
Verifying pCTL Model Checking

Johannes Hölzl? and Tobias Nipkow

www.in.tum.de/~hoelzl www.in.tum.de/~nipkow
Institut für Informatik, Technische Universität München

Abstract. Probabilistic model checkers like PRISM check the satisfia-
bility of probabilistic CTL (pCTL) formulas against discrete-time Markov
chains. We prove soundness and completeness of their underlying algo-
rithm in Isabelle/HOL. We define Markov chains given by a transition
matrix and formalize the corresponding probability measure on sets of
paths. The formalization of pCTL formulas includes unbounded cumu-
lated rewards.

1 Introduction

Modeling systems as discrete-time Markov chains is a popular technique to an-
alyze probabilistic behavior of network protocols, algorithms, communication
systems or biological systems. Probabilistic model checkers, like PRISM [13] or
MRMC [10], interpret Markov chains and analyze quantitative properties, spec-
ified as probabilistic CTL (pCTL) formulas [6]. In this paper we formalize the
background theory and the algorithm used by these probabilistic model checkers
in the proof assistant Isabelle/HOL [20].

Our (almost) executable model checker is certainly not a rival to any of the
existing model checkers. Instead, our work should be seen as a foundational
contribution that paves the way towards a fruitful combination of automatic
and interactive verification methods. Possible application scenarios include the
following: interactive verification of parameterized systems, or a verified checker
that checks individual runs of a hand coded model checker that produces a
certificate. We discuss these in more detail in the conclusion. Quite apart from
applications, we see our work as another building block in the larger undertaking
of formalizing key areas of computer science (as is currently happening with
compilers [15] and operating system kernels [11]).

This is the first time probabilistic model checking has been formalized in
a proof assistant. So far, the necessary mathematical background theories were
simply not available. We start from our recent formalization of measure theory in
Isabelle/HOL, including the Lebesgue integral and Caratheodory’s theorem [8].
Based on this, Section 3 formalizes the following material:

– infinite products of probability spaces,
– Markov chains defined by a transition matrix and the existence of their

probability measure on paths,
? Supported by the DFG Graduiertenkolleg 1480 (PUMA).

– properties of paths reaching a set of states almost everywhere.

Now we have the necessary theory to define, in Section 4, syntax, semantics and a
model checking algorithm for pCTL, and verify the algorithm wrt the semantics,
following the standard literature [12].

2 Related Work

There are a number of formalizations and proofs of aspects of model checking:
verification of a model checker for the modal µ-calculus [23], of partial order
reduction [3], of two innermost loops of a model checker for real time CTL [21],
of a CTL model checker [20], of a model checker for dynamic pushdown net-
works [14], and of the translation from LTL to Büchi automata [22]. But none
involve probabilities.

The formalization of probability theory in HOL starts with Hurd’s thesis [7].
He introduces measure theory, proves Caratheodory’s theorem about the exis-
tence of measure spaces and uses it to introduce a probability space on infinite
boolean sequences. He provides methods to generate discrete random variables
with Bernoulli or uniform distribution. Based on this work Liu et al. [17] formal-
ize the concept of Markov chains. Their theory does not provide everything we
need: it lacks a probability measure on paths, and their measure space needs to
be the type universe whereas we relax it to sets. Coble [4] and Mhamdi et al. [18]
introduce generalized measure spaces on sets, the extended real numbers R and
the Lebesgue integral. However, there is no theorem to show the existence of a
measure space.

3 Foundations

3.1 Isabelle/HOL

The formalizations presented in this paper are done in the Isabelle/HOL theorem
prover. In this section we give an overview of our syntactic conventions.

The term syntax follows the λ-calculus, i.e. function application is juxtaposi-
tion as in f t. The notation t :: τ means that t has type τ . Types are built from
the base types B (booleans), N (natural numbers), R (reals), R = R∪{∞,−∞},
and type variables (α, β etc) via the function type constructor⇒. In particular,
(infinite) sequences have type N⇒ α and are usually denoted by ω.

Prepending an element x to a sequence ω is written as x·ω, i.e. (x·ω) 0 = x
and (x·ω) (n+ 1) = ω n. The while-combinator while :: (α⇒ B)⇒ (α⇒ α)⇒
α⇒ α satisfies the standard recursion equation:

while P f x = if P x then while P f (f x) else x

We write×i∈I A i := {f | ∀i ∈ I. f i ∈ A i}1 for the dependent function
space (which is a set, not a type in HOL); if A is constant we write I → A.

1 We use× for products of sets, and
∏

for products of numbers.

