PROTOTYPING PROOF CARRYING CODE

Martin Wildmoser, Tobias Nipkow
Institut fir Informatik, Technische Universitat Miinchen

wildmosm@in.tum.de, nipkow@in.tum.de

Gerwin Klein
National ICT Australia, Sydney

gerwin.klein@nicta.com.au

Sebastian Nanz
Yale University, Department of Computer Science

nanz@cs.yale.edu

Abstract

We introduce a generic framework for proof carrying code, developed and me-
chanically verified in Isabelle/HOL. The framework defines and proves sound
a verification condition generator with minimal assumptions on the underlying
programming language, safety policy, and safety logic. We demonstrate its us-
ability for prototyping proof carrying code systems by instantiating it to a simple
assembly language with procedures and a safety policy for arithmetic overflow.

1 Introduction

Proof Carrying Code (PCC), first proposed by Necula and L&E[fL2], is a scheme

for executing untrusted code safely. Figshows the architecture of a PCC system.
The code producer is on the left, the code receiver on the right. Both use a verification
condition generator (VCG) that relies on annotations in the program to reduce the
program to a logic formula. The logic used in annotations and proof isalfiety

logic, the property that is shown about the program issiety policy

. peee——— Annotated Program ~ peeecc=s »
Compiler N Interpreter
// \\

4 \\.

RAZ — - il Ve
Generator P Verification Gondition 3 Generator
7 AN
Theorem / \" Proof
Prover [=====" Proof Object T====="] " Checker
Figure 1. PCC Architecture

*supported in part by NSF grant CCR-0208618.

2

It is the responsibility of the producer to generate the annotations and a proof for the
formula the VCG constructs. They are then transmitted to the code receiver who again
runs the VCG and uses a proof checker to verify that the proof indeed fits the formula
produced by the VCG. Proof checking is much simpler and more efficient than proof
searching. The framework for PCC systems we present in this paper concentrates on
the safety critical receiver side. It has the following two main purposes and contribu-
tions: safety of the system and prototyping new safety logics. Proof checker, VCG,
and safety logic constitute the trusted code base of the PCC system. Proof checkers
are relatively small standard components of many logical frameworks. The VCG on
the other hand is large (several thousand lines of C code in current PCC sy§fems [
[13]) and complex (it handles annotations, produces complex formulae, and contains
parts of the safety policy). Our framework contains a VCG with a formal proof of
safety, mechanically checked in the theorem prover Isabelle/H®BL [The VCG is

not restricted to any particular machine language, safety policy, or safety logic. Addi-
tionally to the correctness of VCG and proof checker, we need the safety logic to be
sound. As a recent bu@]in the SpecialJ systen®] shows, this is not trivial. It is

not even immediately clear, what exactly a safety logic must satisfy to be sound. Our
framework makes the underlying assumptions on machine, policy, and logic explicit.
It also makes a simple, formally clear statement what it means for a safety logic to be
sound: if the formula produced by the VCG is derivable in the safety logic, the pro-
gram must be safe according to the safety policy. The framework reduces the workload
for showing soundness of a safety logic by giving sufficient conditions. Since the VCG
is directly executable and the framework reasonably easy to instantiate, it provides a
good platform for trying out, tuning, and analysing different safety policies and logics
for different target platforms.

Our approach is different from other work in the formal foundation of PCC by Appel
et al. [1] [2] or Hamid et al.] in that it works with an explicit, executable, and
verified VCG and not directly on the machine semantics or a type system. The focus
of the framework is on aiding logical foundations of PCC as the one started by Necula
and Schneckl4] and on encouraging the analysis of safety properties other than the
much researched type and memory safety. Necula and Schh8c&l$o present a
framework for VCGs. They work with a small, trusted core VCG that can be extended
by optimised plugins. We see our work as complementary to this development: the
core VCG could be proven sound within our framework, the technique of using safe,
optimised extensions can then be applied to that sound core. On a broader scale, our
approach is related to other techniques that impose safety policies on machine code
statically: Typed Assembly Languagt(], Mobile Ressource Guaranteed} pr Java
Bytecode Verification].

There are four levels in our PCC systems. The first level, the PCC framew®yk (8§
provides generic features and minimal assumptions. The second level is the platform
(83). Platform designers can provide a concrete instantiation of the framework with
respect to a specific programming language, safety policy, and safety logic. The third
level is the code producer who can now write and certify programs based on the in-
stantiated framework. We show this by certifying a concrete program.ir-ially,

also in &, we show how code receivers can check certified code within the framework.
The formalization in this paper was carried out in Isabelle/HOL, so we inherit some of
Isabelle’s syntax. Most of the notation is familiar from functional programming and
standard mathematics, we only mention a few peculiarities. Consing an eletoent

a listxsis written asx#xs Infix @ is the append operator, ard! n selects the-th

Prototyping Proof Carrying Code 3

element from the lisks The typeT1l = T2is the space of total functions froifri to
T2, and we frequently use the polymorphic option tyfzgatype ‘a option= None|
Some’a to simulate partiality in HOL, a logic of total function®onestands for an
undefined valueSome Xor a defined value.

