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Abstract. We formalise a simple assembly language with procedures
and a safety policy for arithmetic overflow in Isabelle/HOL. To verify
individual programs we use a safety logic. Such a logic can be realised
in Isabelle/HOL either as shallow or deep embedding. In a shallow em-
bedding logical formulas are written as HOL predicates, whereas a deep
embedding models formulas as a datatype. This paper presents and dis-
cusses both variants pointing out their specific strengths and weaknesses.

1 Introduction

Proof Carrying Code (PCC), first proposed by Necula and Lee [14,15], is a
scheme for executing untrusted code safely. It works without cryptography and
without a trusted third party. Instead, it places the burden on showing safety
on the code producer, who is obliged to annotate a program and construct a
certificate that it adheres to an agreed upon safety policy. The code consumer
merely has to check if the certificate—a machine-checkable proof—is correct.
This check involves two steps: A verification condition generator (VCG) reduces
the annotated program to a verification condition (VC), a logical formula that
is provable only if the program is safe at runtime. Then a proof checker ensures
that the certificate is a valid proof for the VC. If both VCG and proof checker
work correctly, this scheme is tamper proof. If either the program, its annota-
tions or the certificate are modified by an attacker, they won’t fit or, if they still
do, the resulting program would also be safe. Proof Checkers are relatively small
standard components and well researched. The VCG is a different story. In early
PCC systems it is large (23000 lines of C in [8]) and complex. The formulas it
produces are usually influenced by the machine language, the safety policy and
the safety logic. The machine language determines syntax and semantics of pro-
grams. These are considered safe if they satisfy the conditions the safety policy
demands. The safety logic can serve multiple purposes. First, it provides a formal
description language for machine states, which can be use to write annotations
or to specify a safety policy. Second, it is used to express and prove verification
conditions.
For some safety policies, such as checking that all instructions are used on proper
arguments (type safety), a type system could play the role of the safety logic.
VCG and proof checking could be replaced by automatic type inference. A typi-
cal example is Java Bytecode Verification, which is formally verified by now [12].



To handle more complex properties, for example checking that programs oper-
ate within their granted memory range (memory safety), type systems can be
combined with a logic or extended to a logic like system [10,13,7]. Foundational
proof carrying code tries prove safety directly in terms of the machine semantics
[2,3], without a VCG or safety logic as an extra layer.
Our approach uses a VCG, but keeps it small and generic. We model this VCG as
part of an Isabelle/HOL framework for PCC, which can be instantiated to var-
ious machine languages, safety policies and safety logics. The machine checked
soundness proof we have for this VCG automatically carries over to the instan-
tiations. One only has to show that the instantiation meets the requirements
our framework makes explicit. None of these requirements touches the safety
policy, which in turn can be replaced without disturbing any proof at all. In ad-
dition Isabelle/HOL supports the whole range of code producer and consumer
activities. We can generate ML code [5] for our VCG and use Isabelle/HOL to
produce and check proof objects for verification conditions [6].
By now we have instantiated various non trivial safety policies, such as con-
straints on runtime or memory consumption, and verified various example pro-
grams, including recursive procedures and pointer arithmetics [1]. In this paper
we instantiate a simple assembly language (SAL) with a safety policy that pre-
vents type errors and arithmetic overflows. Both are kept rather simple. This
paper focuses on the safety logic, which can be embedded in Isabelle/HOL [16]
either in shallow or deep style. In the first one models safety logic formulas as
HOL predicates on states. The safety logic automatically inherits the infrastruc-
ture of the theorem prover such as its type system and tools for simplifying or
deciding formulas. In the second one models formulas as a datatype and defines
functions to evaluate or transform them. We discuss both variants and point out
their specific strengths and weaknesses.

2 Execution Platform

Our simple assembly language (SAL) is a down sized version of TAL [13], which
additionally has indirect jumps, multiple argument passing modes and an ex-
plicit distinction between registers and heap addresses. Since we are primar-
ily interested in the safety logic and policy, we rather keep the programming
language simple. However, with pointers and procedures SAL already includes
major pitfalls of machine languages. We consider programs as safe if all instruc-
tion arguments have proper type and do not cause arithmetical overflows. Note
that the latter involves reasoning about runtime values and demands an expres-
sive annotation language. A simple type system does not suffice, because it can
only express what types the results of an instruction or procedure have, not the
relation between input and output values.