2

To represent non-total functions in HOL we use the option data type

α option = Some α | None

whose values are Some x for x :: α and None. We introduce the option-monad to
combine non-total functions to new non-total functions. The infix bind-operator
>>= is defined by the equations ((Some x) >>= f) = f x and (None >>= f) =
None. Notation return is equal to Some. Similar to Haskell’s monad-syntax we
use the do-syntax to represent chains of bind-operators, for example:

do x← f r >>= (λx.
y ← g x =⇒ g x >>= (λy.
let z = h x y Some (x+ y + h x y)))
return (x+ y + z)

We use the option-monad not only to represent non-total functions, but also
to write the algorithm in a more imperative style. The only non-total function
in the pCTL model checking algorithm is Gauss-Jordan elimination.

3.2 Probability space

Probabilistic CTL formulas are defined in terms of probabilities on sets of paths.
To define a probability space on paths we use the measure theory formalized
in [8]. This provides us with the concepts of extended real numbers, σ-algebras,
measure spaces, the Lebesgue integral, the Lebesgue measure and, as a way to
construct measures, Caratheodory’s theorem. We write B for the Borel sets, σ(A)
for the σ-algebra generated by A, f ∈ A1 →M A2 for a measurable function f
mapping from A1 to A2,

∫
ω
f ωdµ for the Lebesgue integral, and AEµ ω. P ω if

the predicate P holds almost everywhere, i.e. the complement of P is a subset
of a null set in µ. In the following two sections we will introduce the infinite
product of probability spaces and based on this a probability measure on paths
in Markov chains. This was not yet formalized in [8], and we are not aware of
any formalization of these concepts in interactive theorem provers.

A probability space is a measure space which assigns 1 to the entire space:

Definition 1. Probability space

prob-space (Ω,A, µ) :←→ measure-space (Ω,A, µ) ∧ µ Ω = 1

Our first step in introducing a probability space for paths is to formalize
the infinite product of probability spaces (Ω i,A i, µ i), for i in some index set
I. We used the proof in [2] as the base of our formalization of infinite prod-
ucts. The space of infinite products of probability spaces is the function space
ΩP :=×i∈I Ω i. The generating set of infinite products is the collection of all
embeddings of finite products:

Definition 2. Embedding of finite products and the product σ-algebra AP
emb J F :=

{
ω ∈ ΩP | ∀i ∈ J. ω i ∈ F i

}
AP := σ

({
emb J F | finite J ∧ J ⊆ I ∧ (∀i ∈ J. F i ∈ A i)

})
3

With Caratheodory’s theorem we show that a probability measure on AP
exists which maps emb J F to the product of the real numbers µ i (F i), the
property we want to have from a product space.

Theorem 3. Probability measure on AP
There exists a unique probability measure µP on AP

prob-space (ΩP ,AP , µP)

with: If J ⊆ I is finite and F ∈×i∈J A i then

µP (emb J F) =
∏
i∈J

µ i (F i) .

We choose such a probability measure µP with I := N and A i := λλ[0;1[,
the Borel-Lebesgue measure restricted to [0; 1[. Hence µP is now a probability
measure on sequences N→ [0; 1[. From the equation in Theorem 3 we have

µP

(×
i

F i
)
=
∏
i

λλ[0;1[(F i) .

Hence the elements in the product space induce countably many, independent
random variables with a continuous, uniform distribution. The formalization
in [7] only provides a probability measure on sequences N → B, which induces
random variables with a discrete distribution.

3.3 Markov chains

We introduce Markov chains as probabilistic automata, i.e. as discrete-time time-
homogeneous finite-space Markov processes. A Markov chain is defined by its
state space S and an associated transition matrix τ . We assume no initial dis-
tribution or starting state, however when measuring paths we always provide a
starting state. A path on a Markov chain is a function N → S, i.e. an infinite
sequence of states visited in the Markov chain.

Definition 4. Markov chain

markov-chain S τ :←→ finite S ∧ S 6= ∅
∧ ∀s, s′ ∈ S. 0 ≤ τ s s′
∧ ∀s ∈ S.

(∑
s′∈S τ s s

′) = 1

For the rest of the paper we assume a Markov chain with state space S and
transition matrix τ . We write E(s) for the set of all successor states, i.e. all
s′ ∈ S with τ s s′ 6= 0. Note that a path ω does not require that ω (i + 1) is a
successor of ω i. Our first goal is to define a probability space (Ω, T , µs) on the
space of all paths N → S. We call the set of all paths starting with a common
prefix, namely ω′, Cy ω′ n := {ω ∈ N→ S | ∀i < n. ω i = ω′ i}, a cylinder. The
probability measure on paths assigns to cylinders the product of the transition
probabilities:

4

Definition 5. Path σ-algebra, and pre-measure µ′P

Ω := N→ S
T := σ({Cy ω n | ω ∈ Ω})

∀ω ∈ N→ S, s ∈ S, n. µ′s (Cy ω n) :=
∏
i<n τ ((s·ω) i) (ω i)

Note that µ′s explicitly carries the starting state, hence we assign to Cy ω n the
transition probability for the steps s→τ ω 0→τ ω 1→τ · · · →τ ω (n−1). Before
we use this as a probability space we need to show that µ′s can be extended to
a probability measure. To this end, we provide a function path which constructs
a path out of a sequence N→ [0; 1[, and show that this function is measurable.