2 Framework Definition

The components of a PCC system shown in Eigepend on three factors: program-
ming language, safety policy, and safety logic. The programming language defines
syntax and semantics for programs, the safety policy specifies the safety conditions
programs must satisfy, and the safety logic provides a formal notation and a deriva-
tion calculus for proving these conditions. Our framework consists of skeletons and
requirements for these three components and uses them to define and verify a generic
VCG.

2.1 Program Semantics

Our framework expects the semantics of the underlying programming language in
form of a functioneffS: ‘prog=- ((‘posx ‘men) x (‘posx ‘memn)) setwhich relates
runtime states of a program to their immediate successor states. States ar@taples

of type ‘pos x ‘'mem wherep denotes the current position in the control flow graph
andm s the machine’s memory, e.g., heap, stack and registers. $iroge ‘posand
‘memare type variables the representation of programs, positions and memory can be
instantiated as one likes.

2.2 Safety Logic
To specify and prove properties about programs we use a safety logic.

True,: form /\ :: form list= ‘form

False,:: form LL:Ja:: form = form=- form

E :: ‘prog = (‘posx ‘memn) = ‘form=- bool

F:: ‘prog = form =- bool

Every structure having constants for the truth val@iesi.e, and F'alse,, operators for
conjunction /\ and implication—>,, judgements for validity= and provability-

of formulae can be employed as a safety logic as long as it respects the assumptions
below. These assumptions only concern the semantics of the logical connectives. How
formulae or their proofs look like and what they mean, is left open. This depends on
how ‘form, - and = get instantiated.

assumptions

semTrueFIl,s = True, semFalseF-II,s = False,
semConjIl,si= /\ Fs = (V FesetFsILs=F)
semimplIL,s}= (A= B) = (II,sk= A— II,s|= B)

2.3 Safety Policy

Our framework expects the safety policy to be defined by means of the safety logic. We
assume that for each positiprin a programll a safety formulasafeFII p expresses
the conditions we want to hold whenever we repét runtime.

safeF:’prog = ‘pos=- form

4

In addition we assume that a safety logic forminigF II characterises all states under
which a progranil can be started.

initF::‘prog = ‘form

Now we can give a generic notion of safety for programs: A program is safe, if all
states(p,m) it reaches from some initial state are safe. Thafpisn) satisfies the
safety formulasafeFII p, which the platform dedicates to positipn

isSafell = (Vpy mp p m IL,(po,my) = initF II A
((Po,mo),(p,m)) € (effSIT)* — II,(p,m) |= safeFll p)

2.4 The Verification Condition Generator

The VCG is the core of our PCC framework. It takes a progfamand generates a
formulavcin the safety logic. If this formula is provable, then the program is safe at
runtime, i.e.isSafell holds. The structure of thec is determined by the program’s
control flow graph, which is a directed graph. Nodes denote program positions and can
be marked with annotations. Edges point to successor positions and are marked with
branch conditions. Fig2 shows a control flow graph. It can be seen as an abstraction
of the assembly prograf® which compares two variablésandY and eventually sets

X to the maximum of these two.

po: JLEX Y 2
pi: INC X
po: JMPB 2

Figure 2. control flow graph

(To extract parts of the control flow graph and to express the semantics of programs
by means of safety logic formulae and manipulations on these, our framework requires
various parameter functions:

anF: 'prog= (‘pos=- form option

succsF: ‘prog = ‘pos=- (‘posx ‘form) list
wpF:: ‘prog = ‘pos=- ‘pos=- (‘form = form)
domC: 'prog = ‘pos list ipc: ‘prog = ‘pos

With anF we access the annotatioremF II p returnsSome Aff position p in II is
annotated withA, otherwiseNone FunctionsuccsFyields the edges of the control
flow graph. Given a positiop in a programil the expressiosuccsFII p yields a list
of pairs(p’,B) wherep' is a possible successor pfandB is the branch condition for
the edge fronp to p’. The branch conditioB is a safety logic formula that charac-
terises the situations wheriis accessible fromp. For example ifiT jumps fromp to
eitherp’ or p’’ depending on a conditioB, thensuccsFII p should return something
like [(p’,C),(p"",— C)]. To reflect the semantics within the safety logic we wgs-,

a function for computing (weakest) preconditions. The fornwaide I p p’ Q is ex-
pected to characterises those stdfes) that have successor statgs,m’) satisfying
Q. The functiondomCis expected to yield the code domain of a program; this is a list

Prototyping Proof Carrying Code 5

of all positions with instructions. Finallipc is used to determine the initial program
counter.

(Thevcgconstructs the verification condition out of so called inductive safety for-
mulaeisafeFII p, which we generate individually for each positipin a programil.