2.1 SAL Platform

In SAL we distinguish two kinds of addresses. Locations, which we model as
natural numbers, identify memory cells, whereas positions identify places in a



program. We denote positions as pairs (pn,i), where i is the relative position
inside a procedure named pn.

types loc = nat, pname = nat, pos = pname × nat

SAL has instructions for arithmetics, pointers, jumps and procedures.

datatype instr = SET loc nat | ADD loc loc | SUB loc loc | MOV loc loc |
JMPL loc loc nat | JMPB nat | CALL loc pname | RET loc | HALT

These instructions, which we explain in §2.2, manipulate states of the form
(p,m,e), where p denotes the program counter, m the memory and e the envi-
ronment.

types state = pos × (loc ⇒ tval) × env

The program counter p is the position of the instruction that is executed next.
The main memory m, which maps locations to typed values, stores all the data
a program works on. We distinguish three kinds of values: Uninitialised values
ILLEGAL, natural numbers NAT n, and positions POS (pn,i).

datatype tval = ILLEGAL | NAT nat | POS pos

The environment e tracks useful information about the run of a program. It is a
record with two fields cs and h and equally named selector functions. To update
a field x in a record r with an expression E we write r(|x :=E |).
record env = cs :: (nat × (loc ⇒ tval)) list

h :: pos list

An environment e contains a call stack cs e, which lists the times and memory
contents under which currently active procedures have been called, and a history
h e, which traces the values of program counters. We use the environment like
a history variable in Hoare Logic. It is not necessary for machine execution but
valuable for reasoning about execution. We can describe states by relating them
to former states or refer to system resources, e.g., the length of h e is a time
measure.

OD = [
(0 ,[ {A0} SET B b0,
{A1} SET C c0,
{A2} CALL P 1 ,
{A3} ADD B C ,
{A4} HALT ]),

(1 ,[ {A5} SET M MAX ,
{A6} SUB M C ,
{A7} JMPL B M 2 ,
{A8} SET C 0 ,
{A9} RET P ])]

Fig. 1. Sample Code

A program is a list of procedures, which consist of
a name pname and a list of possibly annotated in-
structions. With ’a option we model partiality in Isa-
belle/HOL, a logic of total functions. It injects the
new element None into a given type ’a.

’a option = None | Some ’a.

types
proc = pname × ((instr ×(form option)) list)
prog = proc list

For example Fig. 1 shows a program that safely cred-
its the balance B of a smart card purse. A procedure
checks whether B + C exceeds MAX. If it does it set
C to 0 thus preventing an overflow of the following

ADD instruction. For better readability we write {A} ins to denote an instruc-



tion/annotation pair (ins,Some A). Annotations are formulas in the safety logic
and have type form. To access instructions we write cmd Π p, which gives us
Some ins if a program Π has an instruction ins at p, or None otherwise. For
example in Fig. 1 we get cmd OD (0 ,2 ) = Some (CALL P 1 ).

2.2 Program Semantics

To formalise the effects of SAL instructions, we use the transition relation effS.

effS Π = {((p,m,e),(p ′,m ′,e ′)) | step Π (p,m,e) = Some (p ′,m ′,e ′) }
For this small step semantics we use step Π (p,m,e), which yields Some (p ′,m ′,e ′)
if the instruction at p yields the successor state (p ′,m ′,e ′). For example ADD
X Y updates X with (m X )p+q(m Y ), which is NAT (x+y) if m X =NAT x
and m Y =NAT y and ILLEGAL otherwise. Here + is addition on naturals (no
overflow) and pq lifts operators from natural numbers to typed values. Like all
instructions ADD also extends the history h e. We formalise this using 7→ for
function update and @ for list concatenation:

cmd Π (pn,i) = Some (ADD X Y ) −→ step Π ((pn,i),m,e) =
Some ((pn,i+1 ),m(X 7→m X p+q m Y ),e(|h:=h e@[(pn,i)]|))
The transitions of SUB X Y, which subtracts two numbers, and SET X n, which
intialises X with NAT n are similar; just replace p+q with p−q or change the
update to m(X 7→NAT n). The backwards jump JMPB t jumps t instructions
backwards. The conditional jump JMPL X Y t expects numbers at X and Y. If
the first number is less than the second it jumps t instructions forward, other-
wise just one.

cmd Π (pn,i) = Some (JMPB t) −→
step Π ((pn,i),m,e) = Some ((pn,i−t),m,e(|h:=h e@[(pn,i)]|))
cmd Π (pn,i) = Some (JMPL X Y t) ∧ m X = NAT x ∧ m Y = NAT y −→
step Π ((pn,i),m,e) = Some ((pn,i+if x<y then t else 1 ),m,e(|h:=h e@[(pn,i)]|))
The procedure call CALL X pn pushes the time (length of h e) and the current
memory onto the call stack, leaves the return position in X and jumps into pro-
cedure pn. The procedure return RET X pops the topmost entry from the call
stack and jumps to the return position it expects in X.

cmd Π (pn,i) = Some (CALL X pn ′) −→ step Π ((pn,i),m,e) = Some
((pn ′,0 ),m(X 7→POS (pn,i+1 )),e(|cs:=[(length (h e),m)]@cs e, h:=h e@[(pn,i)]|))
cmd Π (pn,i) = Some (RET X ) ∧ m X =POS r −→
step Π ((pn,i),m,e) = Some (r ,m,e(|cs:=tl (cs e); h:=h e@[(pn,i)]|))
The move operation MOV X Y interprets the values at X and Y as locations x
and y ; it copies the value at x to y.

cmd Π (pn,i) = MOV X Y ∧ m X =NAT x ∧ m Y =NAT y −→
step ((pn,i),m,e) = ((pn,i+1 ), m(y 7→(m x )),e(|h:=(h e)@(pn,i)|))
Finally, for HALT or in case the premises above do not hold step returns None,
i.e. cmd Π p = Some HALT −→ step Π (p,m,e) = None.