As S is finite and not empty we know that there exists a bijective function
mapping from {0, . . . , |S| − 1} to S, we define order to be such a function. Using
order we introduce select which splits [0; 1[into disjoints intervals of size τ s s′,
see Fig. 1. The recursive function path now walks along a sequence X of values
in the unit interval and selects the next state.

s

s1

s2

s3

x

0 1

τ s s1
τ s s1

+τ s s2

Fig. 1. The next state after s selected by x is s2 = select s x

Definition 6. Path selection

select s x := order
(
min

{
i | x <

∑
j≤i τ s (order j)

})
path s X 0 := select s (X 0)
path s X (n+ 1) := select (path s X n) (X (n+ 1))

The set T s s′ := {x ∈ [0; 1[| select s x = s′} is measurable and λλ[0;1[(T s s′) =
τ s s′. We represent the inverse image of cylinders over path with emb and T :

Lemma 7. For all states s, paths ω, and prefix length n:{
ω ∈ ΩP | path s ω ∈ Cy ω n

}
= emb {0, 1, . . . , n− 1} (λi. T ((s·ω) i) (ω i))

As Cy ω n are the generators of T and emb is measurable in AP , path s is
in AP →M T . With this we show that µs A := µP

{
ω ∈ ΩP | path s ω ∈ A

}
defines a probability measure, and with Lemma 7 we show that µP extends µ′P .

5

Theorem 8. µs is the unique probability measure on paths which extends µ′s

prob-space (Ω, T , µs)

∀ω ∈ Ω, s ∈ S, n. µs (Cy ω n) =
∏
i<n τ ((s·ω) i) (ω i)

The Markov chain induces iterative equations on the measure µs, the Lebesgue
integral and the AE-quantifier, relating properties about s to properties of E(s),
states that are not successors of s are ignored. These equations are often useful
in inductive proofs, and already give a hint how to implement a probabilistic
model checker. In the rest of the paper we write the AE-quantifier on the path
measure µs as AEs ω. P ω instead of AEµs

ω. P ω.

Theorem 9. Iterative equations for µs, the Lebesgue integral and AEs
If s, A, P , and f are measurable, i.e. s is in S, A and {ω ∈ Ω | P ω} are in

T , and f is in T →M B then the following equations hold:

µs A =
∑

s′∈E(s)

τ s s′ · µs′{ω ∈ Ω | s′·ω ∈ A}∫
ω

f ωdµs =
∑

s′∈E(s)

τ s s′ ·
∫
ω

f (s′·ω)dµs′

AEs ω. P ω ←→ ∀s′ ∈ E(s). AEs′ ω. P (s′·ω)

We prove the iterative equation for µs by proving the equality when A is a
cylinder, with the uniqueness of measures [8] follows that they are equal for
all measurable sets A. Based on this the integral equation is shown for simple
functions, and then for B-measurable functions.

A state s′ is reachable in Φ starting in s iff there is a non-zero probability to
reach s′ by only going through the specific set of states Φ. The starting state s
and the final state s′ are not necessary in Φ.

Definition 10. Reachability of states

reachable Φ s := {s′ ∈ S | ∃ω ∈ Ω,n. (∀i ≤ n. ω i ∈ E((s·ω) i)) ∧
(∀i < n. ω i ∈ Φ) ∧ ω n = s′}

Reachability is a purely qualitative property, as it is defined on the graph of
non-zero transitions. Hence an upper bound R of reachable Φ s is given when all
successor states of R ∩ Φ are in R again.

Lemma 11. Sets closed under E contain reachable

s ∈ R ∩ Φ ∧ (∀t ∈ R ∩ Φ. E(t) ⊆ R) ∧R ⊆ S ∧ Φ ⊆ S
−→ reachable Φ s ⊆ R

The until-operator introduces a similar concept on paths. Its definition does
not assume that a state is a successor state of the previous one, as this is already
ensured by the probability measure µs.

