
Reflecting Quantifier Elimination for
Linear Arithmetic

Tobias NIPKOW
Institut für Informatik, TU München

Abstract. This paper formalizes and verifies quantifier elimination procedures for
dense linear orders and for real and integer linear arithmetic in the theorem prover
Isabelle/HOL. It is a reflective formalization because it can be applied to HOL for-
mulae themselves. In particular we obtain verified executable decision procedures
for linear arithmetic. The formalization for the various theories is modularized with
the help of locales, a structuring facility in Isabelle.

1. Introduction

This research is about adding decision procedures to theorem provers in a reliable man-
ner, i.e. without having to trust the decision procedure. The traditional LCF approach [16]
involves programming the decision procedure in the implementation language of the the-
orem prover using the basic inference rules of the logic. This is safe but tricky to write
and maintain. There are two alternatives: checking externally generated certificates (for
an example see [22]), and reflection, i.e. the formalization and verification of the deci-
sion procedure in the logic itself. The focus of this paper is reflection, partly because the
theories we consider do not lend themselves to certificate checking: there are no short
certificates, i.e. checking the certificates is as expensive as generating them in the first
place.

The mathematical subject matter of the paper is quantifier elimination, i.e. the pro-
cess of computing a quantifier-free equivalent of a quantified formula, yielding in partic-
ular a decision procedure for closed formulae. Many numeric theories enjoy quantifier
elimination. The most celebrated instance is quantifier elimination for real closed fields,
i.e. (R,+, ∗), due to Tarski [31]. We reflect quantifier elimination procedures for dense
linear orders, and linear real and integer arithmetic.

Everything has been formalized and verified in the logic HOL (higher-order logic)
of the theorem prover Isabelle [27] and is available online in the Archive of Formal
Proofs at afp.sf.net. In particular we have made use of locales, a structuring facility akin
to parameterized theories. Locales are a fairly recent addition to Isabelle [1,2] and this
article demonstrates locales in a serious application.

In summary, the article makes the following contributions:

1. A detailed exposition of a formalization of quantifier elimination for linear real
and integer arithmetics in HOL.

2. Reflective implementations of quantifier elimination.

3. A modular development based on locales.

Note that our presentation aims for simplicity and minimality of concepts, not for
practical efficiency. For example, we restrict to as few atomic propositions as possible,
typically by having only one of ≤ and <. In practice one would avoid this as it tends to
lead to inefficiencies due to coding, e.g. if s = t is replaced by s ≤ t ∧ t ≤ s. Neverthe-
less our presentation provides a convenient starting point for more efficient implementa-
tions, as demonstrated elsewhere [8], where the reflective implementation is two orders
of magnitude faster than the LCF approach.

The core of the article is structured as follows: We start with an abstract generic
account of logical formulae (§4); quantifier elimination is given as a locale parametric
in the specific logical theory of interest. This locale is instantiated four times: for dense
linear orders (§5), for linear real arithmetic (Fourier-Motzkin elimination in §6.2 and
Ferrante and Rackoff’s procedure in §6.4), and for linear integer arithmetic (§7).

2. Reflection, Informally

Reflection means to perform a proof step by computation inside the logic rather than
inside some external programming language (ML). Inside the logic it is not possible to
write functions by pattern matching over the syntax of formulae because two syntacti-
cally distinct formulae may be logically equivalent. Hence the relevant fragment of for-
mulae must be represented (reflected) inside the logic as a datatype. We call it rep, the
representation.

The two levels of formulae must be connected by two functions:

I (a HOL function) maps an element of rep to the formula it represents, and
reify (an ML function) maps a formula to its representation.

The two functions should be inverses of each other. Informally I(reify(P)) = P should
hold. More precisely, taking the ML representation of a formula P and applying reify to
it yields an ML representation of a term p of type rep such that I(p) = P holds.

Typically, the formalized proof step is some equivalence P ↔ P ′ where P is given
and P ′ is some simplified version of P (e.g. the elimination of quantifiers). This transfor-
mation is now expressed as a recursive function simp of type rep→ rep. We prove (typi-
cally by induction on rep) that simp preserves the interpretation: I(simp(p))↔ I(p). To
apply this theorem to a given formula P we proceed as follows:

1. Create a rep-term p from P using reify. This reification step must be performed
in ML.

2. Prove P ↔ I(p). Usually this is trivial by rewriting with the definition of I .
3. Instantiate simp’s correctness theorem I(simp(p))↔ I(p), compute the result p′

of evaluating simp(p) and obtain the theorem I(p′) ↔ I(p) (and by symmetry
I(p)↔ I(p′)). This is the evaluation step.

4. Simplify I(p′), again by rewriting with the definition of I , yielding a theorem
I(p′)↔ P ′

The final theorem P ↔ P ′ holds by transitivity.
The evaluation step is crucial for efficiency as all other steps are typically linear-

time. We employ Isabelle’s recent code generator [18] for compiling and evaluating

simp(p) in ML. Other approaches include evaluation via LISP (Boyer and Moore’s
“metafunctions” [5], the mother of all reflections) and the use of an internal λ-calculus
evaluator [17] as in Coq.

There is also the practical issue of where reify comes from. In general, the imple-
mentor of the reflected proof procedure must program it in ML and link it into the above
chain of deductions. But because reify must be the inverse of I , it is often possible to au-
tomate this step. Isabelle implements a sufficiently general inversion scheme for I such
that for all of the examples in this paper, reify is performed automatically.

In principle the reader may now forget about the details of reflection and merely keep
in mind that all the algorithms in this paper, although expressed on some representation
of formulae, carry over to HOL formulae automatically.

3. Basic Notation

HOL conforms largely to everyday mathematical notation. This section introduces fur-
ther non-standard notation and in particular a few basic data types with their primitive
operations.

The basic types of truth values, natural numbers, integers and reals are called bool,
nat, int and real. The space of total functions is denoted by⇒. Type variables are denoted
by α, β, etc. The notation t::τ means that term t has type τ .

Sets over type α, type α set, follow the usual mathematical convention.
Lists over type α, type α list, come with the empty list [], the infix constructor ·, the

infix @ that appends two lists, and the conversion function set from lists to sets. Variable
names ending in s usually stand for lists. In addition to the standard functions map and
filter, Isabelle/HOL also supports Haskell-style list comprehension notation, with minor
differences: instead of [e | x <- xs, ...] we write [e. x← xs, . . .], and [x←xs.
. . .] is short for [x. x←xs, . . .].

Finally note that = on type bool means “iff”.
Although all our algorithms and formal theorems conform to HOL syntax, we fre-

quently switch to everyday mathematical notation during informal explanations.

4. Logic

The data type of formulae is defined in the usual manner:

α fm = TrueF | FalseF | Atom α
| And (α fm) (α fm)
| Or (α fm) (α fm)
| Neg (α fm)
| ExQ (α fm)

This representation provides the customary logical operators but leaves the type of
atoms open by making it a parameter α. Variables are represented by de Bruijn in-
dices: quantifiers do not explicitly mention the name of the variable being bound be-
cause that is implicit. For example, ExQ (ExQ . . . 0 . . . 1 . . .) represents a formula
∃x1.∃x0. . . . x0 . . . x1 Note that the only place where variables can appear is inside

atoms. The only distinction between free and bound variables is that the index of a free
variable is larger than the number of enclosing binders.