2.3 Safety Logic and Policy

To notate and prove safety properties of programs formally we use a so called
safety logic. The essential constituents of this logic are connectives for implication
x=⇒y and conjunction x

∧
y and judgements for provability ` and validity |=.

x

∧
y::
′form list ⇒ ′form `::prog ⇒ ′form ⇒ bool

x=⇒y:: ′form ⇒ ′form ⇒ ′form |=::state ⇒ ′form ⇒ bool

At this point we do not specify the syntax of formulas. This will be done later
by instantiating ′form in a deep and shallow style. However, we assume that the
formula language is expressive enough to characterise initial and safe states of
programs. That is, we assume that one can define functions initF ::prog ⇒ ′form,
which specifies initial states, and safeF ::prog ⇒ pos ⇒ ′form, which yields local
safety formulas. Together initF and safeF comprise a so called safety policy. A
program is safe if all states (p,m,e) we can reach from an initial state (p0,m0,e0)
are safe.

isSafe Π = (∀ p0 m0 e0 p m e. (p0,m0,e0) |= initF Π ∧
((p0,m0,e0),(p,m,e)) ∈ (effS Π)∗ −→ (p,m,e) |= safeF Π p)

In this paper we instantiate initF such that it only holds for states (p,m,e)
where the program counter p is (0 ,0 ), the memory is uninitialised ∀ x . m x =
ILLEGAL, the history is empty h e = [] and the call stack has one entry cs e
= [(0 ,m)] containing a copy of the initial memory m. The safety formula for
a position p, i.e. safeF Π p, will be constructed such that it guarantees safe
execution of the instruction at p. In our case this means all arguments have
proper types and numerical results this instruction yields are equal or below
some maximum number MAX. In other words: the instruction is type safe and
does not cause an overflow. For example if we have ADD X Y at program
position p, the formula safeF Π p demands that variables X and Y have values
NAT x and NAT y such that x + y ≤ MAX.

2.4 Verification condition generation

Equipped with x

∧
y, x=⇒y, initF and safeF we can define a generic VCG, which

transforms a given well formed program into a formula, the verification condition
VC, that is provable only if the program is safe. The VCG soundness theorem
below expresses this formally:

vcg :: prog ⇒ ′form theorem: wf Π ∧ Π ` vcg Π −→ isSafe Π

The wellformedness judgement wf demands that every instruction is annotated
and that the main procedure has no RET instructions. In our project [1] we
usually work with a VCG that also accepts programs where only targets of
backward jumps, entry and exit positions of procedures are annotated. However,
in this paper we focus on the safety logic and rather keep the VCG simple.



vcg Π = x

∧
y [initF Π x=⇒y x

∧
y [safeF Π (ipc Π), anF Π (ipc Π)]]@

(map (λ p. (map(λ (p ′,B). x
∧
y [safeF Π p, anF Π p, B ] x=⇒y

(wpF Π p p ′ ( x
∧
y [safeF Π p ′, anF Π p ′])))

(succsF Π p))
(domC Π)))

In addition to the instruction and annotation fetch operations cmd and anF
this VCG uses various other auxiliary functions. With succsF Π p it computes
the list of all immediate successors p ′ of a position p paired with a branch
condition B. This branch condition is expected to hold whenever p ′ is acces-
sible from p at runtime. For example assume Π has at position p=(pn,i) an
instruction that jumps t instructions forward if some condition C holds, or 1
otherwise. Then we expect succsF Π p to yield two successor positions (pn,i+t)
and (pn,i+1 ) with C or its negation as branch conditions, i.e. succsF Π (pn,i)
= [((pn,i+1 ),C ),((pn,i+1 ),¬C )]. The function wpF is named after Dijkstra’s
operator for weakest preconditions. It takes a postcondition Q and constructs a
formula wpF Π p p ′ Q, that covers exactly those states where the program Π
can make a transition from p to p ′ such that Q holds when we reach p ′.

