by direct computation.

The LCF-style requires no formalization of the meta-theory but has a
number of disadvantages: (a) it requires intimate knowledge of the inter-
nals of the underlying theorem prover (which makes it very unportable);
(b) there is no way to check at compile type if the proofs will really com-
pose (which easily leads to run time failure and thus incompleteness); (c)
it is inefficient because one has to go through the inference rules in the
kernel; (d) if the prover is based on proof objects this can lead to excessive
space consumption (proofs for PA may require super exponential space
[7, 16]).

For all these reasons we have formalized and verified Cooper’s quan-
tifier elimination procedure for PA [5]. Our development environment is
Isabelle/HOL [14]. An experimental feature allows reflective extensions of
the kernel: computations of ML code generated from HOL functions [3]
are accepted as equality proofs. Such extensions are sound provided the
code generator is correct. Coq uses a fast internal λ-calculus evaluator for
the same purpose [8].



We found that reflection leads to a substantial performance improve-
ment. This is especially marked when proof objects [2] are involved: re-
flective subproofs are of constant size, which is particularly important
for proof carrying code applications, where the size of full PA proofs is
prohibitive.

The main contributions of our work are: (a) the first-time formaliza-
tion and verification of Cooper’s decision procedure in a theorem prover;
(b) the most substantial (5000 lines) application of reflection in any the-
orem prover to date (as far as we are aware); (c) a formalization that
is easily portable to other theorem provers supporting reflection (in con-
trast to LCF-tactics); (d) performance figures that show a speed-up of up
to 200 w.r.t. a comparable LCF-style implementation; (e) a first demon-
stration of reflection in Isabelle/HOL. We also provide a nice example of
how reflection allows to formalize duality/symmetry arguments based on
syntax (function mirror in 4.2).

Related work PA has first been proven decidable by Presburger [17]
whose (inefficient) algorithm was improved by Cooper [5]. Harrison [12]
implemented Cooper’s procedure as an oracle as well as partially re-
flected in HOL Light. In [4] we presented an LCF-style implementation
of Cooper’s algorithm for PA, which is our point of reference. Harri-
son [10] has also studied the general issue of reflection in LCF-like theo-
rem provers and bemoans the lack of a natural example where reflection
yields a speed-up of more than a constant factor. This is true for PA as
well, but a constant factor of 200 over an LCF-style tactic is worth it. Nor-
rish [15] discusses implementations for both Cooper’s algorithm (in tatic
style) and Omega [18] (checking a reflected “proof trace”). Pierre Crgut
[6] presents a reflective version of the Omega test written for Coq, where
an optimized proof trace is interpreted to solve the goal. Unlike the other
references his implementation only deals with quantifier-free PA and is
incomplete. Presburger’s original algorithm has been formalized in Coq
by Laurent Thry and is available on the Coq web site.

The problem of programming errors in decision procedures has re-
cently been addressed by several authors using dependent types [13, 1].
But it seems unlikely that anything as complex as PA can be dealt with
automatically in such a framework. Nor does this approach guarantee
completeness: missing cases and local proofs that fail are not detected.

Notation Datatypes are declared using datatype. Lists are built up from
the empty list [] and consing ·; the infix @ appends two lists. For a list



l, {{l}} denotes the set of elements of l, and l!n denotes its nth element.
The data type α option with the constructors ⊥ : α option and b.c : α →
α option models computations that can fail.

The rest of this paper is structured as follows. In 2 we give a brief
overview of reflection. The actual decision procedure and its verification
is presented in 3 and 4. In 5 we discuss some design decisions and alter-
natives. Performance results are shown in 6.

2 Reflection

2.1 An informal introduction

Reflection means to perform a proof step by computation inside the logic.
However, inside the logic it is not possible to write functions by pattern
matching over the syntax of terms or formulae because two syntactically
distinct formulae may be logically equivalent. Hence the relevant fragment
of formulae must be represented (reflected) inside the logic as a datatype,
sometimes also called the shadow syntax [11]. Let us call this type rep,
the representation.