We call a statép,m) inductively saféf it satisfies the inductive safety formula for
i.e.,II,(p,m) = isafeFII p. Fig. 3 definessafeFII p. The wellformedness constraint

wf IT —
isafeFII p = if p € set(domCII)
then /\ [safeFII p] @

(case(anFII p)
of None= (map(A(p’,B). B = wpFII p p’ (isafeFII p’))
(succsHI p))
| Some A= [A))
elseFalse,
Figure 3. Construction of inductive safety formulae

wf I ensures that every loop Ih has at least one annotation; otherwise the recursion
of isafeFwould not terminate.

Whenp lies outside the code domaitomCII we must never reach it at runtime. We
express this formally by returning the unsatisfiable formbl& se, in this case. For
positionsp within the code domain the inductive safety formula guarantees the safety
formulasafeFII p. In addition, if there is an annotatigkat p, we conjoin the safety
formula withA. For example in prograr® from Fig. 2, we have the annotatiofy, at

po. Hence, we obtain/\ [safeF E p, Ay] for isafeF E p.

If pis not annotated,Lwé take all successor positfgiegether with their branch con-
ditions B and recursively compute the inductive safety formukedeFII p’. Using

the wpF operator we construct a preconditiaupF IT p p’ (isafeFII p’). If this pre-
condition holds for a statgp,m) with some success@p’,m’), thenisafeFII p’ holds

for (p’,m’). By constructing implications of the forl8 —, (wpF II p p’ (isafeFII

p’)), we design the inductive safety formuafeFII p such that all states satisfying
the branch conditio® for a particular successg@r also have to satisfy the precondi-
tion above. These implications are constructed for all pa@if8) we get fromsuccsF

IT p. For example the positions andp, are not annotated iB. Below are their in-
ductive safety formulae, whesafeF, wpF, branch conditions and annotations are not
expanded.

isafeFEp =)\ [safeF Ep,
Bi> = WpF E p p2 (/\ [safeF E p, Bao == WpF Ep po (/\ [safeF E p, A])])]

isafeF Ep = /\ [safeF E p, B2o == WpF E po (/\ [safeF E p, Ag])]

Executing a progranil with an inductively safe statgp,m) produces a trace of in-
ductively safe states until we reach an annotated positiofthe state(p’,m’) under

which we reach this position, is safe and satisfies the annotation. After this state the
execution could become unsafe. However, this does not happen if all successor states
of (p’;m’) are again inductively safe. This observation guides the construction of the
verification conditiornvegIl, which we show in Fig4. The verification conditiowcg

IT demands two things: First, all initial states must satisfy the first inductive safety for-
mulaisafeFII (ipc IT). Second, for every annotated positipnthe inductive safety

6

vegll = L/\J([initF IT —, (isafeFII (ipcI1))]@

map(Apa. /\ (mapA\(p’,B). A [isafeFII p,, B] =
wpFIT p, p’ (isafeFII p’))
(succsFII p,)))

[po€ domCIL. anF 11 p, # Nong)
Figure 4. Verification Condition Generator

formulaisafeFII p, and the branch conditioB for all successorp’ of p, must guar-

antee the preconditionpF IT p, p’ (isafeFII p’). This ensures that the transitions out

of annotated positions leads to inductively safe successor states. As discussed above,
this proves the safety @i. For examplescg Ewould have the following form:

/\ [initF E = isafeF E p,

[LAT

/\ isafeF E p, By1] = WpF E p; (isafeF E p),

LA

/\ [isafeF E p, Boa] = WpF E p p2 (isafeF E p)]

The first conjunct expresses that initial states are inductively safe. Notgpthat=

Po. Sincepy has two successops andp., which are accessible By, resp.Bys hold,

we have two further conjuncts. One requires us to show that all states satisfying the
inductive safety formula fop, and the branch conditioB,; can only have successor
states that satisfy the inductive safety formulagor The other is analogous fgs.

(The VCG s sound if for every well formed progrdia provable verification con-
dition IT F vcg Il guarantees program safety, iisSafell.

theoremwf IT A TI+ vegll — isSafell

We have proven this theorem in Isabelle based on the requirements our PCC frame-
work has on its parameter functions. In these assumptions, which we discuss in detalil
in the appendix, we require thaticcsFapproximates the control flow, thapF yields

proper preconditions and that the safety logic is correct.

3 Framework Instantiation

In this section we instantiate the framework with a simple assembly language (SAL).
We show how HOL can be instantiated as safety logic and demonstrate it on a safety
policy that prohibits type errors and arithmetical overflows.