The verification condition is a big conjunction. There is one initial conjunct and
one conjunct for each position in the code domain domC Π, which lists the
positions of all instructions in Π. Hence, the overall size of the VC is linear to
the program size. The initial conjunct demands that initial states are safe and
satisfy the initial annotation anF Π (ipc Π) where ipc Π denotes the initial
program counter ((0 ,0 ) in our case). The conjunct we get for each position p in
the code domain demands that a state (p,m,e) that is safe and satisfies the an-
notation at p only has successor states (p ′,m ′,e ′) that satisfy the safety formula
and annotation at p ′. For example if a position p annotated with A only has one
successor p ′ with branch condition B and annotation A ′ we get this conjunct
inside the VC:

x

∧
y [safeF Π p, A, B ] x=⇒y wpF Π p p ′ ( x

∧
y [safeF Π p ′, A ′])

So far we have not defined any of the auxiliary functions nor the safety logic and
policy. The VCG above is generic. By instantiating the parameter functions one
can use it for various PCC platforms. We have proven that the soundness the-
orem above holds, if these parameter functions meet some basic requirements.
The succsF function has to approximate the control flow graph of a program. It
can yield spurious successors, but must not forget some or yield invalid branch
conditions.

assumption succsFcomplete:
wf Π ∧ (p,m,e) ∈ safe� Π ∧ ((p,m,e),(p ′,m ′,e ′))∈ effS Π −→
∃B . (p ′,B) ∈ set (succsF Π p) ∧ (p,m,e) |= B

This must only hold for all states in the safety closure safe� Π, the set of states
that can can occur in a safe execution of Π. These are the initial states and
states that are reachable from these by only traversing states that are safe and
satisfy their annotation.



(p,m,e) |= initF Π −→ (p,m,e) ∈ safe� Π

(p,m,e) ∈ safe� Π ∧ ((p,m,e),(p ′,m ′,e ′)) ∈ effS Π ∧
(p,m,e) |= safeF Π p ∧ (p,m,e) |= anF Π p ∧
(p ′,m ′,e ′) |= safeF Π p ′ ∧ (p ′,m ′,e ′) |= anF Π p ′ −→ (p ′,m ′,e ′) ∈ safe� Π

The wpF operator has to be compatible with the semantics of SAL. That is, the
formula it yields must guarantee the postcondition in the successor state.

assumption correctWpF :
wf Π ∧ (p,m,e) ∈ safe� Π ∧ ((p,m,e),(p ′,m ′,e ′)) ∈ effS Π ∧
(p,m,e) |= (wpF Π p p ′ Q) −→ (p ′,m ′,e ′) |= Q

Another requirement is the correctness of the safety logic. That is, provable for-
mulas must be valid for all states in safe� Π.

assumption correctSafetyLogic:
wf Π ∧ Π ` F −→ ∀ s∈ safe� Π. s |= F

Finally, we require that the logical connectives have their ordinary semantics
and that initF is consistent with ipc.

assumptions
s |= (A x=⇒y B) −→ s |= A −→ s |= B
s |= x

∧
y Fs = ∀F∈set Fs. s |= F

(p,m,e) |= initF Π −→ ipc Π = p

Note that these requirements are kept very weak in order to allow for a wide
range of instantiations. With safe� Π in the premisses verifying these require-
ments becomes simpler; one only has to consider states originating from a safe
execution. A lot of properties, for example the wellformedness of the call stack,
can be deduced from this fact.

3 Shallow Embedding

3.1 Syntax

In a shallow embedding logical formulas are written directly in the logic of the
theorem prover. In our case this means SAL formulas become Isabelle/HOL
predicates on states.

type form = state ⇒ bool

We can write arbitrary Isabelle functions from state to bool and use them to
describe machine states. Typically we do this using λ notation. For example
λ(p,m,e). m X = NAT 1 covers all states having the value NAT 1 at memory
location X. Since we have machine states with enviroments, we can also describe
states by relating them to former states. For example λ(p,m,e). m X = (↼m e) X
holds for states, where location X contains the same value as it did at call time of
the current procedure. Here we use the shortcut ↼m e for the memory at calltime,
which we can retrieve from the environment e, i.e. ↼m e = snd (hd (cs e)). In
a similar fashion we can reconstruct the program counter or the environment



at call time, i.e ↼p e = (h e)!k and ↼e e = e(|cs:=tl (cs e); h:=take k (h e)|)
where k = fst (hd (cs e)). The following formulas give some flavour on the style
of a shallow embedded formula language. They could be used to annotate the
example program OD. The function incA increments the offset of a position, i.e.
incA (pn,i) = (pn,i+1 ).