6

Definition 12. Until on paths

until Φ Ψ := {ω ∈ Ω | ∃n. (∀i < n. ω i ∈ Φ) ∧ ω n ∈ Ψ}

Can we compute the probability of µs(until Φ Ψ) by only using reachable? It
is easy to show that µs(until Φ Ψ) = 0 iff (reachable Φ s)∩Ψ = ∅. But is there also
a method to characterize µs(until Φ Ψ) = 1 in terms of reachable? For this we
need to introduce state fairness. A path ω is state fair w.r.t. s and t if t appears
infinitely often as the successor of s in ω, provided that s appears infinitely often.
The definition and proofs about state fairness are based on Baier [1].

Definition 13. State fairness

fair s t :=
{ω ∈ Ω | (∃n. ∀i ≥ n. ω i 6= s) ∨ (∀n. ∃i ≥ n. ω i = s ∧ ω (i+ 1) = t)}

Baier [1] defines state fairness and a more general version called p-fairness, but
we only need state fairness. We show that almost every path is state fair for each
state and its successors.

Lemma 14. Almost every path is state fair

∀s ∈ S. AEs ω. ∀s′ ∈ S. ∀t′ ∈ E(s′). s·ω ∈ fair s′ t′

Using this we prove that starting in a state s almost every path fulfills
until Φ Ψ if (1) all states reachable by Φ are in Φ or Ψ and (2) each state
reachable from s has again the possibility to reach Ψ . This theorem allows us to
prove that until Φ Ψ holds almost everywhere by a reachability analysis on the
graph, and hence µs(until Φ Ψ) = 1.

Theorem 15. Reachability implies until

s ∈ Φ ∧ Φ ⊆ S ∧ reachable (Φ \ Ψ) s ⊆ Φ ∪ Ψ
∧ ∀t ∈ (reachable (Φ \ Ψ) s ∪ {s}) \ Ψ. reachable (Φ \ Ψ) t ∩ Ψ 6= ∅
−→ AEs ω. s·ω ∈ until Φ Ψ

The hitting time on a path ω is the first index at which a state from a set Φ
occurs.

Definition 16. hitting-time Φ ω = min{i | ω i ∈ Φ}

For the computation of rewards it is important to know if the expected hitting
time is finite. Standard textbook proofs assume an irreducible chain. We took
such a proof from [16], and adapted it to our setting. Instead of a irreducible
chain we assume Φ is always reached from s. We show that the expected hitting
time of Φ for paths starting in s is finite if almost every path starting in s reaches
Φ.

Theorem 17. Finite expected hitting time
If s is in S and AEs ω. s·ω ∈ until S Φ then∫

ω

hitting-time Φ (s·ω)dµs 6=∞

7

4 Verifying pCTL model checking

4.1 pCTL formulas

We do not introduce a labeled Markov chain as [12] does, instead we define labels
to be subsets of S. We introduce a Markov chain with rewards as a Markov
chain with ρ, the rewards associated per state, and ι, the rewards associated per
transitions. These rewards are non-negative, real numbers.

Definition 18. Markov chain with rewards
rewarded-markov-chain S τ ρ ι := markov-chain S τ

∧ ∀s ∈ S. 0 ≤ ρ s
∧ ∀s, s′ ∈ S. 0 ≤ ι s s′

For the rest of the paper we assume a Markov chain with rewards, with the
state space S, the transition matrix τ , and the reward functions ρ and ι.

The pCTL syntax is introduced as an inductive data type.

Definition 19. pCTL syntax

sform := label P(S) | ¬sform | sform ∧ sform
| P ./R pform | E./R eform

pform := X sform | sform U≤N sform | sform U∞ sform
eform := C<N | I=N | F∞ sform

./ := ≤ | < | = | > | ≥

Informally, a state s fulfills P ./r Φ (or E./r Φ) if the probability (expected
reward) of the paths starting in s and fulfilling Φ is related with ./ r. A path
fulfills X Φ if its second state fulfills Φ. A path fulfills Φ U≤k Ψ (or Φ U∞ Ψ ,
the unbounded until) if it stays in Φ, until it reaches Ψ in at least k steps (at
some step). The reward C<k sums all state and transitions rewards for the first
k steps, I=k is the state reward at step k, and the unbounded cumulated reward
F∞ Φ sums rewards until Φ is reached, if it is never reached it is infinity. We
define now semantics to assign a formal meaning to the pCTL syntax, cf. [6,12].