Then there are two functions: interp, a function in the logic, maps an
element of rep to the formula it represents; convert, an ML function, maps
a formula to its representation. The two functions should be inverses of
each other: taking the ML representation of a formula P and applying
convert to it yields an ML representation of a term p of type rep such
that the theorem interp p = P can be proved by by rewriting with the
equations for interp.

Typically, the formalized proof step is some equivalence P = P ′ where
P is given and P ′ is some simplified version of P (e.g. the elimination of a
quantifier). This transformation is now expressed as a recursive function
simp of type rep → rep and it is proved (typically by induction on rep)
that simp preserves the interpretation:

interp p = interp(simp p).

To apply this theorem to a given formula P we compute (in ML) p =
convert P , substitute it into our theorem, and compute the value P ′ of
interp(simp p). The latter step should be done as efficiently as possibly.
In our case it is performed by an ML computation using the code auto-
matically generated from the defining equations for simp and interp. This
yields the theorem interp(simp p) = P ′. Combining it (by symmetry and
transitivity) with interp p = P and interp p = interp(simp p) we obtain
the theorem P = P ′.



2.2 Reflection of PA

PA is reflected as follows. The syntax is represented by the data types ι

for integer expressions and φ for formulae.

datatype ι = înt | vnat |− ι | ι + ι | ι − ι | ι ∗ ι

datatype φ = ι < ι | ι > ι | ι ≤ ι | ι ≥ ι | ι = ι | ι dvd ι

| T | F | ¬ φ | φ ∧ φ | φ ∨ φ | φ → φ | φ = φ |∃ φ |∀ φ

The bold symbols +, ≤, ∧ etc are constructors and reflect their coun-
terparts +, ≤, ∧ etc in the logic. The integer constant i in the logic is
represented by the term î. Bound variables are represented by de Bruijn
indices: vn represents the bound variable with index n (a natural number).
Hence quantifiers need not carry variable names.

Throughout the paper p and q are of type φ.

[[bi]]isι = i

[[vn]]isι = is!n
[[− a]]isι = −[[a]]isι
[[a + b]]isι = [[a]]isι + [[b]]isι
[[a − b]]isι = [[a]]isι − [[b]]isι
[[a ∗ b]]isι = [[a]]isι ·[[b]]isι

[[T ]]is = True

[[F ]]is = False

[[a < b]]is = ([[a]]isι < [[b]]isι )
[[a > b]]is = ([[a]]isι > [[b]]isι )
[[a ≤ b]]is = ([[a]]isι ≤ [[b]]isι )
[[a ≥ b]]is = ([[a]]isι ≥ [[b]]isι )
[[a = b]]is = ([[a]]isι = [[b]]isι )
[[a dvd b]]is = ([[a]]isι dvd [[b]]isι )

[[¬p]]is = (¬[[p]]is)
[[p ∧ q]]is = ([[p]]is ∧ [[q]]is)
[[p ∨ q]]is = ([[p]]is ∨ [[q]]is)
[[p → q]]is = ([[p]]is → [[q]]is)
[[p = q]]is = ([[p]]is = [[q]]is)
[[∃ p]]is = (∃x.[[p]]x·is)
[[∀ p]]is = (∀x.[[p]]x·is)

Fig. 1. Semantics of the shadow syntax

The interpretation functions ([[.]].ι and [[.]].) in Fig. 1 map the repre-
sentations back into logic. They are parameterized by an environment is

which is a list of integer expressions. The de Bruijn index vn picks out
the nth element from that list.

The definition of ι-terms is too liberal since it allows to express non-
linear terms. Hence we will impose conditions during verification which
guarantee that terms have certain syntactic shapes.