Further logical operators can be introduced as abbreviations, in particular AllQ ϕ ≡
Neg (ExQ (Neg ϕ)).

4.1. Auxiliary Functions

The set of atoms is computed by the (easy to define) function

atoms :: α fm⇒ α set.

Conjunctions and disjunctions of lists of formulae are created by the functions

list-conj :: α fm list⇒ α fm
list-disj :: α fm list⇒ α fm

Their definition is straightforward:

list-conj [ϕ1,. . .,ϕn] = and ϕ1 (and . . . ϕn)

where and is an intelligent version of And:

and FalseF ϕ = FalseF
and ϕ FalseF = FalseF
and TrueF ϕ = ϕ
and ϕ TrueF = ϕ
and ϕ1 ϕ2 = And ϕ1 ϕ2

Similar for list-disj and or, an optimized version of Or. For convenience the following
abbreviation is introduced:

Disj us f ≡ list-disj (map f us)

More interesting is the conversion to DNF:

dnf :: α fm⇒ α list list

dnf TrueF = [[]]
dnf FalseF = []
dnf (Atom ϕ) = [[ϕ]]
dnf (Or ϕ1 ϕ2) = dnf ϕ1 @ dnf ϕ2

dnf (And ϕ1 ϕ2) = [d1 @ d2. d1 ← dnf ϕ1, d2 ← dnf ϕ2]

The resulting list of lists represents the disjunction of conjunctions of atoms. Working
with lists rather than type fm has the advantage of a well-developed library and notation.

Note that dnf assumes that its argument contains neither quantifiers nor negations.
Most of our work will be concerned with quantifier-free formulae where all negations
have not just been pushed right in front of atoms but actually into them. This is easy
for linear orders because ¬(x < y) is equivalent with y ≤ x. This conversion will be
described later on because it depends on the type of atoms. The (easy to define) predicates

qfree :: α fm⇒ bool
nqfree :: α fm⇒ bool

check whether their argument is free of quantifiers (qfree), and free of negations and
quantifiers (nqfree).

There is also a mapping functional

mapfm :: (α⇒ β)⇒ α fm⇒ β fm

which recurses down a formula, e.g.

mapfm h (And ϕ1 ϕ2) = And (mapfm h ϕ1) (mapfm h ϕ2)

until it finds an atom: mapfm h (Atom a) = Atom (h a).

4.2. Interpretation

The interpretation or semantics of a fm is defined via the obvious homomorphic mapping
to an HOL formula: And becomes ∧, Or becomes ∨, etc. The interpretation of atoms is a
parameter of this mapping. Atoms may refer to variables and are thus interpreted w.r.t. a
valuation. Since variables are represented as natural numbers, the valuation is naturally
represented as a list: variable i refers to the ith entry in the list (starting with 0). This
leads to the following interpretation function:

interpret :: (α⇒ β list⇒ bool)⇒ α fm⇒ β list⇒ bool

interpret h TrueF xs = True
interpret h FalseF xs = False
interpret h (Atom a) xs = h a xs
interpret h (And ϕ1 ϕ2) xs = (interpret h ϕ1 xs ∧ interpret h ϕ2 xs)
interpret h (Or ϕ1 ϕ2) xs = (interpret h ϕ1 xs ∨ interpret h ϕ2 xs)
interpret h (Neg ϕ) xs = (¬ interpret h ϕ xs)
interpret h (ExQ ϕ) xs = (∃ x. interpret h ϕ (x·xs))

In the equation for ExQ the value of the bound variable x is added at the front of the
valuation. De Bruijn indexing ensures that in the body 0 refers to x and i + 1 refers to
bound variable i further up.

4.3. Atoms

Atoms are more than a type parameter α. They come with an interpretation (their se-
mantics), and a few other specific functions. These functions are also parameters of the
generic part of quantifier elimination. Thus the further development will be like a module
parameterized with the type of atoms and some functions on atoms. These parameters
will be instantiated later on when applying the framework to various linear arithmetics.

In Isabelle this parameterization is achieved by means of a locale [1], a named con-
text of types, functions and assumptions about them. We call this context ATOM. It pro-
vides the following functions

Ia :: α⇒ β list⇒ bool
aneg :: α⇒ α fm
depends0 :: α⇒ bool
decr :: α⇒ α

with the following intended meaning:

Ia a xs is the interpretation of atom a w.r.t. valuation xs, where variable i (i :: nat!) is
assigned the ith element of xs.

aneg negates an atom. It returns a formula which should be free of negations. This is
strictly for convenience: it means we can eliminate all negations from a formula.
In the worst case we would have to introduce negated versions of all atoms, but in
the case of linear orders this is not necessary because we can turn, for example,
¬(x < y) into (y < x) ∨ (y = x).

depends0 a checks if atom a contains (depends on) variable 0, and decr a decrements
every variable in a by 1.

Within context ATOM we introduce the abbreviation I ≡ interpret Ia. The assump-
tions on the parameters of ATOM can now be stated quite succinctly:

I (aneg a) xs = (¬ Ia a xs) nqfree (aneg a)
¬ depends0 a =⇒ Ia a (x·xs) = Ia (decr a) xs

Function aneg must return a quantifier and negation-free formula whose interpretation
is the negation of the input. And when interpreting an atom not containing variable 0
we can drop the head of the valuation and decrement the variables without changing the
interpretation.

These assumptions must be discharged when the locale is instantiated. We do not
show this in the text because the proofs are straightforward in all cases.

The negation normal form (NNF) of a formula is defined in the customary manner
by pushing negations inwards. We show only a few representative equations:

nnf :: α fm⇒ α fm

nnf (Neg (Atom a)) = aneg a
nnf (Or ϕ1 ϕ2) = Or (nnf ϕ1) (nnf ϕ2)
nnf (Neg (Or ϕ1 ϕ2)) = And (nnf (Neg ϕ1)) (nnf (Neg ϕ2))
nnf (Neg (And ϕ1 ϕ2)) = Or (nnf (Neg ϕ1)) (nnf (Neg ϕ2))

The first equation differs from the usual definition and gets rid of negations altogether —
see the explanation of aneg above.

The fact that nnf preserves interpretations is a trivial inductive consequence of the
assumptions about the locale parameters: I (nnf ϕ) xs = I ϕ xs.

4.4. Quantifier Elimination

The elimination of all quantifiers from a formula is achieved by eliminating them one by
one in a bottom-up fashion. Thus each step needs to deal merely with the elimination of
a single quantifier in front of a quantifier-free formula. This step is theory-dependent and
hard. The lifting to arbitrary formulae is simple and can be defined once and for all. We
assume we are given a function qe :: α fm⇒ α fm for the elimination of a single ExQ,
i.e. I (qe ϕ) = I (ExQ ϕ) if qfree ϕ. Note that qe is not applied to ExQ ϕ but just to ϕ,
ExQ remains implicit. Lifting qe is straightforward:

lift-nnf-qe :: (α fm⇒ α fm)⇒ α fm⇒ α fm

lift-nnf-qe qe (And ϕ1 ϕ2) = and (lift-nnf-qe qe ϕ1) (lift-nnf-qe qe ϕ2)
lift-nnf-qe qe (Or ϕ1 ϕ2) = or (lift-nnf-qe qe ϕ1) (lift-nnf-qe qe ϕ2)
lift-nnf-qe qe (Neg ϕ) = neg (lift-nnf-qe qe ϕ)
lift-nnf-qe qe (ExQ ϕ) = qe (nnf (lift-nnf-qe qe ϕ))
lift-nnf-qe qe ϕ = ϕ

To simplify life for qe we put its argument into NNF.
We can go even further and put the argument of qe into DNF because then we can

pull the disjunction out of the existential quantifier as follows (using customary logical
notation):

(∃x.
∨
i

∧
j

aij) = (
∨
i

∃x.
∧
j

aij)

where aij are the atoms of the DNF. Thus qe can be applied directly to a conjunction of
atoms. Using

(∃x.A ∧B(x)) = (A ∧ (∃x. B(x)))

where A does not depend on x, we can push the quantifier right in front of a conjunction
of atoms all of which depend on x. This simplifies matters for qe as much as possible.