Definition 20. pCTL semantics

Jlabel S′K := {s ∈ S | s ∈ S′}
J¬ ΦK := S \ JΦK
JΦ ∧ ΨK := JΦK ∩ JΨK
JP ./r ΦK := {s ∈ S. µs{ω ∈ Ω | JΦ, s·ωKP } ./ r}
JE./r ΦK := {s ∈ S |

∫
ω
JΦ, s·ωKEdµs ./ r}

JX Φ,ωKP :←→ ω 1 ∈ JΦK
JΦ U≤k Ψ, ωKP :←→ ∃n ≤ k. ω n ∈ JΨK ∧ (∀i < n. ω i ∈ JΦK)
JΦ U∞ Ψ, ωKP :←→ ∃n. ω n ∈ JΨK ∧ (∀i < n. ω i ∈ JΦK)

JC<k, ωKE :=
∑
i<k ρ (ω i) + ι (ω i) (ω (i+ 1))

JI=k, ωKE := ρ (ω k)

JF∞ Φ, ωKE :=

{
JC<hitting-time JΦK ω, ωKE if ∃i. ω i ∈ JΦK
∞ otherwise

8

We see that JΦK is a subset of S and hence also finite. The set {ω ∈ Ω |
JΦ, ωKP } is measurable in T , and λω. JΦ, ωKE ∈ T →M B, i.e. is Borel-measurable
on T . So the probability for JP ./r ΦK, and the integral for JE./r ΦK are well-
defined.

4.2 Verifying the algorithm

The model checking algorithm Sat for pCTL formulas is based on three methods:

– Iterative methods to compute the probability of bounded until and the ex-
pectation of bounded rewards

– Reachability analysis on the graph of non-zero transitions to compute the
sets JP=0(Φ U∞ Ψ)K and JP=1(Φ U∞ Ψ)K.

– Solving systems of linear equations for the unbounded until operator and un-
bounded rewards. This requires the previous methods to construct a system
of linear equations with a unique solution.

Solving systems of linear equations may (in general) fail. To cater for this pos-
sibility we use option values in our computation and formulate our algorithm
with the help of the do-syntax (recall Section 3.1).

The definition and the correctness proof of the algorithm Sat is by induction
over the syntax of pCTL formulas. For a better overview of the formalization
we split the definition of Sat into multiple parts interleaved with the necessary
auxiliary definitions. The final soundness theorem states that Sat Φ returns a
result and computes the set of states s for which s ∈ JΦK holds, i.e. Sat Φ =
Some JΦK.

The definition of Sat on label S′, ¬Φ, Φ∧Ψ , and P ./r(XΦ) is easy. The sound-
ness proof of the first three is done automatically, the last one needs Theorem 9.

Definition 21. Computing pCTL-satisfiability (1)

Sat (label S′) := return {s ∈ S | s ∈ S′}
Sat (¬ Φ) := do

F ← Sat Φ
return (S \ F)

Sat (Φ ∧ Ψ) := do
F1 ← Sat Φ
F2 ← Sat Ψ
return (F1 ∩ F2)

Sat (P ./r (X Φ)) := do
F ← Sat Φ
return

{
s ∈ S |

(∑
s′∈F τ s s

′) ./ r}
The iterative methods to compute bounded until (ProbUb k s S1 S2), cumu-

lative expectation (ExpC k s) and state expectation (ExpI k s) are simply defined
by recursion on the bounding value k. Soundness is proved by induction on the
bounding value k and using the iterative equations given by Theorem 9.

9

Definition 22. Computing pCTL-satisfiability (2)

ProbUb 0 s S1 S2 := if s ∈ S2 then 1 else 0
ProbUb (k + 1) s S1 S2 := if s ∈ S1 \ S2 then

∑
s′∈S τ s s

′ · ProbUb k s′ S1 S2

else (if s ∈ S2 then 1 else 0)

ExpC 0 s := 0
ExpC (k + 1) s := ρ s+

∑
s′∈S τ s s

′ · (ι s s′ + ExpC k s′)

ExpI 0 s := ρ s
ExpI (k + 1) s :=

∑
s′∈S τ s s

′ · ExpI k s′

Sat (P ./r (Φ U≤k Ψ)) := do
F1 ← Sat Φ
F2 ← Sat Ψ
return

{
s ∈ S | ProbUb k s F1 F2 ./ r

}
Sat (E./r (C<k)) := return

{
s ∈ S | ExpC k s ./ r

}
Sat (E./r (I=k)) := return

{
s ∈ S | ExpI k s ./ r

}
Our next step is to check the unbounded until operator. Here we compute

the probability PΦ,Ψ (s) := µs{ω ∈ Ω | JΦ U∞ Ψ, s·ωKP } for each state s by
setting up a system of linear equations. From Theorem 9 and the behavior of
the unbounded until operator we derive a system of linear equations for PΦ,Ψ (s).

PΦ,Ψ (s) =

∑
s′∈E(s) τ s s

′ · PΦ,Ψ (s′) if s ∈ Φ \ Ψ
1 if s ∈ Ψ
0 otherwise

We show that such a linear equation system has a unique solution, with two
conditions: (1) the solutions are equal on Ψ and (2) the solutions are equal in
all states which never reach Ψ , i.e. PΦ,Ψ (s) = 0. We proved this lemma following
the uniqueness proof in [6].