3 Quantifier elimination

A generic quantifier elimination function is implemented by qelimφ (Fig. 2).
Its parameter qe is supposed to eliminate a single ∃ and qelimφ applies
qe to all quantified subformulae in a bottom-up fashion. We allow quan-
tifier elimination to fail, i.e. return ⊥. This is necessary in case the input



qelimφ qe (∀ p) = ¬⊥(qe⊥(¬⊥(qelimφ qe p)))

qelimφ qe (∃ p) = qe⊥(qelimφ qe p)
qelimφ qe (p ∧ q) = (qelimφ qe p)∧⊥(qelimφ qe p)
qelimφ qe (p ∨ q) = (qelimφ qe p)∨⊥(qelimφ qe p)
qelimφ qe (p → q) = (qelimφ qe p)→⊥(qelimφ qe p)
qelimφ qe (p = q) = (qelimφ qe p)=⊥(qelimφ qe p)
qelimφ qe p = bpc

Fig. 2. Quantifier elimination for φ-formulae

formula is not linear, i.e. involves multiplication by more than just a con-
stant. To deal with failure we define two combinators for lifting arbitrary
nary functions f to f⊥ and f⊥:

f⊥ bx1c . . . bxnc = f x1 . . . xn

f⊥ bx1c . . . bxnc = bf x1 . . . xnc

If any of the arguments are ⊥, f⊥ and f⊥ return ⊥.
Let qfree p (not shown) formalize that p is quantifier-free. We can

prove by structural induction that if qe takes a quantifier-free formula q

and returns a quantifier-free formula q ′ equivalent to ∃ q, then qelimφ qe

is a quantifier-elimination procedure:

(∀q, q′, is. qfree q ∧ qe q = bq′c → qfree q′ ∧ [[∃ q]]is = [[q′]]is)

→ qelimφ qe p = bp′c → qfree p′ ∧ [[p]]is = [[p′]]is.
(1)

Note that qe must eliminate the innermost bound variable v0, otherwise
[[∃ q]]is = [[q′]]is will not hold.

The goal of 4 is to present cooper, an instance of qe fulfilling the
premise of (1).

4 Cooper’s algorithm

Like many decision procedures, Cooper’s algorithm [5] for eliminating one
∃ follows a simple scheme:

– Normalization of input formula (4.1).
– Calculation of some characteristic data from the formula (4.2).
– Correctness theorem proving that ∃ p is semantically equivalent to a

simpler formula p′ involving the data from the previous step (Cooper’s
theorem in 4.3).

– Construction of p′ (4.4).



4.1 Normalization

Normalization goes trough three steps: the N-step puts the formula into
NNF (negation normal form), the L-step linearizes the formula and the
U-step sets the coefficients of v0 to 1̂ or −̂1.

The N-step We omit the straightforward implementation of nnf : φ → φ

and isnnf : φ → bool. Property isnnf p expresses that p is in NNF and
that all atoms are among ≤, = and dvd and that negations only occur
in front of dvd or =. We prove that nnf is correct and that it implies
quantifier-freedom:

[[p]]is = [[nnf p]]is isnnf(nnf p) isnnf p → qfree p

The L-step An ι-term t is linear if it has the form

ĉ1 ∗ vi1 + · · · + ĉn ∗ vin + ĉn+1

where n ∈ N, i1 < · · · < in and ∀j ≤ n.cj 6= 0. Note that ĉn+1 is always
present even if cn+1 = 0. The implementation is easy:

islinnι n0 î = True

islinnι n0 (̂i ∗ vn + r) = i 6= 0 ∧ n0 ≤ n ∧ islinnι (n + 1) r

islinnι n0 t = False

islinι t = islinnι 0 t

A formula p is linear (islinφ p) if it is in NNF, all ι-terms occurring in it

are linear, and its atoms are of the form t ≤ 0̂, t = 0̂ or d̂ dvd t where
d 6= 0. The formal definition is omitted.

The goal of the L-step is to transform a formula into an equivalent
linear one. Due to the unrestricted use of ∗ in the input syntax ι this
may fail. Function linι (Fig. 3) tries to linearize an ι-term using lin+, lin∗

and lin−. These operate on linear ι-terms, preserve linearity and behave
semantically like addition, multiplication by a constant integer and multi-
plication by −1 , respectively. This is expressed by the following theorems
provable by induction:

islinι a ∧ islinι b → islinι(lin+ a b) ∧ ([[lin+ a b]]isι = [[a + b]]isι )

islinι a → islinι(lin∗ i a) ∧ ([[lin∗ i a]]isι = [[̂i ∗ a]]isι )

islinι a → islinι(lin− a) ∧ ([[lin− a]]isι = [[− a]]isι )

The implementations of lin∗ and lin− are omitted for space limitations.