Now we look at the formalization of this second lifting procedure:

lift-dnf-qe :: (α list⇒ α fm)⇒ α fm⇒ α fm

Because we represent the DNF via lists of lists of atoms, the first argument of lift-dnf-qe
takes a list rather than a conjunction of atoms.

The separation of a list (conjunction) of atoms into those that do contain 0 and those
that do not, and the application of qe to the former is performed by an auxiliary function:

qelim qe as = (let qf = qe [a← as. depends0 a];
indep = [Atom(decr a). a← as, ¬ depends0 a]

in and qf (list-conj indep))

Because the innermost quantifier is eliminated, all references to other quantifiers need to
be decremented. For the atoms independent of the innermost quantifier this needs to be
done explicitly, for the other atoms this must happen inside qe.

The main function lift-dnf-qe recurses down the formula (we omit the obvious equa-
tions) until it finds an ExQ ϕ, removes the quantifiers from ϕ, puts the result into NNF
and DNF, and applies qelim qe to each disjunct:

lift-dnf-qe qe (ExQ ϕ) = Disj (dnf (nnf (lift-dnf-qe qe ϕ))) (qelim qe)

4.4.1. Correctness

Correctness of these lifting functions is roughly expressed as follows: if qe eliminates
one existential while preserving the interpretation, then lift qe eliminates all quantifiers
while preserving the interpretation.

For compactness we employ a set theoretic language for expressing properties of
functions: A→ B is the set of functions from A to B, lists A the set of lists over A, − A
the complement of A, and |P| ≡ {x | P x}.

First we look at lift-nnf-qe. Elimination of all quantifiers is easy:

Lemma 1 If qe ∈ |nqfree| → |qfree| then qfree (lift-nnf-qe qe ϕ).

Preservation of the interpretation is slightly more involved:

Lemma 2 If qe ∈ |nqfree| → |qfree| and nqfree ϕ =⇒ I (qe ϕ) xs = (∃ x. I ϕ (x·xs))
for all ϕ and xs, then I (lift-nnf-qe qe ϕ) xs = I ϕ xs.

For lift-dnf-qe the statements are a bit more involved still, but essentially analogous to
those for lift-nnf-qe. The only difference is that qe applies to lists of atoms as instead of
a formula ϕ.

Lemma 3 If qe ∈ lists |depends0| → |qfree| then qfree (lift-dnf-qe qe ϕ).

Lemma 4 If qe ∈ lists |depends0| → |qfree| and ∀ as∈ lists |depends0|. is-dnf-qe qe as,
then I (lift-dnf-qe qe ϕ) xs = I ϕ xs.

where is-dnf-qe qe as≡ ∀ xs. I (qe as) xs = (∃ x. ∀ a∈set as. Ia a (x·xs)). The right-hand
side is equal to ∃ x. I (list-conj (map Atom as)) (x·xs).

All proofs are straightforward inductions using a number of additional lemmas.

4.4.2. Complexity

Conversion to DNF may (unavoidably) cause exponential blowup. Since this can happen
every time a quantifier is eliminated, even if qe runs in linear time, the worst case run-
ning time of lift-dnf-qe qe is non-elementary in the size of the formula, i.e. a tower of

exponents 2·
··
2

whose height is the size of the formula. In contrast, conversion to NNF
is linear. This leads to more reasonable upper bounds. For example, if qe takes quadratic
time, the worst case running time of lift-nnf-qe qe is only doubly exponential. Thus we
have the choice between an essentially infeasible lifting function lift-dnf-qe which allows
each quantifier elimination step to focus on conjunctions of atoms, or a potentially fea-
sible lifting function lift-nnf-qe which requires each quantifier elimination step to deal
with arbitrary combinations of conjunctions and disjunctions.

4.4.3. Equality

We can generalize quantifier elimination via DNF even further based on the predicate
calculus law

(∃x. x = t ∧ φ) = φ[t/x] (1)

provided x does not occur in t. In two of our theories this will enable us to remove
equalities completely: in linear real arithmetic, any equation containing variable x is
either independent of the value of x (e.g. x = x or x = x + 1) or can be brought into the
form x = t with x not in t. But even if one cannot remove all equalities, as in most non-
linear theories, it is useful to deal with x = t separately for obvious efficiency reasons.
Hence we extend locale ATOM to locale ATOM-EQ containing the following additional
parameters

solvable0 :: α⇒ bool
trivial :: α⇒ bool
subst0 :: α⇒ α⇒ α

with the following intended meaning expressed by the corresponding assumptions:

• For solvable atoms, any valuation of the variables > 0 can be extended to a satis-
fying valuation: solvable0 eq =⇒ ∃ e. Ia eq (e·xs).

• Trivial atoms satisfy every valuation: trivial eq =⇒ Ia eq xs.
• Function subst0 substitutes its first argument, a solvable equality, into its second

argument. This is expressed by requiring that the substitution lemma must hold
under certain conditions: If solvable0 eq and ¬ trivial eq and Ia eq (x·xs) and
depends0 a then Ia (subst0 eq a) xs = Ia a (x·xs). And substituting a solvable
atom into itself results in a trivial atom: solvable0 eq =⇒ trivial (subst0 eq eq).

Now we can define a lifting function that takes a quantifier elimination procedure
qe on lists of atoms and extends it to lists containing trivial atoms (by filtering them out)
and solvable atoms (by substituting them in):

lift-eq-qe qe as =
(let as = [a←as. ¬ trivial a]
in case [a←as. solvable0 a] of

[]⇒ qe as
| eq · eqs⇒ (let ineqs = [a←as. ¬ solvable0 a]

in list-conj (map (Atom ◦ subst0 eq) (eqs @ ineqs))))

From the assumptions of locale ATOM-EQ it is not hard to prove that if qe performs
quantifier elimination on any list of unsolvable atoms depending on variable 0, then
lift-eq-qe qe is a quantifier elimination procedure on any list of atoms depending on 0:

Lemma 5 If ∀ as ∈ list(|depends0| ∩ −|solvable0|). is-dnf-qe qe as then
∀ as ∈ list|depends0|. is-dnf-qe (lift-eq-qe qe) as.

In our instantiations, the unsolvable atoms will be the inequalities (<) and qe will only
need to deal with them; = is taken care of completely by this lifting process.

Finally we compose lift-dnf-qe and lift-eq-qe:

lift-dnfeq-qe = lift-dnf-qe ◦ lift-eq-qe

and obtain a corollary to lemmas 4 and 5:

Corollary 1 If qe∈ lists |depends0|→ |qfree| and ∀ as∈ lists(|depends0| ∩ −|solvable0|).
is-dnf-qe qe as then I (lift-dnfeq-qe qe ϕ) xs = I ϕ xs.