3.1 A Simple Assembly Language

SAL provides instructions for arithmetics, pointers, jumps, and procedures. We
distinguish two kinds of addresses. Locations, which we model as natural numbers,
identify memory cells, whereas positions identify places in a program. We denote
positions as pairgpn,i), wherei is the relative position inside the procedure with
namepn.

typesloc = nat, pname= nat, pos= pnamex nat

datatypeinstr =SET loc na{ ADD loc loc| SUB loc loc| MOV loc loc|
JMPL loc loc nat| IMPB nat| CALL loc pnamé RET loc | HALT

Prototyping Proof Carrying Code 7

The instructions manipulate states of the fofpy(m,e)), wherep denotes the pro-
gram counter andm,e) the system memory. Since pairs associate to the right in
Isabelle/HOL we often leave out the inner brackets and vipe.,e) to denote a state
with program countep, main memorym and environmeng.

types SALstate= posx (loc = tval) x env

The program counter stores the position of the instruction that is executed next. The
main memorym, which maps locations to typed values, stores all the data a program
works on. We have three kinds of values: Uninitialised values havingliideGAL,
natural number8IAT n and position®OS(pn,i).

datatypetval = ILLEGAL | NAT nat| POS pos

The environmene tracks information about the run of a program. It contains a call
stackcs e which lists the memory contents and times under which currently active
procedures have been called, and a histoey which traces the values of program
counters.

record env= cs:: (nat x (loc = tval)) list
h:: pos list

To update a fielakin a record with an expressiof we writer (x:=E|), to access it we

write x r. We use the environment like a history variable in Hoare Logic; it provides
valuable information for annotations written as predicates on states. We can describe
states by relating them to former states or refer to system resources,e.g., the length of
h eis a time measure.

A SAL program is a list of procedures, which consist of a ngmameand a list of
possibly annotated instructions. Annotations are predicates on states.

types SALform= SALstate= bool
SALprocedure= pnamex ((instr x (SALform optioh) list)
SALprogram= SALprocedure list

To access instructions we writendII p, which gives ussome ingf II has an instruc-
tioninsatp, or Noneotherwise.

3.2 SAL Semantics

SAL Instructions do the followingSET X ninitialisesX with NAT n ADD X Y and
SUB X Yadd and subtract the values>atandY storing the result ilX. MOV X Y
interprets the values of andY as addresses andb; it copies the value a to b.
JMPL XY tjumps t positions forward if the value &t is less than the value &t
otherwise just one.JMPB tjumpst positions backwardsCALL X pnjumps into
procedurepnleaving the return address ¥1 RET Xleaves a procedure and returns to
the address expected ¥ Finally, HALT stops execution. In the instantiationeffS
we formalise these effects.

effSII = {(s,s') | stepll s= Some &}

We do this with an auxiliary expressiateplIl (p,m,e), which yieldsSome(p’,m’,e’)
if the instructioncmdII p exists and yields the successor s{gem’,e’). For example
ADD X Y updatesX with (m X)&(m Y), which isILLEGAL if either X or Y contains
no number oNAT (a+b) if m X= NAT aandm Y = NAT h In addition the history
is augmented with the current program counter.

8

cmdII (pn,i) = Some ADD X ¥— steplI ((pn,i),me) =
= Somg((pn,i+1),mX—(m X)&(m Y)],e(h:=(h e/ Q(pn,i))

The other instructions can be handled in a similar fashion.

3.3 SAL Safety Policy

In initial states the program counter (8,0), the main memory only contains unini-
tialised values and the environmeanhas an empty history and a copy of the initial
memory on its call stack.

initF IT = A(p,m,e). p=(0,0) A VX. m X=ILLEGAL A h e=[] A cs e=[(0,m)]

States are safe if the current instruction respects type safety and does not produce an
arithmetic overflow, that is numerical results are less t&X. Example:

cmdII p=SomgADD XY) —
safeFII p= A(p,me). (An. (M X)&(m Y)=NAT nA n < MAX)

For the sake of brevity we skip the remaining instructions.

3.4 SAL Safety Logic

By identifying assertions with HOL predicates, we instantiate a shallow embedded
safety logic in Fig.5. The valididy judgment= is directly defined by applying a
predicate to a state. The arguméhts only there to be compatible with the generic
signature of the framework. We define the provability judgmenirectly by means

of the semantics. This enables us to prove verification conditions with Isabelle/HOL's
inference rules using various tactics and decision procedures as tools. Alternatively
we could also use a deep embedding and defimath an explicit proof calculus,
possibly tailored to the programming language and its safety policy. This means more
effort, but could pay off in form of shorter proofs or higher degree of automation in
proof search. However, this paper focuses on the framework and we rather keep the
instantiation simple. According te a formulaF is provable iff it holds for all states

True, = \s. True /\ fs=As. VF e setfsFs
False, = \s. False A=—B=)Xs As—Bs
IIsEF=Fs II-FF=Vssecisafgsy II — II,s=F

Figure 5. Safety Logic for SAL.

in isafey I1. The inductively defined sésafey IT contains all initial states and states

that originate from a computation where all states are inductively safe.

IT,(p,m) = initF IT — (p,m) € isafe; II

(p,m) € isafe; IT A I1,(p,m) = isafeFII p A I, (p’,m’) | isafeFII p’ A

((p,m),(p",;m)) € effSIT — (p’,m’) € isafe; II

This constraint on states simplifies proofs and shortens annotations, because one can

derive properties of a state from the fact that this state can be reached at runtime by
only traversing inductively safe intermediate states.