lin+ (bk ∗ vn + r) (bl ∗ vm + s) =
if n = m then

if k + l = 0 then lin+ r s else k̂ + l ∗ vn + lin+ r s

else if n ≤ m then bk ∗ vn + lin+ r (bl ∗ vm + s)

else bl ∗ vm + lin+ (bk ∗ vn + r) s

lin+ (bk ∗ vn + r) bb = bk ∗ vn + lin+ r bb

lin+ ba (bl ∗ vn + s) = bl ∗ vn + lin+ s ba

lin+
bk bl = k̂ + l

linι bc = bbcc
linι vn = b(b1 ∗ vn + b0)c
linι (− a) = lin−⊥

(linι a)
linι (a + b) = lin+⊥

(linι a) (linι b)
linι (a − b) = lin+⊥

(linι a) (linι (− b))
linι (a ∗ b) =
case (linι a, linι b) of

(bbcc, bb′c) ⇒ blin∗ c b′c
(ba′c, bbcc) ⇒ blin∗ c a′c
(x, y) ⇒ ⊥

Fig. 3. linearization of ι-terms

Linearization of φ-formulae (linφ, not shown) lifts linι. We have proved
that it also preserves semantics and linearizes its input:

isnnf p ∧ linφ p = bp′c → [[p]]is = [[p′]]is ∧ islinφ p′

Since full linearization is not really part of Presburger arithmetic,
we keep matters simple and do not try to cancel arbitrary monomials:
linι(v0 ∗ v0 − v0 ∗ v0) = ⊥ although one could also return b0̂c. Such
simplifications could be performed by a specialized algebraic preprocessor.

The U-step The key idea in this step is to multiply the terms occurring
in atoms by appropriate constants such that the (absolute values of)
coefficients of v0 are the same everywhere, e.g. the lcm of all coefficients
of v0. The equivalence

(∃x. P (l·x)) = (∃x. l dvd x ∧ P (x)). (2)

will allow us to obtain a formula where all coefficients of v0 are 1̂ or −̂1.
Function lcmφ takes a formula p and computes lcm{c | ĉ ∗ v0 occurs in p}.
Predicate alldvd l p checks if all coefficients of v0 in p divide l. Both func-
tions are defined in the following table where lcm computes the positive
least common multiple of two integers.



p lcmφ p alldvd l p

ĉ ∗ v0 + r ≤ ẑ |c| c dvd l

ĉ ∗ v0 + r = ẑ |c| c dvd l

d̂ dvd ĉ ∗ v0 + r |c| c dvd l

¬p lcmφ p alldvd l p

p ∧ q lcm (lcmφ p) (lcmφ q) (alldvd l p) ∧ (alldvd l q)
p ∨ q lcm (lcmφ p) (lcmφ q) (alldvd l p) ∧ (alldvd l q)

1 True

The correctness of these functions is expressed by the following theorem:

islinφ p → alldvd (lcmφ p) p ∧ lcmφ p > 0

The main part of the U-step is done by the function adjust. It takes a
positive integer l and a linear formula p (assuming that alldvd l p holds)
and produces a linear formula p′ s.t. the coefficients of v0 are set to either
1̂ or −̂1. Function unity performs the U-step:

unity p =
let l = lcmφ p ; p′ = adjust l p in

if l = 1 then p′ else (l̂ dvd 1̂ ∗ v0 + 0̂) ∧ p′

The resulting formula is said to be unified (unified p′). We omit the defi-
nition of adjust and unified. Note that unified p → islinφ p. We can prove
that adjust preserves semantics and its result is unified

islinφ p ∧ alldvd l p ∧ l > 0 →

[[p]]i·is = [[adjust l p]](l·i)·is ∧ unified(adjust l p)

and with (2) the correctness of unity follows:

islinφ p → [[∃ p]]is = [[∃ (unity p)]]is ∧ unified(unity p) (3)

4.2 Calculation

In the next subsection we need to compute for a given p a pair of a set
(represented as a list) of coeffcients in p and a modified version of p.
More precisely, we need to compute (bset p, p−) or (aset p, p+), which
are dual to each other. Fig. 4 shows how to perform these computations
recursively and it should be seen as the definition of four functions bset,
aset, minusinf and plusinf. We use p− and p+ as shorthands for minusinf p

and plusinf p. Before we start proving properties about bset and minusinf

we formalize the duality between (bset p, p−) and (aset p, p+). Theorems
about bset and minusinf will then yield theorems about aset and plusinf.