In the same manner we obtain

Corollary 2 If qe ∈ list |depends0| → |qfree| then qfree (lift-dnfeq-qe qe ϕ).

5. Dense Linear Orders

The theory of dense linear orders (without endpoints) is an extension of the theory of
linear orders with the axioms

y < z =⇒ ∃ x. y < x ∧ x < z ∃ u. x < u ∃ l. l < x

It is the canonical example of quantifier elimination [23] and the basis for the arithmetic
theories to come. The equivalence (∃ x. y < x ∧ x < z) = (y < z) is an easy conse-
quence of the axioms. It generalizes to arbitrary conjunctions of inequalities containing
the quantified variable: partition the inequalities into those of the form li < x and those
of the form x < uj and combine all pairs:

(∃x. (
∧
i

li < x) ∧ (
∧
j

x < uj)) = (
∧
ij

li < uj) (2)

The only-if direction holds by transitivity. The if direction follows because the right-
hand formula is just another way of saying that the maximum of the li is less than the
minimum of the uj . By denseness there must exists a value in between, which is the
witness for the existential formula.

Now we formalize this theory and its quantifier elimination procedure. We concen-
trate on quantifier elimination via DNF, thus obtaining a non-elementary procedure.

5.1. Atoms

There are just the two relations < and = and no function symbols. Thus atomic formulae
can be represented by the following datatype:

atom = Less nat nat | Eq nat nat

Because there are no function symbols, the arguments of the relations must be variables.
For example, Less i j represents the atom xi < xj in de Bruijn notation. We define two
auxiliary predicates is-Less and is-Eq which do what their name suggests.

Now we can instantiate locale ATOM. Type parameter α becomes type atom. The
interpretation function Ia becomes Idlo where

Idlo (Eq i j) xs = (xs[i] = xs[j])
Idlo (Less i j) xs = (xs[i] < xs[j])

The notation xs[i] means selection of the ith element of xs. The type of Idlo is explicitly
restricted such that xs must be a list of elements over a dense linear order, where the
latter is formalized as a type class [19] with the axioms shown at the start of this section.
Thus all valuations in this section are over dense linear orders. Parameter aneg becomes
negdlo:

negdlo (Less i j) = Or (Atom (Less j i)) (Atom (Eq i j))
negdlo (Eq i j) = Or (Atom (Less i j)) (Atom (Less j i))

The instantiation of the parameters adepends and adecr is obvious:

dependsdlo (Eq i j) = (i = 0 ∨ j = 0)
dependsdlo (Less i j) = (i = 0 ∨ j = 0)

decrdlo (Less i j) = Less (i − 1) (j − 1)
decrdlo (Eq i j) = Eq (i − 1) (j − 1)

It is straightforward to show that this instantiation satisfies all the axioms of ATOM.
The extension to ATOM-EQ (see §4.4.3) is easy: solvable0 becomes λEq i j ⇒ i=0 ∨
j=0 | a ⇒ False, trivial becomes λEq i j ⇒ i=j | a ⇒ False and subst0 is defined as
follows:

subst0 (Eq i j) (Less m n) = Less (subst i j m) (subst i j n)
subst0 (Eq i j) (Eq m n) = Eq (subst i j m) (subst i j n)

subst i j k = (if k = 0 then if i = 0 then j else i else k) − 1

Discharging the assumptions of ATOM-EQ is straightforward.

5.2. Quantifier Elimination

The quantifier elimination procedure sketched above assumes that it is given a list,
i.e. conjunction of atoms. Variable 0, the innermost one, is to be eliminated. Because
lift-dnfeq-qe already takes care of equalities, we can concentrate on the case where all
atoms are Less:

qe-less as =
(if Less 0 0 ∈ set as then FalseF else
let lbs = [i. Less (Suc i) 0← as];

ubs = [j. Less 0 (Suc j)← as];
pairs = [Atom(Less i j). i← lbs, j← ubs]

in list-conj pairs)

This is exactly the above informal algorithm, except that we also take care of the unsat-
isfiable atom x0 < x0 and we decrement the variables to compensate for the eliminated
quantifier. Instead of detecting only the contradiction x0 < x0 one could (and should)
return FalseF upon finding any xi < xi.

5.3. Correctness

Theorem 1 ∀ a∈set as. is-Less a ∧ dependsdlo a =⇒ is-dnf-qe qe-less as

Remember that is-dnf-qe abbreviates an equivalence (see §4.4.1). The proof of the →-
direction of the equivalence distinguishes whether lbs or ubs are empty (in which case
the lack of endpoints guarantees the existence of x) or not (in which case density comes
to the rescue). The other direction follows via transitivity.

Defining dlo-qe = lift-dnfeq-qe qe-less we obtain the main result

Corollary 3 I (dlo-qe ϕ) xs = I ϕ xs

as a consequence of Corollary 1, Theorem 1 and the lemma qfree (qe-less as).

6. Linear Real Arithmetic

Linear real arithmetic is concerned with terms built up from variables, constants, addi-
tion, and multiplication with constants. Relations between such terms can be put into a
normal form r ./ c0 ∗ x0 + · · · cn ∗ xn with ./ ∈ {=, <} and r, c0, . . . , cn ∈ R. It is this
normal form we work with in this section.

Note that although we phrase everything in terms of the real numbers, the rational
number work just as well. In fact, any ordered, divisible, torsion free, Abelian group will
do.

This time we will present two quantifier elimination procedures: one resembling
the one for DLO, so called Fourier-Motzkin elimination, and a clever algorithm due to
Ferrante and Rackoff [14] which brings the complexity down from non-elementary to
doubly exponential.

6.1. Atoms

Type atom formalizes the normal forms explained above:

atom = Less real (real list) | Eq real (real list)

The second constructor argument is the list of coefficients [c0,. . .,cn] of the variables 0
to n — remember de Bruijn! Coefficient lists should be viewed as vectors and we define
the usual vector operations on them:

x ∗s xs is the componentwise multiplication of a scalar x with a vector xs.
xs + ys and xs − ys are componentwise addition and subtraction on two vectors.
〈xs,ys〉 = (

∑
(x,y)← zip xs ys. x∗y) is the inner product of two vectors, i.e. the sum

over the componentwise products.

If the two vectors involved in an operation are of different length, the shorter one is
padded with 0s (as in Obua’s treatment of matrices [28]). We can prove all the algebraic
properties we need, like 〈xs + ys,zs〉 = 〈xs,zs〉 + 〈ys,zs〉.

Now we instantiate locale ATOM just like for DLO in §5.1. The main function is the
interpretation IR of atoms, which is straightforward:

IR (Less r cs) xs = (r < 〈cs,xs〉)
IR (Eq r cs) xs = (r = 〈cs,xs〉)

Although this is irrelevant in our context, note that our lists do not form a vector
space. Clearly the 0 vector would have to be [], but then there are almost no inverses: [x]
+ [− x] is [0] but not []. For a vectors space we would need to remove trailing 0s after
each operation. And certain laws like xs + 0 = xs would only hold for vectors without
trailing 0s. A proper treatment of vectors spaces requires lists of different lengths to have
different types. A solution along these lines is given by Harrison [21].