3.5 Instantiating VCG helper functions

The instantiations odinF, domCandipc are straightforward. More interesting avpF
andsuccskF For the instantiation ofipF we use\-abstraction to postpone substitution
of formulae to the verification stage. Example:

Prototyping Proof Carrying Code 9

cmdIl p=SomeADD XY) — wpFIIpp’' Q=
A(p.m.g). let m=m(X - (m X)&(m Y)}; e’=e(h:=(h &)ap) in Q (p'.m’e)

We compute the effect AADD X Y on some symbolic statg,m,e) and demand that
Q holds for the resulting state. Finally, we have a glimpse oftinecsFinstantiation.
Here, we chos8MPL as example:

cmdII (pn,i) = SomegJMPL X Y) — succsHII (pnji) =
[((pni+t),A(p,me). In n". m X=NAT nA m Y=NAT n’ A n<n’ A p=(pn,i)),
((pni+1),A(p,m,e). 3n n’. m X=NAT nA m Y=NAT n’ A =n<n’ A p=(pn,i))]

The constraint on the program courpes(pn,i) in the branch conditions helps to apply
system invariants. These are properties that hold for all staieafi, I1 irrespective
of II. For example\((pn,i),m,e). cmdII (pn,i) = SomgRET X) — (3km’csscs e

= (k,m)#cssA cmdII (h e)lk = (CALL pn X)) is a system invariant. It says that for
the call timek of the current procedure the histdnye records the position of @ALL
instruction.

3.6 Verifying Procedures

Procedure proofs should be modular. Code with procedure calls should only depend
on these procedure’s specifications (the annotations at entry and exit positions) and
not on their code. For examplep,me). m X= (m €) X ¢ (NAT 1) might be the
postcondition of a procedure that increments a locaohklere we usén e = snd

(hd (cs &) to reconstruct the memory at call time.This procedure could be called from
a position whereX is NAT 5 The programmer expects that after the procedtie

NAT 6and could write this into the annotation at the return point. In the verification
condition we would have to prove that this follows from the procedure’s postcondition.
HoweverA(p,me). m X= (m e) X ® (NAT 1) = (A(p,m,e). m X= NAT 6) is not
provable. The information thaX has beerNAT 5at the procedures entry point is
missing. We cannot add this information into the postcondition, otherwise we loose
modularity. A way out is to pack call context dependent information into branch
conditions, whichsuccsFcomputes individually for each successor. If a procedure
returns to(pn’,i’+1) and (pn’,i’) is annotated wittAc we can construct the branch
condition\(p,m,e). Ac (pc e,m e, ‘e e), which claims thatpc e, e, e e), the state at

call time, satisfies the annotatidw. Note thaihc and’e, the position and environment

at call time, can be defined analogouslyio Since branch conditions are added to
inductive safety formulas, we now obtain a provable form(II;I\ [A(p,me). m X=

(7€) X @ (NAT 1), A(p.me). (7 &) X = NAT §) =, (A (p.me). m X = NAT 6).

Call context dependent branch conditions involve some technicalities for the definition
and verification osuccsk However, they fit neatly into our concept of a generic VCG.
We achieve modular procedure proofs although our VCG has no notion of procedures
at all.

4 Case Study: Overflow Detection

4.1 Motivating Example for Overflow Detection

The exemplary safety policy expressed the definitiosaféFin §3.3has two aspects:

First, type safety is needed as a general property to ensure that SAL programs never
get stuck. Second, the safety formula demands that the result of arithmetic operations
does not exceeMAX, thus preventing overflows. Consider the following program

10

fragment:[CALL P CHECK ADD B C

It might be part of an application that tries to add a credit stored as a natural number

in memory locatiorC to a balance ilB—for example as part of a load transaction of

a smart card purse. Before executing the addition, a procetidEeCK is called to

ensure that the new balanceBiis less thartMAX; if it does, the credit irC will be set

to zero and thus the balance remains the same as before. Special care has to be taken
in the implementation oc€EHECK:

[SETMMAX SETHQ ADDHB, ADDHC, JMPLHM2 SET C0 RETR

M represents the maximum balance considered for the applicdiehould contain

B + C after the second\DD statement. If the checB + C < M fails, the credit

is set to zero; otherwise it is left unchanged. Even this simple example contains an
implementation flaw: there could be an overflowHn And the flaw is not merely
theoretical: in the case of a silent overflow as in Java it would lead to debiting the
purse instead of crediting.

4.2 Annotated SAL Program

Fig. 6 shows the corrected and annotated version of our example. The main procedure
andCHECK are now identified with 0 and 1. For better readability we write instruc-
tion/annotation pairs of the forifins, Nong as justinsand(ins, Some Aas{A} ins.

OD = [(0,[SET Bk, SETCg,
{A(p,me). mB=NATh AmC=NAT g}
CALLP1
{A(p,me). m B= NAT by A (3c. m C= NAT cA
c = (ifbo + co < MAX then g else Q)}
ADD B C, HALT])

(L] {A(p,me). m P=POS(incA (pce)) A (3b.m B= NAT b A
(c.MC=NATQ A (VX.X#AP—mX=imeX)}
SETMMAX SUBMC JMPLBM?2 SETC0
{A(p,me). VX.XACAXEMAXAP—mX=meX) A
(3bcc. mMB=NATbAMC=NATcAmeC=NATCA
c=(if b+ ¢’ < MAX then celse)}
RET P])]

Figure 6. Corrected and annotated program OD.