Lemma 23. Unique solution

Φ ⊆ S ∧ Ψ ⊆ N ⊆ S
∧ ∀s ∈ S. PΦ,Ψ (s) = 0 −→ s ∈ N
∧ ∀s ∈ S \N. l1 s− c s =

∑
s′∈S τ s s

′ · l1 s′
∧ ∀s ∈ S \N. l2 s− c s =

∑
s′∈S τ s s

′ · l2 s′
∧ ∀s ∈ N. l1 s = l2 s
−→ ∀s ∈ S. l1 s = l2 s

To find a solution of such a system of linear equations, we formalized Gauss-
Jordan elimination on matrices represented as functions [19]. Then we adapted
this to use states as indices instead of natural numbers. Correctness says that
if gauss-jordan M a returns Some x, then x is a solution to the equation system
M · x = a.

10

Lemma 24. Gauss-Jordan elimination

gauss-jordan M a = Some x −→ ∀s ∈ S.
(∑

s′∈SM s s′ · x s′
)
= a s

Before we use the uniqueness of our system of linear equationss, Lemma 23 re-
quires us to compute the states with PΦ,Ψ (s) = 0 before the algorithm builds the
system of linear equations. Prob0 computes the set of all states with PΦ,Ψ (s) > 0
and returns the complement. The set of all s with PΦ,Ψ (s) > 0 is computed by
starting with R = Ψ and adding states to R which are in Φ and are predeces-
sors of a state in R. With Lemma 11 we know that R contains all reachable
states, hence PΦ,Ψ (s) > 0 for all s ∈ R. The termination measure for the while-
combinator is the difference S \R, with each step either states are added, or the
loop terminates.

Definition 25. Compute JP=0(Φ U∞ Ψ)K

pred Φ R := {s ∈ Φ | R ∩ E(s) 6= ∅}
Prob0 Φ Ψ := S \ while (λR. ¬pred Φ R ⊆ R) (λR. R ∪ pred Φ R) Ψ

The system of linear equations solved by gauss-jordan M a needs to be in
the right form, i.e. the matrix M contains all variable coefficients and a all
constants. We introduce LES F to define the matrix of the linear equation system
l s = (

∑
s∈S τ s s

′ · l s′) + a s for s /∈ F , and l s = a s if s ∈ F .

Definition 26. Linear Equation System to Compute Unbounded Until

LES F r c := if r ∈ F then (if c = r then 1 else 0)
else (if c = r then τ r c− 1 else τ r c)

Combining all this we can finally compute the probability of a unbounded
until formula. We prove its soundness using Lemmas 24 and 23, and Theorem 9.

Definition 27. Computing pCTL-satisfiability (3)

Sat (P ./r (Φ U∞ Ψ)) := do
F1 ← Sat Φ
F2 ← Sat Ψ
p← gauss-jordan (LES (F2 ∪ Prob0 F1 F2))

(λs. if s ∈ F2 then 1 else 0)
return

{
s ∈ S | p s ./ r

}
The last equation of Sat computes the unbounded reward E./r(F∞ Φ). Sim-

ilar to the unbounded until operator, we introduce a system of linear equations
for RΦ(s) :=

∫
ω
JF∞ Φ, s·ωKEdµs. With Theorem 17 we know that RΦ(s) is fi-

nite if PS,Φ(s) = 1. If PS,Φ(s) < 1 there is a non-zero probability that Φ is never
reached, and hence RΦ(s) =∞.

RΦ(s) =

∑
s′∈E(s) τ s s

′ · (ρ s+ ι s s′ +RΦ(s
′)) if PS,Φ(s) = 1 ∧ s /∈ Φ

0 if s ∈ Φ
∞ otherwise

11

To be usable with LES, we rewrite the first equation into:

RΦ(s)−

ρ s+ ∑
s′∈E(s)

τ s s′ · ι s s′
 =

∑
s′∈E(s)

τ s s′ ·RΦ(s′) .

The Gauss-Jordan elimination we use works only on real numbers, luckily we
can replace ∞ by 0 and replace it again after we solved the equation system.
This is sound since for each s and s′ ∈ E(s) with RΦ(s′) = ∞ either s ∈ Φ or
RΦ(s) =∞ hold. The states s with PS,Φ(s) = 1 are computed by Prob1, building
on Prob0.

Definition 28. Compute JP=1(Φ U∞ Ψ)K

Prob1 Φ Ψ := Prob0 (Φ \ Ψ) (Prob0 Φ Ψ)

We know that the resulting states only reach states which again reach Ψ ,
hence the assumptions of Theorem 15 are fulfilled, and we know that Prob1 S Φ
is the set of all states s with PS,Φ(s) = 1. With all this, we can formalize the
last equation for Sat.