It is easy to extend the instantiation of ATOM to ATOM-EQ (see §4.4.3): solvable0

is any Eq whose head coefficient is nonzero (λEq r (c·cs)⇒ c 6= 0 | a⇒ False), trivial
is any Eq where both sides are zero (λEq r cs⇒ r=0 ∧ (∀ c ∈ set cs. c=0) | a⇒ False),
and subst0 is defined as follows:

subst0 (Eq r (c·cs)) (Less s (d·ds)) = Less (s − r ∗ d / c) (ds − (d / c) ∗s cs)
subst0 (Eq r (c·cs)) (Eq s (d·ds)) = Eq (s − r ∗ d / c) (ds − (d / c) ∗s cs)

Discharging the assumptions of ATOM-EQ is straightforward.

6.2. Fourier-Motzkin Elimination

Fourier-Motzkin Elimination is a procedure discovered by Fourier [15].1 Essentially, it
works like for dense linear orders. You put the formula into DNF and for each conjunct
the inequalities are split into those of the form l < x and those of the form x < u, and
then you “multiply out” exactly as in (2). Except that one has to transform the inequalities
into the form l < x and x < u explicitly and the l and u can be proper terms, not just
variables.

Quantifier elimination for the special case of a list of atoms as, all of which are of
the form Less, is a one-liner

qe-less as = list-conj [Atom(combine p q). p←lbounds as, q←ubounds as]

where lbounds and ubounds select the inequalities where variable 0 has respectively a
positive and a negative coefficient

lbounds as = [(r/c, (−1/c) ∗s cs). Less r (c·cs)← as, c>0]
ubounds as = [(r/c, (−1/c) ∗s cs). Less r (c·cs)← as, c<0]

and they are combined as explained above:

combine (r1, cs1) (r2, cs2) = Less (r1 − r2) (cs2 − cs1)

The correctness theorem

Theorem 2 ∀ a∈set as. is-Less a ∧ dependsR a =⇒ is-dnf-qe qe-less as

is proved along the same lines as its counterpart Theorem 1, except that linear arithmetic
reasoning is necessary now.

The extension with equality is provided by locale ATOM-EQ. Defining lin-qe =
lift-dnfeq-qe qe-less we obtain the main result

Corollary 4 I (lin-qe ϕ) xs = I ϕ xs

as a consequence of Corollary 1, Theorem 2 and the lemma qfree (qe-less as).
Above we transformed inequalities into l < x and x < u by dividing with the

coefficient of x. Alternatively one can combine r1 < c1x + t1 and r2 < c2x + t2 into
c1r2 − c2r1 < c1t2 − c2t1 provided c1 > 0, c2 < 0, and x does not occur in the ti.

1Motzkin [26] and Farkas [13] cited Fourier but were concerned with the algebraic background, not the
algorithm.

6.3. An Optimization

The above code is correct but produces horribly bloated results: even if the initial for-
mula is closed, the result will not just be TrueF or FalseF but some complicated formula
equivalent to that. As a trivial example take ∃x.1 < x∧x < 2. It is converted to 1 < 2. To
be able to cope with larger inputs, it is essential to simplify intermediate results as much
as possible: at the very least, unsatisfiable atoms should be replaced by FalseF and tauto-
logical ones by TrueF. This is very easy to spot: Less r cs is unsatisfiable/tautological iff
all elements of cs are 0 and r≥0/r<0. Here is a corresponding function which simplifies
individual atoms to TrueF or FalseF whenever it can:

asimp (Less r cs) =
(if ∀ c∈set cs. c = 0 then if r < 0 then TrueF else FalseF else Atom (Less r cs))
asimp (Eq r cs) =
(if ∀ c∈set cs. c = 0 then if r = 0 then TrueF else FalseF else Atom (Eq r cs))

This simplification is applied when lower and upper bounds are combined:

qe-less ′ as = list-conj [asimp(combine p q). p←lbounds as, q←ubounds as]

The definition of list-conj via and ensures that any TrueF is dropped and any FalseF
propagates to the output.

It is not hard to prove that I (qe-less ′ as) xs = I (qe-less as) xs, from which the
analogous version of Corollary 4 for lin-qe ′ = lift-dnfeq-qe qe-less ′ instead of lin-qe
follows easily.

6.4. Ferrante and Rackoff

Fourier-Motzkin elimination has non-elementary complexity because of the repeated
DNF conversions. Ferrante and Rackoff [14], inspired by Cooper [11], avoid putting the
formula explicitly into DNF but still capitalize on the fact that it has a DNF. Below, let
φ be some quantifier-free formula with a free variable x. Substituting x by some r is
written φ(r).

When eliminating x from φ, we can partition the atoms of φ that depend on x into
3 categories: l < x, x < u and x = t. Let LB(φ) denote the set of all such l in φ,
UB(φ) the set of such u, and EQ(φ) the set of such t. The DNF of a formula over
these atoms can be seen as a finite union of finite intersections of half-open intervals
(l,∞) and (−∞, u) and points t. Each such intersection is equivalent to either a single
interval (l,∞), (−∞, u) or (l, u), or to a point t — or it is empty, in which case we
can silently forget about it. Thus there are 4 possibilities why φ can hold: φ(x) holds
for any sufficiently large x (case (l,∞)), φ(x) holds for any sufficiently small x (case
(−∞, u)), φ(x) holds for all x ∈ (l, u) for some l ∈ LB(φ) and u ∈ UB(φ), or φ(t) for
some t ∈ EQ(φ). This leads to the following optimized version of the equivalence due
to Ferrante and Rackoff: 2

2The special treatment of equality is missing in Ferrante and Rackoff’s work, probably to simplify matters.
The asymptotic complexity remains unaffected.

(∃x.φ(x)) = (φ(−∞) ∨ φ(∞) ∨
∨

l∈LB(φ)

u∈UB(φ)

φ(
l + u

2
) ∨

∨
t∈EQ(φ)

φ(t)) (3)

The choice of (l + u)/2 is arbitrary: any value in (l, u) will do.
Notation φ(−∞) and φ(∞) is merely suggestive syntax for the following form of

“substitution”:

(−∞ < u) = True
(l < −∞) = False
(−∞ = t) = False

(∞ < u) = False
(l <∞) = True
(∞ = t) = False

Ferrante and Rackoff only sketch the proof of (3). We examine some of the delicate
details. The proof of the←-direction is obvious in case the witness is (l + u)/2 or t. For
−∞ and∞, the following lemmas provide the witness:

∃x.∀y ≤ x. φ(−∞) = φ(y) ∃x.∀y ≥ x. φ(∞) = φ(y)

They are proved by induction on φ.
The proof of the→-direction is more subtle. We have φ(x). Assuming x /∈ EQ(φ),

¬φ(−∞) and ¬φ(∞), we have to show that φ((l + u)/2) for some l ∈ LB(φ) and
u ∈ UB(φ). In fact, we show that there are l and u such that l < u and φ(y) for
all y ∈ (l, u). From the assumptions it follows by induction on φ that there must be
l0 ∈ LB(φ) and u0 ∈ UB(φ) such that x ∈ (l0, u0). Now we show (by induction on φ)
the lemma that “innermost” intervals (l, u) completely satisfy φ:

Lemma 6 If φ(x), x ∈ (l, u), x /∈ EQ(φ), (l, x)∩LB(φ) = ∅ and (x, u)∩UB(φ) = ∅,
then ∀y ∈ (l, u). φ(y).