A0 = λ(p,m,e). True, A1 = λ (p,m,e). m B = NAT b0,
A2 = x

∧
y [A1, λ(p,m,e). m C = NAT c0], A3 = x

∧
y [A1,

λ(p,m,e). ∃ c. m C = NAT c ∧ (c < 0 −→ (c = c0 ∧ b0 + c0 ≤ MAX ))]
A4 = λ(p,m,e). True
A5a= λ(p,m,e). m P=POS (incA ↼p e) ∧ ∃ b. m B=NAT b ∧ ∃ c. m C =NAT c
A5 = x

∧
y [A5a, λ(p,m,e). ∀ x . x 6=P −→ m x=↼m e x ]

A6a = λ(p,m,e). ∀ x . x 6=P ∧ x 6=M −→ m x=↼m e x
A6 = x

∧
y [A5a, A6a, λ(p,m,e). m M = NAT MAX ]

A7 = x

∧
y [A5a, A6a, λ(p,m,e). ∃ c. m C = NAT c ∧ m M = NAT (MAX − c)]

A8 = x

∧
y [A7, λ(p,m,e). ∃ b n. m B = NAT b ∧ m M = NAT n ∧ n≤b]

A9 = λ(p,m,e). (∀ x . x 6=C ∧ x 6=M ∧ x 6=P −→ m x = ↼m e x ) ∧
(∃ b c c ′. m B=NAT b ∧ m C =NAT c ∧ ↼m e C =NAT c ′ ∧
(c 6= 0 −→ (c = c ′ ∧ b + c ′ ≤ MAX )))}

3.2 Validity

In the shallow embedding we define validity of formulas simply by application.

(p,m,e) |= Q ≡ Q (p,m,e)

3.3 Provability

The provability judgement ` of a logic is usally defined with derivation rules.
However, since we write formulas as HOL predicates, we can use Isabelle/HOL’s
built in derivation rules as proof calculus. We consider a formula F provable if
it is valid for all states in safe�: Π ` F ≡ ∀ s. s ∈ safe� Π −→ s |= F

3.4 Weakest Precondition

The predicate, which wpF Π p p ′ Q yields, computes the successor state for the
transition from p to p ′ in program Π and applies the postcondition Q to it. For
ADD, CALL and MOV, we define wpF as follows. The remaining instructions
are analogous.

wpF Π p p ′ Q = (case cmd Π p of None ⇒ λ (p,m,e). False
| Some a ⇒ case a of ...
| ADD X Y ⇒ λ(p,m,e). Q (p ′,m(X 7→ (m X )p+q(m Y )),e(| h:=(h e)@[p]|))
| CALL X pn ⇒ λ(p,m,e). Q (p ′,m(X 7→POS (pn,0 )),e(|h:=(h e)@[p]|))
| MOV X Y ⇒λ(p,m,e). (case m X of ILLEGAL ⇒ False | POS r ⇒ False |

NAT x ⇒ (case m Y of ILLEGAL ⇒ False | POS r ′⇒ False |
NAT y ⇒ Q(p ′,m(y 7→ m x ),e(|h:=(h e)@[p]|)))) ...



3.5 Code generation

Isabelle can generate ML programs out of executable Isabelle/HOL definitions
[4]. However, for wpF this code generator does not produce the kind of ML
program we want. Due to our shallow embedding the code generator also turns
safety logic formulas into ML programs. Instead we would like them to be han-
dled as terms of type state ⇒ bool. A way out is to enhance the code generator
by a quotation/antiquotation mechanism. We can introduce functions term and
toterm:: ′a ⇒ ′a that are identities for Isabelle’s inference system. For the code
generator these functions serve as markers: When it generates code for an Isa-
belle term and steps into a term quotation it treats the following input term
as output of the currently generated ML program. If inside this mode a toterm
antiquotation appears, it switches back to normal mode. For example, consider
the following two Isabelle definitions:

f = λ n. n + n + n, g = λ n. term (toterm n + (toterm (n + n)))

When applied to operand 5 the ML program we get for f would return the
integer 15, whereas the one for g would return the term 5 + 10. Using this
mechanism we are able to generate an executable VCG from the definitions in
Isabelle.

4 Deep Embedding

4.1 Syntax

In a deep embedding we represent logical formulas as a datatype. At leaf positions
we have expressions.

datatype expr = V nat | Lv nat | xtvaly | Pc | Rp | Tm |
expr x+y expr | expr x−y expr | expr x∗y expr |
xify expr x=y expr xtheny expr xelsey expr | Deref expr | Old expr

Following Winskel [17] we distinguish two kinds of variables. Program variables
V 1 , V 2 , . . . denote values we find at specific locations in memory. For example
V 1 stands for the value we find at location 1 in memory. Apart from these we
have logical variables Lv 1 , Lv 2 , . . . , which stand for arbitrary values that do
not depend on the state of a program. Quantification will be defined later on
only for logical variables. Since these are not affected by machine instructions we
will not have to bother about them when we define the wpF Operator later on.
Apart from variables we have constants xNAT 2y, xPOS (0 ,1 )y, xILLEGALy, . . .
and special identifiers for the current program counter Pc, the return position
of the current procedure Rp and the system time Tm. These primitives can be
combined via arithmetical operators and conditionals. To support pointers, we
have the Deref E expression. It yields the value we find at address a, provided
E evaluates to NAT a. Finally, we have a call state expression Old E, which
interprets an expression E in the call state of the current procedure. This enables
one to describe states by relating them to former states.



datatype form = xTruey | xFalsey | x
∧
y form list | form x=⇒y form | x¬y form |

expr x=y expr | expr x6y expr | expr x<y expr | expr x::y vtype | x∀y nat form

Formulas are either the boolean constants xTruey and xFalsey, conjunctions x
∧
y

[A,B ,. . . ], implications A x=⇒y B or negations x¬y A. In addition we have relational
formulas E x=y E ′, E x6y E ′ or E x<y E ′ and a type checking formula E x::y T, where
T can either be Pos for POS or Nat for NAT.

datatype vtype = Pos | Nat
Finally, we can quantify over logical variables. In x∀y v F all free occurences of
Lv v in F are bound and F is expected . Below we have the annotations for our
example program, written in this new style.