Definition 29. Computing pCTL-satisfiability (4)

Sat (E./r (F∞ Φ)) := do
F ← Sat Φ
let Y = Prob1 S F
l← gauss-jordan (LES (S \ (Y \ F)))

(λs. if i ∈ Y \ F then − (ρ s+ (
∑
s′∈S . τ s s

′ · ι s s′))
else 0)

let e = (λs. if s ∈ Y then l s else ∞)
return

{
s ∈ S | e s ./ r

}
Finally we show the soundness of Sat by induction on the structure of Φ. If

we assume that Sat terminates with a result F , then F is the same set as defined
by the semantic.

Theorem 30. Soundness of Sat

Sat Φ = Some F −→ JΦK = F

Now we turn to completeness. The only case in which Sat returns None is
when the Gauss-Jordan elimination does not find a unique solution. Hence we
need the property that if a unique solution exists, then gauss-jordan returns this
solution.

Theorem 31. Completeness of gauss-jordan
If there is a unique solution x for M · x = a:

∀s ∈ S.
∑
s′∈S

M s s′ · x s′ = a s

12

∀y.

(
∀s ∈ S.

∑
s′∈S

M s s′ · y s′ = a s

)
−→ ∀s ∈ S. x s = y s

then gauss-jordan returns a result:

∃x′. gauss-jordan M a = Some x′

With this and Lemma 23 we prove that Sat always returns a result:
Theorem 32. Completeness of Sat

∃F. Sat Φ = Some F .

Using Theorem 30 we finally show
Corollary 33. Soundness and completeness of Sat

Sat Φ = Some JΦK .

5 Discussion

We used the tutorial [12] as a guideline to formalize the pCTL model checking
algorithm. Most parts of the soundness proof are straightforward. Three parts,
however, required a more substantial formalization of the background theory:

– The correctness of Prob1 is based on Theorem 15, which required us to
formalize state fairness as found in [1].

– For the unbounded until and the unbounded rewards we solve a linear equa-
tion system. We needed to show that the solution of this equation system is
unique, for which we followed the original proof from [6].

– The unbounded reward for a state can only be characterized as a linear
equation if the reward is finite. We needed Theorem 17 to show that the
reward is finite, if the final states are almost always reached.

Technically, the largest difference between our work and Kwiatkowska et. al. [12]
is the construction of the probability space of paths: we use infinite products of
probability spaces, whereas they use Caratheodory on semi-rings of sets. We do
not need to show that the probability of cylinders is countably additive, this
is generically done for infinite products. We want to reuse the infinite prod-
ucts for continuous-time Markov chains and Markov decision processes. With
Caratheodory on semi-rings of sets it would be necessary to show countably
additivity for each of them. Nevertheless, we intend to formalize the latter con-
struction, too, as it is a valuable addition to our library.

The equations we give for the algorithm are not directly executable by the
code generator in Isabelle [5]. We use sets in our equations, and the adaption
of Gauss-Jordan elimination uses an arbitrary mapping from {0, . . . , |S| − 1} to
S. One method to obtain a executable version is to create a copy SatL of Sat
operating on lists instead of subsets of S. We assume as input a list of states
xs := [s0, s1, . . . sn], and define the Markov chains on S := set-of xs. It should
be straightforward to show that Sat Φ = Some F implies set-of (SatL Φ) = F .
The biggest hurdle is the while-combinator in Prob0 and the adaption of Gauss-
Jordan elimination.

13

6 Conclusion

The formalization of pCTL model checking in a proof assistant opens up a num-
ber of possible application scenarios:

Model checking as an Isabelle proof method. Once we have made our
pCTL model checker executable as explained in Section 5, we can call it as
an automated proof method for pCTL formulas within Isabelle. Of course
this is only practical for small examples, for larger ones an external pCTL
model checker would be used as an oracle that must be trusted.

Certified model checking. Result checking is an established technique where,
rather than verifying an algorithm, each execution of the algorithm is checked.
This requires the algorithm to return a checkable certificate. A particularly
successful example of such a system architecture is CeTA [24], a checker
for termination proofs which regularly finds bugs in termination proof tools.
CeTA is verified in Isabelle and an efficient Haskell program is extracted
that can check large proof certificates.

Verification of parametrized models. The Markov chain may depend on
parameters like the number of parallel processes. Such parameterized models
can be model checked only for fixed parameter values. Our theory allows one
to formalize and verify such parameterized models for all possible parameter
values interactively. As case studies we formalized IPv4 address allocation in
the ZeroConf protocol and anonymity of the Crowds protocol [9]. The for-
malizations we describe in Section 3 where essential for these case studies.