Syntactically the duality is expressed by the function mirror (Fig. 5) which
negates all coefficients of v0. The following intuitive relationships between
a formula and its mirrored version can be proved:

unified p → [[p]]i·is = [[mirror p]](−i)·is ∧ unified (mirror p)

[[∃ p]]is = [[∃ (mirror p)]]is (4)

p aset p bset p p− p+

q ∧ r aset q @ aset r bset q @ bset r q− ∧ r− q+ ∧ r+

q ∨ r aset q @ aset r bset q @ bset r q− ∨ r− q+ ∨ r+

b1 ∗ v0 + a ≤ b0 [− a, − a + b1] [− a − b1] F T

c−1 ∗ v0 + a ≤ b0 [a − b1] [a, a − b1] T F

b1 ∗ v0 + a = b0 [− a + b1] [− a − b1] F F

c−1 ∗ v0 + a = b0 [a + b1] [a − b1] F F

¬ b1 ∗ v0 + a = b0 [− a] [− a] T T

¬ c−1 ∗ v0 + a = b0 [a] [a] T T

[] [] p p

Fig. 4. Definition of aset p, bset p, p− and p+

mirror (bc ∗ v0 + r ≤ bz) = (c−c ∗ v0 + r ≤ bz)

mirror (bc ∗ v0 + r = bz) = (c−c ∗ v0 + r = bz)

mirror ( bd dvd bc ∗ v0 + r) = ( bd dvd c−c ∗ v0 + r)

mirror (¬ bd dvd bc ∗ v0 + r) = (¬ bd dvd c−c ∗ v0 + r)

mirror (¬bc ∗ v0 + r = bz) = (¬c−c ∗ v0 + r ≤ bz)
mirror (p ∧ q) = (mirror l p) ∧ (mirror l q)
mirror (p ∨ q) = (mirror l p) ∧ (mirror l q)
mirror p = p

Fig. 5. Mirroring a formula

Furthermore we have the following dualities:

islinφ p → [[plusinf p]]i·is = [[minusinf(mirror p)]](−i)·is

unified p → aset p = map lin− (bset (mirror p)) (5)

We will also need to compute δp = lcm{d | d̂ dvd ĉ ∗ v0+r occurs in p}.
Its definition is very similar to that of lcmφ p. Finally let the predi-
cate alldvddvd l p be the analogue of alldvd l p which ensures islinφ p →
alldvddvd δp p. The definition of both functions is obvious and omitted.



4.3 Cooper’s theorem

Our proof sketch of Cooper’s theorem (10) follows [15]. The conclusion
of Cooper’s theorem is of the form A = (B ∨ C) and we prove B → A,
C → A and A ∧ ¬B → C. We first prove (by induction on p) that any
unified p behaves exactly like minusinf p for values that are small enough,
cf. (6), and that this behaviour is periodic, cf. (7).

unified p → ∃z.∀x.x < z → ([[p]]x·is = [[minusinf p]]x·is) (6)

unified p → ∀x, k.[[minusinf p]]x·is = [[minusinf p]](x−k·δp)·is (7)

Using (6) and (7) we can prove the first implication (8), i.e. any witness j

for p− provides a witness for p. According to (7) we can keep on decreasing
j by δ until we reach the limit z of (6). This proof is based on induction
over integers bounded from above. Note also that (8) holds for all d.

unified p ∧ (∃j ∈ {1..d}.[[minusinf p]]j·js) → [[∃ p]]js (8)

The second implication is trivial: given b ∈ {{bset p}} and j ∈ {1..δp}

such that [[p]][[i·is]]
b
ι+j we have a witness for p. If there is no such b and j

then p behaves periodically and hence any witness for p must be a witness
for p−. Hence (9) proves with (6) and (7) the last implication and Cooper’s
theorem (10) follows directly using (8).