A0 = xTruey, A1 = V B x=y xNAT b0y, A2 = x

∧
y [A1, V C x=y xNAT c0y]

A3 = x

∧
y [ A1, V C x::y Nat, xNAT 0y x<y V C x=⇒y

x

∧
y [V B x+y V C x6y xNAT MAXy, V C x=y xNAT c0y]

A4 = xTruey, A5a = x

∧
y [V P x=y Rp, V B x::y Nat, V C x::y Nat]

A5b = x∀y x x¬y (Lv x x=y xNAT Py) x=⇒y Deref (Lv x ) x=y Old (Deref (Lv x ))
A5 = x

∧
y [A5a, A5b], A6a = x∀y x x

∧
y [x¬y (Lv x x=y xNAT Py),

x¬y (Lv x x=y xNAT My)] x=⇒y Deref (Lv x ) x=y Old (Deref (Lv x ))
A6 = x

∧
y [A5a, A6a, V M x=y xNAT MAXy]

A7 = x

∧
y [A5a, A6a, V M x=y xNAT MAXy x−y V C ], A8 = A7

A9 = x

∧
y [A5a, x∀y x x

∧
y [x¬y (Lv x x=y xNAT Py), x¬y (Lv x x=y xNAT My,

x¬y (Lv x ) x=y xNAT Cy)] x=⇒y Deref (Lv x ) x=y Old (Deref (Lv x )),
x¬y (V C x=y xNAT 0y) x=⇒y x

∧
y [V C x=y Old (V C ), V B x+y V C x6y xNAT MAXy]]

4.2 Validity

We use eval ::(nat ⇒ tval) ⇒ state ⇒ expr ⇒ tval to evaluate expressions on
a given state and interpretation for logical variables. Program variables stand
for memory locations, logical variables are interpreted via L and constants are
directly converted to values.

eval L (p,m,e) (V v) = m v, eval L s (Lv v) = L v, eval L s xtvy = tv

The identifer Pc stands for the program counter, Tm for the system time (num-
ber of executed instructions), and Rp for the return position of the current
procedure. It evaluates to POS (0 ,0 ) if we are in the main procedure or to
ILLEGAL in case of a malformed call stack.

eval (p,m,e) Pc = POS p eval (p,m,e) Tm = NAT (length (h e))
eval (p,m,e) Rp = (case length (cs e) of 0 ⇒ ILLEGAL
| Suc n ⇒ (case n of 0 ⇒ POS (0 ,0 ) | Suc n ′⇒ POS (incA (↼p e))))

Arithmetical expressions and conditionals are evaluated recursively.

eval L s (E x+y E ′)= (eval L s E ) p+q (eval L s E ′)

The cases for x−y and x∗y are analogous.

eval L s (xify E 0 x=y E 1 xtheny E 2 xelsey E 3) =



if (eval L s E 0 = eval L s E 1) then eval L s E 2 else eval L s E 3)

With Deref E we fetch the value at position a, provided E evaluates to NAT a.

eval L (p,m,e) (Deref E ) = (case (eval L (p,m,e) E )
of ILLEGAL ⇒ ILLEGAL | POS r ⇒ ILLEGAL | NAT a ⇒ m a)

Finally, we evaluate Old E by retrieving the call state from the environment.

eval L (p,m,e) (Old E ) = eval L (↼p e,↼m e,↼e e) E

Next, we define the validity of formulas relative to states and interpretations.

L,s|=xTruey ¬ L,s |= xFalsey L,s|= x
∧
y Fs = (∀F ∈ set Fs. L,s|=F )

L,s|=F x=⇒y F ′ = (L,s|=F −→ L,s|=F ′) L,s|= x¬yF = ¬ (L,s|=F )
L,s|= Ex=yE ′ = (eval L s E = eval L s E ′)
L,s|= E x::y T = (case (eval L s E )
of ILLEGAL ⇒ False | POS p ⇒ T=Pos | NAT n ⇒ T=Nat)
L,s|= Ex6yE ′ = (case (eval L s E ) of ILLEGAL ⇒ False | POS r ⇒ False |
NAT x ⇒ (case (eval L s E ′) of ILLEGAL ⇒ False | POS r ′⇒ False |
NAT y ⇒ x ≤ y))

The case for x<y is analogous to x6y; just replace ≤ with <. The meaning
of x∀y v F is that F holds irrespective of the interpretation of Lv v.