The formalization is available in the AFP [9,19]. It has about 4480 lines: 3670
lines for the formalization of DTMCs, 270 lines for Gauss-Jordan elimination,
and 1140 lines for pCTL model checking.

Our future goal is to formalize more probabilistic models with the corre-
sponding model checking algorithms, like pCTL for Markov decision processes,
continuous stochastic logic for continuous-time Markov chains and probabilistic
timed CTL for probabilistic timed automata.

References

1. Baier, C.: On the Algorithmic Verification of Probabilistic Systems. Habilitation,
Universität Mannheim (1998)

2. Bauer, H.: Probability Theory. de Gruyter (1995)
3. Chou, C.T., Peled, D.: Formal verification of a partial-order reduction technique

for model checking. Journal of Automated Reasoning 23(3-4), 265–298 (1999)
4. Coble, A.R.: Anonymity, Information, and Machine-Assisted Proof. Ph.D. thesis,

King’s College, University of Cambridge (2009)
5. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:

Blume, M., Kobayashi, N., Vidal, G. (eds.) Functional and Logic Programming
(FLOPS 2010). LNCS, vol. 6009, pp. 103–117. Springer (2010)

6. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Tech.
Rep. SICS/R90013, Swedish Institute of Computer Science (Dec 1994)

14

7. Hurd, J.: Formal Verification of Probabilistic Algorithms. Ph.D. thesis, University
of Cambridge (2002)

8. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: van
Eekelen, M.C.J.D., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) Interactive The-
orem Proving (ITP 2011). LNCS, vol. 6898, pp. 135–151 (2011)

9. Hölzl, J., Nipkow, T.: Markov models. In: Klein, G., Nipkow, T., Paulson,
L. (eds.) The Archive of Formal Proofs. http://afp.sf.net/entries/Markov_
Models.shtml (Jan 2012), formal proof development

10. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Performance Evaluation 68, 90–104
(2011)

11. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Win-
wood, S.: seL4: Formal verification of an OS kernel. In: Proc. 22nd ACM Sympo-
sium on Operating Systems Principles 2009. pp. 207–220 (2009)

12. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) Formal Methods for the Design of Computer, Com-
munication and Software Systems: Performance Evaluation (SFM 2007). LNCS,
vol. 4486, pp. 220–270 (2007)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilis-
tic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) Computer Aided
Verification (CAV 2011). LNCS, vol. 6806, pp. 585–591 (2011)

14. Lammich, P., Müller-Olm, M., Wenner, A.: Predecessor sets of dynamic pushdown
networks with tree-regular constraints. In: Computer Aided Verification (CAV
2009). LNCS, vol. 5643, pp. 525–539 (2009)

15. Leroy, X.: A formally verified compiler back-end. J. Automated Reasoning 43,
363–446 (2009)

16. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov chains and mixing times. AMS (2006)
17. Liu, L., Hasan, O., Tahar, S.: Formalization of finite-state discrete-time markov

chains in HOL. In: Bultan, T., Hsiung, P.A. (eds.) Automated Technology for
Verification and Analysis (ATVA 2011). LNCS, vol. 6996, pp. 90–104 (2011)

18. Mhamdi, T., Hasan, O., Tahar, S.: Formalization of entropy measure in HOL. In:
van Eekelen, M.C.J.D., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) Interactive
Theorem Proving (ITP 2011). LNCS, vol. 6898, pp. 233–248 (2011)

19. Nipkow, T.: Gauss-Jordan elimination for matrices represented as functions. In:
Klein, G., Nipkow, T., Paulson, L. (eds.) The Archive of Formal Proofs. http:
//afp.sf.net/entries/Gauss-Jordan-Elim-Fun.shtml (Aug 2011), formal proof
development

20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

21. Reif, W., Schellhorn, G., Vollmer, T., Ruf, J.: Correctness of efficient real-time
model checking. J. UCS 7(2), 194–209 (2001)

22. Schimpf, A., Merz, S., Smaus, J.G.: Construction of Büchi automata for LTL model
checking verified in Isabelle/HOL. In: Theorem Proving in Higher Order Logics
(TPHOLs 2009). LNCS, vol. 5674, pp. 424–439. Springer (2009)

23. Sprenger, C.: A verified model checker for the modal µ-calculus in Coq. In: Tools
and Algorithms for Construction and Analysis of Systems (TACAS 1998). LNCS,
vol. 1384, pp. 167–183. Springer (1998)

24. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Theorem Proving in Higher Order Logics (TPHOLs 2009). LNCS, vol. 5674, pp.
452–468. Springer (2009)

15