Given x ∈ (l0, u0) we define l = max{l ∈ LB(φ) | l < x} and u = min{u ∈ UB(φ) |
x < u}. It is easy to see that this satisfies the premises of the lemma and the desired
conclusion follows.

Now we describe the implementation of Ferrante and Rackoff’s procedure, starting
at the top with (3):

FR1 ϕ = (let as = atoms0 ϕ; lbs = lbounds as; ubs = ubounds as;
intvs = [subst ϕ (between p q) . p← lbs, q← ubs];
eqs = [subst ϕ rcs . rcs← ebounds as]

in list-disj (inf− ϕ · inf + ϕ · intvs @ eqs))

Function FR1 expects a formula ϕ in NNF. Function atoms0 collects the atoms of ϕ that
depend on variable 0. Functions LB, UB and EQ are realized by lbounds, ubounds (see
above) and ebounds:

ebounds as = [(r/c, (−1/c) ∗s cs). Eq r (c·cs)← as, c6=0]

Function between picks the mid-point between two points:

between (r, cs) (s, ds) = ((r + s) / 2, (1 / 2) ∗s (cs + ds))

Substitution, as usual for variable 0, is first defined for atoms

asubst (r, cs) (Less s (d·ds)) = Less (s − d ∗ r) (d ∗s cs + ds)
asubst (r, cs) (Eq s (d·ds)) = Eq (s − d ∗ r) (d ∗s cs + ds)
asubst (r, cs) (Less s []) = Less s []
asubst (r, cs) (Eq s []) = Eq s []

and then lifted to formulae: subst ϕ rcs≡mapfm (asubst rcs) ϕ. The characteristic lemma
is

qfree ϕ =⇒ I (subst ϕ (r, cs)) xs = I ϕ ((r + 〈cs,xs〉)·xs)

It remains to define the substitution of −∞ for 0:

inf− (And ϕ1 ϕ2) = and (inf− ϕ1) (inf− ϕ2)
inf− (Or ϕ1 ϕ2) = or (inf− ϕ1) (inf− ϕ2)
inf− (Atom (Less r (c·cs))) =
(if c < 0 then TrueF else if 0 < c then FalseF else Atom (Less r cs))
inf− (Atom (Eq r (c·cs))) = (if c = 0 then Atom (Eq r cs) else FalseF)

The remaining cases are the identity. The definition of inf + is dual.
The proof of the main correctness theorem

nqfree ϕ =⇒ I (FR1 ϕ) xs = (∃ x. I ϕ (x·xs))

is essentially the proof of (3). Defining FR = lift-nnf-qe FR1 we obtain the overall cor-
rectness as a corollary to Lemma 2: I (FR ϕ) xs = I ϕ xs.

Ferrante and Rackoff show that their procedure executes in space O(2cn) and hence
time O(22dn

) where n is the size of the input. This significant improvement over the non-
elementary complexity of Fourier’s procedure becomes relevant in the context of deeply
nested and alternating quantifiers because that is the situation where conversion to DNF
can blow up repeatedly.

7. Presburger Arithmetic

Presburger Arithmetic is linear integer arithmetic. Presburger [29] showed that this the-
ory has quantifier elimination. In contrast to linear real arithmetic we need an addi-
tional predicate to obtain quantifier elimination: there is no quantifier-free equivalent
of ∃x. x + x = y if we restrict to linear arithmetic. The way out is to allow the di-
visibility predicate as well, but only of the form d | t where d is a constant. Now
∃x. x + x = y is equivalent with 2 | x. Alternatively one can introduce congruence rela-
tions s ≡ t (mod d) instead of divisibility. On the other hand we do not need both < and
= (or ≤) on the integers because i < j is equivalent with i + 1 ≤ j. Hence we restrict
our attention to ≤. All atoms are assumed to be of the form i ≤ k0 ∗ x0 + · · ·+ kn ∗ xn

or d ‖ i + k0 ∗ x0 + · · · kn ∗ xn, where ‖ is | or -, and d, i, k0, . . . , kn ∈ Z and d > 0.
The negated atom i 6≤ j is equivalent with j + 1 ≤ i.

7.1. Atoms

The above language of atoms is formalized as follows:

atom = Le int (int list) | Dvd int int (int list) | NDvd int int (int list)

Atoms are interpreted w.r.t. a list of variables as usual:

IZ (Le i ks) xs = (i ≤ 〈ks,xs〉)
IZ (Dvd d i ks) xs = (d dvd i + 〈ks,xs〉)
IZ (NDvd d i ks) xs = (¬ d dvd i + 〈ks,xs〉)

where dvd is HOL’s divisibility predicate. Note that we can reuse the polymorphic vector,
i.e. list operations like 〈.,.〉 introduced for linear real arithmetic.

There is a slight complication here: We want to exclude the atoms Dvd 0 i ks and
NDvd 0 i ks because they behave anomalously and the algorithm does not generate them
either. Catering for them would complicate the algorithm with case distinctions. In order
to restrict attention to a subset of atoms, locale ATOM in fact has another parameter not
mentioned so far: anormal :: α⇒ bool with the axioms

anormal a =⇒ ∀ b∈atoms (aneg a). anormal b
¬ depends0 a =⇒ anormal a =⇒ anormal (decr a)

In words: negation and decrementation do not lead outside the normal atoms.
A formula is defined as normal iff all its atoms are:

normal ϕ = (∀ a∈atoms ϕ. anormal a)

With the help of the above axioms the following modified version of Lemma 4 can
be proved:

Lemma 7 If qe ∈ lists |depends0| → |qfree| and qe ∈ lists (|depends0| ∩ |anormal|)
→ |normal| and ∀ as ∈ lists(|depends0| ∩ |anormal|). is-dnf-qe qe as then normal ϕ
implies I (lift-dnf-qe qe ϕ) xs = I ϕ xs.

The parameters of locale ATOM are instantiated as follows. The interpretation of
atoms is given by function IZ above, their negation by

negZ (Le i ks) = Atom (Le (1 − i) (− ks))
negZ (Dvd d i ks) = Atom (NDvd d i ks)
negZ (NDvd d i ks) = Atom (Dvd d i ks)

and their decrementation by

decrZ (Le i ks) = Le i (tl ks)
decrZ (Dvd d i ks) = Dvd d i (tl ks)
decrZ (NDvd d i ks) = NDvd d i (tl ks)

Parameter depends0 becomes λa. hd-coeff a 6= 0 where

hd-coeff (Le i ks) = (case ks of []⇒ 0 | k·x⇒ k)
hd-coeff (Dvd d i ks) = (case ks of []⇒ 0 | k·x⇒ k)
hd-coeff (NDvd d i ks) = (case ks of []⇒ 0 | k·x⇒ k)

and parameter anormal becomes λa. divisor a 6= 0 where

divisor (Le i ks) = 1
divisor (Dvd d i ks) = d
divisor (NDvd d i ks) = d

7.2. Algorithm

In this section we describe and formalize a DNF-based algorithm. It differs from Pres-
burger’s original algorithm because that one covers only = (and congruence) — Pres-
burger merely states that it can be extended to <. Our algorithm resembles Enderton’s
version [12], except that the main case split is different: Enderton distinguishes if there
are congruences or not, we distinguish if there are lower bounds or not.