Before execution oCALL P 1 the memory position8 andC contain the numbers

by andcy. The annotation foADD B C states that the value & may have changed
according to the conditioby + ¢y < MAX.

Inside theCHECK procedure we first set the memory locatibhto the maximum
balance. The annotation states that locafosatores the proper return address for
the procedureincA (pc e) represents the program counter of the calling procedure
incremented by one. Furthermore the annotation states that there are natural numbers
in bothB andC, and that all memory locations excdptire the same as in the caller.
The following statements require no annotations, only the exit point of the procedure
RET Pdoes: it states that all values except for thos€,iM, andP are unchanged,

that there are natural numbers in b&landC, and that the new value @& will be
changed to zero if the new balance exceeds the maximum balance.

Prototyping Proof Carrying Code 11

4.3 \Verification Condition

In Fig. 7 we show the part of the verification condition that is generated for the re-
turn from procedurecCHECK In general we get as many parts (conjuncts) as there
are paths between annotated positions. That means the size of verification conditions
is linear to the number of positions if all branch positions are annotated. The exam-

Al
1 A\ [A(p.me). Ipn’i’. m P=POS(pn’,i’+1) A
o (3k m’ cl css cs e= (k, m")#cl#cssA (pn'ji’) = (h e)lk),
2 Apme). (VX XACAXEMAX#AP —mX=meX) A
(3bcc. mMB=NATbAMC=NATcAmeC=NATCA
c=ifb+ ¢’ < MAXthen celse 0,
3 /\ [A(p.me). m P=POS(0,2) A p=(14),
4 \(p.me).(\(p.me). mB=NAT by A m C= NAT o) (ic &7 &€ €))]
]
= A [AMpme). 3n. (mB&(m C) = NAT nA n < MAX,
6 " A(pme).mB=NATh A 3c.mC= NAT cA
c=ifb+ co < MAX then g else (

Figure 7. Fragment of the verification condition.

ple demonstrates again how the VCG works. On the top-level the conditions for the
annotated program positions are conjoined; the fragment refers to pgsitidn4)

of our program,1 stands for the proceduf@HECK and4 for the line number with

the statemenRET P There is only one successpt=(0,2), which is the statement
ADD B C. Therefore the conjunction over the list of all successors collapses to one
element. The verification condition fragment shown in Figesults from the expres-
sion /\ isafeF OD(1,4), B] =, wpF OD (1,4) (0,2) (isafeF OD(0,2)) whereB is the
branch condition oBuccsF OD(1,4). Numbers 1-4 in Fig7 correspond to the as-
sumption of the implication, numbers 5-6 to the conclusisafeF OD(1,4) results

in /\ [safeF OD(1,4), Ad (compare Fig3), wheresafeF OD(1,4) corresponds to 1

and the annotatioAe e.g.,anF OD (1,4) = Some Agecorresponds to 2. The branch
conditionB for RET Pappears in 3 and 4, and consistsp{ [A (p,me). m P= POS

(0,2) A p=(1,4), A(p,m,e). Ac (pc e, m e, e €)] whereX(p,m.e). Ac (pc e, me, ee)is the
annotation of the call instruction, e.@nF OD (0,1) = Some Acapplied to the re-
constructed state at the moment of the call, Briisithe memory location of the return
address. This shows again how the environnee@hables us to reconstruct the call
state(pc e, m e, e e) and how to transfer the informatiokc of the call point to the
return point. Note that this context-specific information is encoded into the branch
conditionB, which succsFcomputes individually for each successor. The annotation
at the procedure’s return point does not refer to a particular call point. Hence, the pro-
cedure and its verification are modular. The conclusion of the verification condition
consists of the safety condition f&tDD in 5 and its annotation in 6; together they
form isafeF OD(0,2).

4.4 Code Producer and Consumer

The code producer can write annotated programs in Isabelle. To obtain the verification
condition one can generate and execute ML code for the \BL Gr use the simplifier

12

to evaluatevcgII. Proving the verification condition is supported by powerful proof
tools and a rich collection of HOL theorems. For the example in &ithe simplifier

and a decision procedure for presburger arithmetic suffice to prove the verification
condition. For the client side Isabelle provides (compressed) proof terms and a proof
checker #]. Proofs are encoded asterms having a type that corresponds to the
theorem they prove (Curry Howard Isomorphism). Proof Checking becomes a type
checking problem, which can be handled by a small trusted program.