unified p → ∀x.¬(∃j ∈ {{1..δp}}.∃b ∈ {{bset p}}.[[p]]([[b]]
i·is
ι +j)·is)

→ [[p]]x·is → [[p]](x−δp)·is
(9)

unified p → ([[∃ p]]is = ((∃j ∈ {1..δp}.[[minusinf p]]j·is) ∨

(∃j ∈ {1..δp}.∃b ∈ {{bset p}}.[[p]]([[b]]
i·is
ι +j)·is)))

(10)

This expresses that an existential quantifier is equivalent with a finite
disjunction. The latter is still expressed with existential quantifiers, but
we will now replace them by executable functions.

4.4 The decision procedure

In order to compute the rhs of Cooper’s theorem (10) we need substitution
for v0 in ι-terms (substι) and φ-formulae (substφ) such that

[[substι r t]]i·isι = [[t]][[r]]
i·is
ι ·is

ι

[[substφ r p]]i·is = [[p]][[r]]
i·is
ι ·is



Let nov0ι t and nov0φ p express that v0 does not occur in t and p,
and let decrι t and decrφ p denote t and p where all variable indices are
decremented by one. The implementation of substι, substφ, nov0ι, nov0φ,
decrι and decrφ is simple and omitted. The following properties are easy:

nov0ι t → nov0ι (substι t r) ∧ nov0φ (substφ t p)

nov0ι t → [[t]]i·isι = [[decrι t]]isι

nov0φ p → [[p]]i·is = [[decrφ p]]is

explode
∨

[] p = F

explode
∨

(i · is) p =
case (simp (substφ i p), explode

∨
is p) of

(T , ) ⇒ T

(F , pis) ⇒ pis

( , T ) ⇒ T

(pi, F ) ⇒ pi

(pi, pis) ⇒ pi ∨ pis

Fig. 6. Generate disjunctions

To generate the disjunction
∨

t∈{{ts}} substφ t p we use explode
∨

ts p

(Fig. 6). Function simp evaluates ground atoms and performs simple
propositionsal simplifications. We prove

qfree p ∧ (∀t ∈ {{ts}}.nov0ι t) →
nov0φ(explode

∨
ts p) ∧ (∃t ∈ {{ts}}.[[substφ t p]]i·is = [[explode

∨
ts p]]i·is)

We implement explode−∞ (Fig. 7) and prove that it computes the right
hand side of Cooper’s theorem, cf. (11). It uses all+ d ts to generate all
the sums of an element of {{ts}} and of some î where 1 ≤ i ≤ d, cf. (12).

unified p ∧ {{B}} = {{bset p}}

→ ([[∃ p]]is = [[decrφ(explode−∞ (p,B))]]is) (11)

∃i ∈ {1..d}.∃b ∈ {{ts}}.P (lin+ b î) = ∃t ∈ {{all+ d ts}}.P t (12)

Let us now look at the implementation of the decision procedure in
Fig. 8. Function unify performs the U-step but also prepares the applica-
tion of Cooper’s theorem. For efficiency, both aset and bset are computed.
Depending on their size, either the unified term and its bset or the mir-
rored version and its aset are passed to explode−∞ to compute the rhs of



explode
−∞

(p, B) =

case (explode
∨

[b1.. bδp] p−, explode
∨

(all+ δp B) p) of

(T , ) ⇒ T

(F , r2) ⇒ r2

(r1, T ) ⇒ T

(r1, F ) ⇒ r1

(r1, r2) ⇒ r1 ∨ r2

all+ d [] = []

all+ d (i · is) = (map (lin+ i) [b1.. bd]) @ (all+ d is)

Fig. 7. The rhs of Cooper’s theorem

unify p =
let q = unity p ; (A, B) = (remdups aset q, remdups bset q)
in if |B| ≤ |A| then (q, B) else (mirror q, A)

cooper p = (λf.decrφ(explode
−∞

(unify f)))
⊥

(linφ (nnf p))

pa = qelimφ cooper

Fig. 8. The decision procedure for linearizable φ-formulae

Cooper’s theorem. Function cooper composes all the normalization steps,
the elimination of v0 by unify, and the decrementation of the remaining
de Bruijn indices. Function pa applies generic quantifier elimination to
Cooper’s algorithm.