Input to the algorithm is P (x), a conjunction of atoms. As an example we pick
l ≤ 2x ∧ 3x ≤ u. The algorithm consists of the following steps:

1. Set all coefficients of x to the positive least common multiple (lcm) of all coeffi-
cients of x in P (x). Call the result Q(m ∗ x).
Example: Q(6 ∗ x) = (3l ≤ 6x ∧ 6x ≤ 2u).

2. Set R(x) = Q(x) ∧m | x.
Example: R(x) = (3l ≤ x ∧ x ≤ 2u ∧ 6 | x).

3. Let δ be the lcm of all divisors d in R(x) and let L be the set of lower bounds for x
in R(x). If L 6= ∅ then return

∨
t∈T R(t) where T = {l+n | l ∈ L∧0 ≤ n < δ}.

If L = ∅ return
∨

t∈T R′(t) where R′ is R without ≤-atoms and T = {n | 0 ≤
n < δ}.
Example: δ = 6, L = {3l} and the result is

∨
0≤n<6 R(3l + n).

Instead of lower bounds, one may just as well choose upper bounds. In fact, as a local
optimization one typically picks the smaller of the two sets.

The first two steps of the algorithm are clearly equivalence preserving. Now we
have a conjunction R(x) of atoms where x has coefficient 1 everywhere. Equivalence
preservation of the last step is proved in both directions separately.

First we assume the returned formula and show R(t) for some t. If L 6= ∅ then R(t)
for some t ∈ T and we are done. Now assume L = ∅. By assumption there must be some
0 ≤ n < δ such that R′(n). If there are no upper bounds for x in R(x) either, then R(x)
contains no ≤-atoms, R′ = R, and hence R(n). Otherwise let U be the set of all upper
bounds of x in R(x), let m be the minimum of U and let t = n− ((n−m) div δ + 1)δ.
We show R(t). From R′(n) and the definition of R′ and t, R′(t) follows. All ≤-atoms
must be upper bound constraints x ≤ u and hence m ≤ u. Because (n−m) mod δ < δ
we obtain t ≤ m ≤ u. Thus t satisfies all ≤-atoms, and hence R(t).

Now assume that R(z) for some z. In this direction it is important to note that
(non)divisibility atoms a(x) are cyclic in their divisor d, i.e. a(x) is equivalent with
a(xmod d) because the coefficient of x is 1. This carries over to any multiple of d, in
particular δ. If L = ∅ we obtain R′(z mod δ) with 0 ≤ z mod δ < δ as required because
R′(x) consists only of (non)divisibility atoms. If L 6= ∅ we show R(t) where t = m + n

where m is the maximum of L and n = (z−m) mod δ. Let a(x) be some atom in R(x).
If a is a lower bound atom for x, a(t) follows because t ≥ m and m is the maximum
of L. If a is an upper bound atom for x, a(t) follows because t ≤ z and a(z). If a is a
(non)divisibility atom, a(t) follows from a(z) because t mod δ = z mod δ.

7.3. Formalization

The above algorithm consist of two steps which we implement separately. First the head
coefficients of a list of atoms are set to 1 or -1 and the divisibility predicate is added:

hd-coeffs1 as =
(let m = zlcms (map hd-coeff as) in Dvd m 0 [1]·map (hd-coeff1 m) as)

where zlcms computes the positive lcm of a list of integers, hd-coeff extracts the head
coefficient from an atom (see §7.1), and hd-coeff1 sets the head coefficient of one atom
to 1 or -1:

hd-coeff1 m (Le i (k·ks)) =
(let m ′= m div |k| in Le (m ′ ∗ i) (sgn k·m ′ ∗s ks))
hd-coeff1 m (Dvd d i (k·ks)) =
(let m ′= m div k in Dvd (m ′ ∗ d) (m ′ ∗ i) (1·m ′ ∗s ks))
hd-coeff1 m (NDvd d i (k·ks)) =
(let m ′= m div k in NDvd (m ′ ∗ d) (m ′ ∗ i) (1·m ′ ∗s ks))

sgn i ≡ if i = 0 then 0 else if 0 < i then 1 else − 1

We prove that hd-coeffs1 leaves the interpretation unchanged:

Lemma 8 If ∀ a∈set as. hd-coeff a 6= 0 then (∃ x. ∀ a∈set as. IZ a (x·e)) = (∃ x. ∀ a∈set
(hd-coeffs1 as). IZ a (x·e)).

In the second step the actual quantifier elimination is performed:

qe-pres as =
(let ds = [a←as. is-dvd a]; d = zlcms(map divisor ds); ls = lbounds as
in if ls = []

then Disj [0..d−1] (λn. list-conj(map (Atom ◦ asubst n []) ds))
else Disj ls (λ(i,ks).

Disj [0..d−1] (λn. list-conj(map (Atom ◦ asubst (i+n) (−ks)) as))))

where is-dvd a is true iff a is of the form Dvd or NDvd, and lbounds collects the lower
bounds for variable 0, lbounds as = [(i,ks). Le i (k·ks)← as, k>0], and asubst is substi-
tution:

asubst i ′ ks ′ (Le i (k·ks)) = Le (i − k ∗ i ′) (k ∗s ks ′+ ks)
asubst i ′ ks ′ (Dvd d i (k·ks)) = Dvd d (i + k ∗ i ′) (k ∗s ks ′+ ks)
asubst i ′ ks ′ (NDvd d i (k·ks)) = NDvd d (i + k ∗ i ′) (k ∗s ks ′+ ks)

The following lemma shows that asubst is indeed substitution:

IZ (asubst i ks a) xs = IZ a ((i + 〈ks,xs〉)·xs)

The actual quantifier elimination procedure is the lifted composition of the two basic
steps:

pres-qe = lift-dnf-qe (qe-pres ◦ hd-coeffs1)

7.4. Correctness

The main correctness theorem is

Theorem 3 If ∀ a∈set as. divisor a 6= 0 and ∀ a∈set as. hd-coeff-is1 a then
I (qe-pres as) xs = (∃ x. ∀ a∈set as. IZ a (x·xs)).

Its proof was given in §7.2. Predicate hd-coeff-is1 a is true iff the head coefficient of a is
1 or -1. Combining this theorem with Lemma 8 (and the lemma that hd-coeff1 establishes
hd-coeff-is1) yields: If ∀ a∈set as. divisor a 6= 0 and ∀ a∈set as. hd-coeff a 6= 0 then I
((qe-pres ◦ hd-coeffs1) as) e = (∃ x. ∀ a∈set as. IZ a (x·e)). Because depends0 a =
(hd-coeff a 6= 0) and anormal a = (divisor a 6= 0), Lemma 7 yields as a corollary:

normal ϕ =⇒ I (pres-qe ϕ) xs = I ϕ xs

This requires an easy (qfree ((qe-pres ◦ hd-coeffs1) as) and a tedious lemma:
if ∀ a∈set as. hd-coeff a 6= 0 ∧ divisor a 6= 0 then normal((qe-pres◦hd-coeffs1) as).

8. Related Work

This paper is an outgrowth of [9]. One of the many differences of the two papers is the
replacement of Cooper’s NNF-based algorithm [11] for Presburger arithmetic by a DNF-
based one. These two algorithms are related to each other like Ferrante and Rackoff’s
is to Fourier’s. One can also view this article as translating some of the programs in
Harrison’s forthcoming textbook [20] from OCaml to HOL and verifying them (and a
number of additional ones).