5 Conclusion

Our framework can be instantiated to various programming languages, safety policies,
and safety logics. As long as the requirements of the framework are satisfied, one can
directly apply our generic VCG and rely on its machine checked soundness proof. In
our instantiation to SAL we show how HOL can be embedded as safety logic and how
this can be used to verify the absence of arithmetic overflows. Since HOL is very ex-
pressive, formulating complex assertions or safety policies is possible. Isabelle’s code
generator gives us an executable version of the VCG. Using the built in tools for proof
search, proof terms and proof checking we can simulate producer and client activities.
Before one embarks on a particular PCC implementation, one can build a prototype in
our framework and prove the soundness of the safety logic. On our weblgep
present more complex examples and instantiations of our framework. These include
programs with pointer arithmetic or recursive procedures and safety policies about
time and memory consumption of programs. Moreover we have instantiated a safety
logic based on first order arithmetic in form of a deep embeddli&y [There, for-
mulae are modelled as HOL datatype and can by analysed by other HOL functions.
This enables us to optimise verification conditions after/during their construction. By
now, we also have instantiated the PCC framework to a (downsized) version of the
Java Virtual Machine7]. For this we did not have to change the framework, thus we
believe that our framework’s formalisation and its requirements are reasonable, even
for real life platforms.

Prototyping Proof Carrying Code 13

References

[1] Appel, A. W. (2001). Foundational proof-carrying code.1Bth Annual IEEE Symposium
on Logic in Computer Science (LICS 'Q0prages 247-258.

[2] Appel, A. W. and Felty, A. P. (2000). A semantic model of types and machine instructions
for proof-carrying code. I27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 'Q@)ages 243-253.

[3] Aspinall, D., Beringer, L., Hofmann, M., Loidl, H.W. (2003) A Resource-aware Program
Logic for a JVM-like Language In Trends in Functional Programming, editor: S. Gilmore,
Edinburgh

[4] Berghofer, S. and Nipkow, T. (2000). Proof terms for simply typed higher order logic. In
Theorem Proving in Higher Order LogicSpringer LNCS vol. 1869, editors: J. Harrison,
M. Aagaard

[5] Berghofer (2003). Program Extraction in simply-typed Higher Order LogicTylves for
Proofs and Programs, International Workshop, (TYPES 208gjinger LNCS, editors: H.
Geuvers, F. Wiedijk

[6] Colby, C., Lee, P, Necula, G. C., Blau, F., Plesko, M., and Cline, K. (2000). A certifying
compiler for Java. IrProc. ACM SIGPLAN conf. Programming Language Design and
Implementationpages 95-107.

[7] Hamid, N., Shao, Z., Trifonov, V., Monnier, S., and Ni, Z. (2002). A syntactic approach to
foundational proof-carrying code. Froc. 17th IEEE Symp. Logic in Computer Science
pages 89-100.

[8] Klein, G. (2003). Verified Java Bytecode VerificatioPhD thesis, Institut fur Informatik,
Technische Universitat Minchen.

[9] League, C., Shao, Z., and Trifonov, V. (2002). Precision in practice: A type-preserving
Java compiler. Technical Report YALEU/DCS/TR-1223, Department of Computer Sci-
ence, Yale University.

[10] Morrisett, G., Walker, D., Crary, K., and Glew, N. (1998). From system F to typed as-
sembly language. IRroc. 25th ACM Symp. Principles of Programming Languagesgies
85-97. ACM Press.

[11] Necula, G. C. (1997). Proof-carrying code.Rroc. 24th ACM Symp. Principles of Pro-
gramming Languagepages 106-119. ACM Press.

[12] Necula, G. C. (1998)Compiling with Proofs PhD thesis, Carnegie Mellon University.

[13] Necula, G. C. and Lee, P. (2000). Proof generation in the touchstone theorem prover. In
McAllester, D., editorAutomated Deduction — CADE-Ivolume 1831 ol ect. Notes in
Comp. Sci.pages 25-44. Springer-Verlag.

[14] Necula, G. C. and Schneck, R. R. (2002). A gradual approach to a more trustworthy, yet
scalable, proof-carrying code. In Voronkov, A., editBroc. CADE-18, 18th International
Conference on Automated Deduction, Copenhagen, Denwaltkme 2392 ot.ect. Notes
in Comp. Sci.pages 47-62. Springer-Verlag.

[15] Necula, G. C. and Schneck, R. R. (2003). A sound framework for untrustred verification-
condition generators. IRroc. IEEE Symposium on Logic in Computer Science (LICS03)
pages 248-260.

[16] Nipkow, T., Paulson, L. C., and Wenzel, M. (200&abelle/HOL — A Proof Assistant for
Higher-Order Logi¢ volume 2283 otf_ect. Notes in Comp. Scépringer.