Using (3), (4) and (5) we can prove

islinφ p ∧ unify p = (q,B) →

[[∃ p]]is = [[∃ q]]is ∧ unified q ∧ {{B}} = {{bset q}} (13)

and with (11) this implies

islinφ p → [[∃ p]]is = [[decrφ(explode−∞(unify p))]]is

which implies the correctness of cooper directly

qfree q ∧ cooper q = bq′c → qfree q′ ∧ [[∃ q]]is = [[q′]]is

and hence, using (1), the correctness of the whole decision procedure pa:

pa p = bp′c → [[p]]is = [[p′]]is ∧ qfree p′.



5 Formalization issues

Normal forms Cooper’s decision procedure transforms the input for-
mula into successively more specialized normal forms, which is typical
for many decision procedures. In our formalization these different normal
forms are specified by predicates on the input languages φ and ι. This has
the advantage that we do not need to define new languages and trans-
lations between languages. Instead we need to add preconditions to our
theorems (e.g. islinι a) and end up with more complicated function defini-
tions (see below). Highly tuned code may require special representations
of certain normal forms even using special data structures for efficiency.
(e.g. [9]). For Cooper’s algorithm such optimizations do not promise sub-
stantial gains.

Recursive functions The advantages of defining recursive functions
by pattern matching are well known and it is used extensively in our
work. Isabelle/HOL supports such definitions [19] by lists of equations.
However, it is not always possible to turn each equation directly into a
theorem because an equation is only applicable if all earlier equations are
inapplicable. Hence Isabelle instantiates and possibly duplicates equations
to make them non-overlapping. In the case of function mirror, the given
list of 8 equations leads to 144 equations after disambiguation. This blow-
up is the result of working with the full language φ even when a function
operates only on a certain normal form. These non-overlapping theorems
are later exported to ML, which may influence the quality of the code
generated by the ML compiler.

Tailored induction Isabelle/HOL derives a tailored induction rule [19]
from a recursive function definition which simplifies proofs enormously.
This may seem surprising since the induction rule for mirror has 144 cases.
However, most of the cases are irrelevant if the argument is assumed to
be linear. These irrelevant cases disappear by simplification.

6 Performance

We tested three implementations on a batch of 64 theorems, where the
distribution of quantifiers is illustrated by Fig. 9. The 64 formulae contain
up to five quantifiers and three quantifier alternations. The number nq in
Fig. 9 represents the number of formulae with q quantifiers. The number of
quantifier alternations is also given by the nqi’s. We have nq = nq0+nq1+



nq2 + nq3, where nqi is the number of formulae containing q quantifiers
and i quantifier alternation. The column ĉmax gives the maximal constant
occurring in the given set of formulae. Finally the last column gives the
speed up factor achieved.

q nq nq0 nq1 nq2 nq3 bcmax speedup

1 3 3 0 0 0 24 10
2 27 20 7 0 0 13 101
3 21 2 19 0 0 129 420
4 6 1 0 0 5 6 99
5 5 3 0 5 0 12 103

Fig. 9. Number of quantifiers and speedup in the test-formulae

The adaptation of Harrison’s implementation [12] (the current oracle
in Isabelle/HOL) took 3.91 seconds to solve all goals. Our adaptation of
this implementation to produce full proofs based on inference rules [4]
took 703.08 seconds. The ML implementation obtained by Isabelle’s code
generator from the formally verified procedure presented above took 3.48
seconds, a speed-up of a factor of 200. All timings were carried out on a
PowerBook G4 with a 1.67 GHz processor running OSX. The reason why
the hand coded version is slightly slower than the generated one is that
it operates on a symbolic binary representation of integers whereas the
generated one uses (arbitrary precision!) ML-integers.

7 Conclusion

We presented a formally verified procedure for quantifier elimination in
PA. Generating ML code from it we achieved substantial performance
improvements over an LCF-style implementation. Decision procedures
developed this way are much easier to maintain and especially to share.
Other systems supporting reflection should be able to import our work
fairly directly, especially if they are of the HOL family as well.
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