L,s |= x∀y v F = (∀ tv . L(v 7→tv),s |= F )

4.3 Provability

Provability is defined in a similar manner as for the shallow embedding. A for-
mula is considered provable if it holds for all interpretations and states in safe�.

Π ` F ≡ ∀L. ∀ s∈ safe� Π. L,s |= F

To show provability of a formula, there are two alternatives. One can either ex-
pand the definition of ` and work directly with the inference rules of HOL. This
makes sense if the code consumer’s logic is HOL (something that the shallow em-
bedding requires). On the other hand, if the code consumer’s safety logic is more
specialised, the deep embedding can still model the precise inference system in-
volved. For example, we have derived suitable introduction and elimination rules
for our language of formulas that do not rely on λ calculus and HOL. However,
proving with deep embedded inference rules inside Isabelle/HOL turned out to
be inconvenient. The proof tools are designed to prove HOL formulae not ele-
ments of a datatype. In addition the x∀y elimination rule causes trouble. It says
that from x∀y v F we can deduce F [t/v ], which is F with all free occurrences
of Lv v replaced by some term t. We need a form of substitution that renames
bounded logical variables in F when they occur as free variables in t. This re-
naming complicates the correctness proof and turned out to double the size of
our deep embedding theories. Nevertheless defining and verifying deep embed-
ded inference rules inside Isabelle/HOL pays off if one wants to use specialised
tools for proof search and checking. Since Isabelle is generic one can also think
about instantiating the safety logic as a new object logic.



4.4 Weakest Precondition

A big difference between our shallow and deep embedding lies in the definition of
the wpF operator. In the deep embedding we express the effects of instructions
at the level of formulas with substitutions. For these we use finite maps, which we
internally represent as lists of pairs, e.g. fm = [(1 ,1 ),(2 ,4 ),(3 ,5 ),(3 ,6 )]. Finite
maps enable us to generate executable ML code for map operations like lookup
-↓-:: ′a . ′b ⇒ ′a ⇒ ′b option, domain dom:: ( ′a . ′b) ⇒ ′a list or range ran::
( ′a . ′b) ⇒ ′b list. A few examples demonstrate how these operators work fm↓0
= None, fm↓3 = Some 5, dom fm = [1 ,2 ,3 ] and ran fm = [1 ,4 ,5 ]. Note that a
pair (x ,y) is overwritten by a pair (x ,y ′) to the left of it. For ADD, CALL and
MOV, we define wpF as follows. The remaining instructions are analogous.

wpF Π p p ′ Q = (case cmd Π p) of None ⇒ xFalsey | Some a ⇒ case a of ...
| ADD X Y ⇒ substF [(Tm, Tm x+y xNAT 1y),(Pc,xPOS p ′y),

(V X , V X x+y V Y )] Q
| CALL X pn ⇒ popCs (substF [(Tm,Tm x+y xNAT 1y),(Rp,xPOS (pn,i+1 )y),

(Pc,xPOS p ′y),(V X ,xPOS (pn,i+1 )y)] Q)
| MOV X Y ⇒ substPtF X Y [(Tm,Tm x+y xNAT 1y),(Pc,xPOS p ′y)] Q ...

The substitution function substF :: (expr . expr) ⇒ form ⇒ form is the main
workhorse for the deep embedding. With substF em F we simultaneously sub-
stitute expressions of the form V v, Tm, Pc or Rp in a formula F according to
a finite map em. It traverses F and applies substE em E on all expressions it
finds.

substF em xTruey = xTruey substF em xFalsey = xFalsey
substF em ( x

∧
y Fs) = x

∧
y (map (substF em) Fs)

substF em (F 1 x=⇒y F 2) = (substF em F 1) x=⇒y (substF em F 2)
substF em (x¬y F ) = x¬y (substF em F )
substF em (E x::y T ) = (substE em E ) x::y T
substF em (x∀y v F ) = x∀y v (substF em F )

Expressions of the form Lv v or xtvy are ignored by substE, because they are not
affected by instructions. Here Winskel’s [17] distinction of program and logi-
cal variables pays off. In wpF only program variables appear in the expressions
we substitute in. Hence, we do not have to rename bound (=logical) variables.
However, a substitution with renaming is useful when one wants to define deep
embedded inference rules (see §4.3). For the remaining primitive expressions sub-
stE looks up the expression map and replaces them with their substitute in case
there is some. Otherwise substE just recurses down the expression structure.