[17] Klein, G. and Nipkow, T. (2004) A Machine-Checked Model for a Java-Like Language,
Virtual Machine and Compilefechnical ReportNational ICT Australia, Sydney

[18] Wildmoser, M. and Nipkow, T. (2004) Certifying machine code safety: shallow versus
deep embeddingTlPHOLSs 2004

[19] VeryPCC website in Munich (2004);tp://isabelle.in.tum.de/verypcc/.

http://isabelle.in.tum.de/verypcc/

14
Appendix: Requirements

Our PCC framework makes some assumptions on the functions it takes as parameters
(cf. p4). Based on these assumptions we prove the generic VCG correct. It is the task
of the framework instantiator to make sure that the implementations of the parameter
functions satisfy the requirements listed below. We have proven in Isabelle that these
requirements hold for our instantiation to SAL. Hence, we have a PCC system for SAL
with a mechanically verified trusted code base. Note that none of the requirements in-
volves the safety policgafeF Hence it is very easy to instantiate our framework to
different safety policies.

AssumptioncorrectWpFensures thawpF computes proper preconditions. That is for
every statdp,m) having a successor stag’,m’), we require tha@ holds for(p’,m’)
whenevewpF IT p p’ Q holds for(p,m). We require this property only for wellformed
programdlI and for states imsafe IT , a set of states we introduce i8.8.

assumptioncorrectWpE

wf IT A (p,m) € isafeq IT A ((p,m),(p’,m’))e(effSII) A

IL(p,m) = (WpFIIp p'Q) — IL(p’m’) = Q

Although the setsafe; IT seems to complicate matters at a first sight, it simplifies
the instantiator’s job of proving the requirements. Only initial states and safe states
originating from a safe execution must be considered. We can conclude information
about these states from inductive safety formulae of previous states.

Assumptioncorrectlpcdemands thapc andinitF fit together:
assumptioncorrectlpc II,(p,m) = initF II — p =ipcII

In succsk-completewe assume thatuccsFcovers all transitions o&éffSand yields
branch conditions that hold whenever a particular transition is accessible. Again, this
is only required for wellformed programs and statesafe; I1.

assumptionsuccsF-complete
wf IT A (p,m) € isafes T A ((p,m),(p’,m")) € effSII
— (3 B. (p’,B) € set(succsHII p) A II,(p,m) = B)

In correctSafetyLogithe safety logic’s provability judgement is constrained such that
provable formulae are guaranteed to hold for statésafe.

assumptioncorrectSafetylLogic
II-f A (pm) €isafes IT — II,(p,m) = f

Based on these assumptions we can prove that our VCG is sound. A provable verifi-
cation condition gurantess safety of a program at runtime.

theoremvcg-soundness
[wf II; IT - vegIl | = isSafell

To prove this theorem we have to show that all states that are reachasf€1in
from an initial state are safe. This follows from lemwaisafeR which says that in
a wellformed progranil with provable verification condition all stat¢s,m) that are
reachable from an initial statg@,,m,) are inisafg; I1. From the definition ofsafe;

Prototyping Proof Carrying Code 15

IT we know that(p,m) is inductively safe or an initial state. In the first case we know
that (p,m) is safe, because the safety formakfeFis part of every inductive safety
formula. In the second case the verification condition guarantees that all initial states
are inductively safe.

lemmavc-isafeP

wf IT A IT F vegII A IL,(po,my) = initF I —

v pm ((Po,My),(p,m)) € (effSIT) * n— (p,m) € (isafe; II)

To provevc-isafePwe induct om. After a few cosmetic simplifications we obtain the
following two proof obligations:

(1) wfIIATIF veglIl A T1,(pg, Mp) = initF 11
— ((Po, My), pc, m) € effSTI* 0 — (pc, m) € isafe; 11

(2) wfIIATIF vegII A T1,(pg, My) = initF I A
(Vpecm ((po, My), pc, m) € effSIT* n— (pc, m) € isafg; II)
— ((po, My), pc, m) € effSII * (n+1) — (pc, m) € isafeq II

In the first obligation the stat@,m) is equal to(py,my) and we ge{p,m) € (isafe;

IT) by applying the first introduction rule aéafg;. In the second obligation, we
conclude thafp,m) has a predecess(pi,mi) that is reachable frorfpy,my) in n steps.
This allows us to apply our induction hypotheses and we oljaimi) € (isafe; II).
From the introduction rules a$afe; we know that(pi,mi) is either an initial state or
reachable from an initial state by only traversing inductively safe states. In both cases
(pi,mi) is inductively safe, i.ell,(pi,mi) |= isafeFII pi. If (pi,mi) is an initial state we
get this from the verification condition, otherwise we get it directly from the premise
of the second introduction rule tfafe.

We can assume that is in the code domaidomCII. OtherwiseisafeFII pi would
collapses tqFalse, and could not hold because sémFalseFIf pi is not annotated
the goalisafeFII p follows directly from the design akafeF Otherwise, if there is

an annotation gpi, we know that the verification condition contains a conjunct of the

form /\ [isafeFII pi,B] =, wpF II pi p (isafeFII p), where(p,B) € succsFII
pi. To establish(p,B) € (succsFII p) we can use the assumptigoccsF-complete
Since we have all conditions on the left hand side of this implication, we can conclude

IT,(pi,mi) = wpFII pi p (isafeFII p) by semimpl ThencorrectWpFensures that our
goalIL,(p,m) |= (p,m) holds. Q.E.D.