Another popular quantifier elimination method for Presburger arithmetic is due to
Pugh [30] and takes Fourier’s method as a starting point. Linear arithmetic over both reals
and integers also admits quantifier elimination [32]. Chaieb reflected this algorithm in
Isabelle [7]. The decision problem for first-order arithmetic theories can also be solved by
automata theoretic methods. Büchi [6] initiated this approach for Presburger arithmetic.
It was later extended to mixed integer and real arithmetic [4].

An LCF-style quantifier elimination procedure for real closed fields has been imple-
mented by McLaughlin [25], a reflective version of Collin’s CAD method [10] has been
implemented but only partly verified by Mahboubi [24].

The special case of decision procedures for quantifier free linear real arithmetic has
received an enormous amount of attention for its practical relevance and because it is
solvable in polynomial time. In particular it is possible to generate short certificates that
can be checked quickly (e.g. [3]).

Acknowledgements

Amine Chaieb helped me to understand quantifier elimination. He and John Harrison
were constant sources of ideas. Clemens Ballarin, Florian Haftmann and Makarius Wen-
zel conceived and implemented locales and helped me to use them.

References

[1] C. Ballarin. Locales and locale expressions in Isabelle/Isar. In S. Berardi, M. Coppo, and F. Damiani,
editors, Types for Proofs and Programs (TYPES 2003), volume 3085 of Lect. Notes in Comp. Sci., pages
34–50. Springer-Verlag, 2004.

[2] C. Ballarin. Interpretation of locales in Isabelle: Theories and proof contexts. In J. Borwein and
W. Farmer, editors, Mathematical Knowledge Management (MKM 2006), volume 4108 of Lect. Notes
in Comp. Sci., pages 31–43. Springer-Verlag, 2006.

[3] F. Besson. Fast reflexive arithmetic tactics the linear case and beyond. In T. Altenkirch and C. McBride,
editors, Types for Proofs and Programs (TYPES 2006), volume 4502 of Lect. Notes in Comp. Sci., pages
48–62. Springer-Verlag, 2007.

[4] B. Boigelot, S. Jodogne, and P. Wolper. An effective decision procedure for linear arithmetic over the
integers and reals. ACM Trans. Comput. Log., 6:614–633, 2005.

[5] R. S. Boyer and J. S. Moore. Metafunctions: proving them correct and using them efficiently as new
proof procedures. In R. Boyer and J. Moore, editors, The Correctness Problem in Computer Science,
pages 103–184. Academic Press, 1981.

[6] J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundlagen Math.,
6:66–92, 1960.

[7] A. Chaieb. Verifying mixed real-integer quantifier elimination. In U. Furbach and N. Shankar, edi-
tors, Automated Reasoning (IJCAR 2006), volume 4130 of Lect. Notes in Comp. Sci., pages 528–540.
Springer-Verlag, 2006.

[8] A. Chaieb and T. Nipkow. Verifying and reflecting quantifier elimination for Presburger arithmetic. In
G. Stutcliffe and A. Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR 2005), volume 3835 of Lect. Notes in Comp. Sci., pages 367–380. Springer-Verlag, 2005.

[9] A. Chaieb and T. Nipkow. Proof synthesis and reflection for linear arithmetic. Technical report, Institut
für Informatik, Technische Universität München, 2006. Submitted for publication.

[10] G. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In
Second GI Conference on Automata Theory and Formal Languages, volume 33 of Lect. Notes in Comp.
Sci., pages 134–183. Springer-Verlag, 1976.

[11] D. Cooper. Theorem proving in arithmetic without multiplication. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 7, pages 91–100. Edinburgh University Press, 1972.

[12] H. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.
[13] J. Farkas. Theorie der einfachen Ungleichungen. Journal für die reine und angewandte Mathematik,

124:1–27, 1902.
[14] J. Ferrante and C. Rackoff. A decision procedure for the first order theory of real addition with order.

SIAM J. Computing, 4:69–76, 1975.
[15] J. B. J. Fourier. Solution d’une question particulière du calcul des inégalités. In G. Darboux, editor,

Joseph Fourier - Œuvres complétes, volume 2, pages 317–328. Gauthier-Villars, 1888–1890.
[16] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: a Mechanised Logic of Computation, vol-

ume 78 of Lect. Notes in Comp. Sci. Springer-Verlag, 1979.
[17] B. Grégoire and X. Leroy. A compiled implementation of strong reduction. In Int. Conf. Functional

Programming, pages 235–246. ACM Press, 2002.
[18] F. Haftmann and T. Nipkow. A code generator framework for Isabelle/HOL. In K. Schneider and

J. Brandt, editors, Theorem Proving in Higher Order Logics: Emerging Trends. Department of Computer
Science, University of Kaiserslautern, 2007.

[19] F. Haftmann and M. Wenzel. Constructive type classes in Isabelle. In T. Altenkirch and C. McBride,
editors, Types for Proofs and Programs (TYPES 2006), volume 4502 of Lect. Notes in Comp. Sci., pages
160–174. Springer-Verlag, 2007.

[20] J. Harrison. Introduction to Logic and Automated Theorem Proving. Cambridge University Press.
Forthcoming.

[21] J. Harrison. A HOL theory of Eucledian space. In J. Hurd and T. Melham, editors, Theorem Proving
in Higher Order Logics, TPHOLs 2005, volume 3603 of Lect. Notes in Comp. Sci., pages 114–129.
Springer-Verlag, 2005.

[22] J. Harrison. Verifying nonlinear real formulas via sums of squares. In K. Schneider and J. Brandt,
editors, Theorem Proving in Higher Order Logics, TPHOLs 2007, volume 4732 of Lect. Notes in Comp.
Sci., pages 102–118. Springer-Verlag, 2007.

[23] C. Langford. Some theorems on deducibility. Annals of Mathematics (2nd Series), 28:16–40, 1927.
[24] A. Mahboubi. Contributions à la certification des calculs sur R : théorie, preuves, programmation. PhD

thesis, Université de Nice, 2006.
[25] S. McLaughlin and J. Harrison. A proof-producing decision procedure for real arithmetic. In

R. Nieuwenhuis, editor, Automated Deduction — CADE-20, volume 3632 of Lect. Notes in Comp. Sci.,
pages 295–314. Springer-Verlag, 2005.

[26] T. Motzkin. Beiträge zur Theorie der linearen Ungleichungen. PhD thesis, Universität Basel, 1936.
[27] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order Logic,

volume 2283 of Lect. Notes in Comp. Sci. Springer-Verlag, 2002. http://www.in.tum.de/∼nipkow/
LNCS2283/.

[28] S. Obua. Proving bounds for real linear programs in Isabelle/HOL. In J. Hurd, editor, Theorem Proving
in Higher Order Logics (TPHOLs 2005), volume 3603 of Lect. Notes in Comp. Sci., pages 227–244.
Springer-Verlag, 2005.

[29] M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in
welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du I Congrès de Mathé-
maticiens des Pays Slaves, pages 92–101, 1929.

[30] W. Pugh. The omega test: a fast and practical integer programming algorithm for dependence analysis.
In Proc. 1991 ACM/IEEE Conference on Supercomputing, pages 4–13. ACM Press, 1991.

[31] A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of California Press,
1951.

[32] V. Weispfenning. Mixed real-integer linear quantifier elimination. In International Symposium Symbolic
and Algebraic Computation (ISSAC), pages 129–136. ACM Press, 1999.