E=Lv v ∨ E=xtvy −→ substE em E = E

E=V v ∨ E∈{Pc,Rp,Tm} −→
substE em E = (case em↓E of None ⇒ E | Some E ′⇒ E ′)

o∈{x+y,x−y,x∗y} −→ substE em (E 1 o E 2) = (substE em E 1) o (substE em E 2)

substE em (xify E 1 x=y E 2 xtheny E 3 xelsey E 4) = xify (substE em E 1) x=y
(substE em E 2) xtheny (substE em E 3) xelsey (substE em E 4)



In case of Deref E, we have to check, whether E evaluates to NAT v where v is
the location of a variable V v that is substituted by em to some expression E ′.
In this case the Deref E expression needs to be substituted as well. Since the
evaluation of E depends on the state we cannot do this statically. A way out is
to replace Deref E by another expression that incorporates this check, e.g. xify
E ′′ x=y xNAT vy xtheny E ′ xelsey E ′′ where E ′′ = substE em E and em↓E = Some
E ′. This check needs to be done for all variables in the domain of em; we fetch
them with the auxiliary function changedvars.

v ∈ set (changedvars em) = (∃E ′. em↓(V v) = Some E ′)

substE em (Deref E ) = (let E ′′ = substE em E ;
res = (foldl (λE ′. (v ,E ′). (xify E ′′ x=y xNAT vy) xtheny E ′ xelsey E ′′))

(Deref E ′′) (changedvars em)) in res)

In this definition we use the HOL function foldl wich calls its input function
recursively over a list of arguments.

foldl f a [] = a foldl f a (x#xs) = foldl f (f a x ) xs

Since we use substE only to express the effects of instructions on the current
state, it ceases to play a role when we come to an expression that refers to an-
other state. Hence, substE terminates when it reaches an Old expression.

substE em (Old E ) = Old E

To express the effect of pointer instructions, e.g. MOV X Y, we use the special
substitution function substPtF :: nat ⇒ nat ⇒ (expr . expr) ⇒ form ⇒ form.
It works exactly like substF except that it calls substPtE :: nat ⇒ nat ⇒ (expr
. expr) ⇒ expr ⇒ expr, when it encounters an expression. The function sub-
stPtE is a variant of substE that does additional transformations for variables
and Deref expressions. When we execute MOV X Y it could be that the target
location NAT v stored in Y coincides with a variable V v in an expression. In
this case the value of V v after the MOV X Y instruction becomes the value
at the location we find in X. To express this effect we can replace V v with a
conditional expression.

substPtE X Y em (V v) =
xify V Y x=y xNAT vy xtheny Deref (V X ) xelsey (substE em (V v)).

For Deref E expressions the same technique can be applied.

substPtE X Y em (Deref E ) = let E ′′= substPtE X Y em E ; res = . . .
in (xify V Y x=y E ′′ xtheny Deref (V X ) xelsey res)

Finally, we need special formula manipulations for procedure calls and returns.
Remember that CALL pushes the current state (call state) onto the call stack.
With popCs the wpF function reverses this effect. After the call a new proce-
dure is active and expressions of the form Old E have a different meaning. The
expression Old E evaluated after the call yields the same value as E does be-
fore (because (↼p e ′,↼m e ′, ↼e e ′) = (p,m,e) when e ′=(cs:=((length (h e),m)#(cs
e)); h:=(h e)@[p]). To ensure validity of some formula Q after the call popCs



Q replaces occurrences of Old E in Q with E. For RET we do the opposite; we
replace Old (Old E ) with Old E.

5 Comparison

Expressiveness
In our shallow embedding we use predicates in HOL as assertion language. These
are more expressive than the deep embedded first order formulas. One can quan-
tify over functions, use expressions of any type and has direct and unrestricted
access to the state. For example we verified list reversal [1] in our shallow em-
bedding, but we found it difficult to do this example in the deep embedding,
which does not offer expressions for lists. However, this shortcoming could be
overcome by utilizing a richer assertion language.

Proof Size
Shallow and deep embedding differ in the definition of wpF ; one uses λ abstrac-
tion, the other substitutions. This difference affects verification conditions and
their proofs. For example for the transition from (0 ,2 ) to (1 ,0 ) in our example
program we get these formulas:

VC s= x
∧
y[λ(p,m,e).True,λ(p,m,e).m B=NAT b0 ∧ m C =NAT c0,λ(p,m,e).True]

x=⇒y (λ(p,m,e). x
∧
y[λ(p,m,e).MAX≤MAX ,λ(p,m,e).m P=POS (incA ↼p e) ∧

∃ b.m B=NAT b ∧ ∃ c.m C =NAT c ∧ ∀ x . x 6=P −→ m x=↼m e x ]
((0 ,2 ),m[P 7→POS (0 ,3 )],e(|h:=(h e)@[(0 ,2 )];cs:=(length (h e),m)#(cs e)|)))

VC d= x
∧
y[xTruey, x

∧
y [V Bx=yxNAT b0y, V Cx=yxNAT c0y],xTruey]

x=⇒y x
∧
y[xNAT MAXyx6yxNAT MAXy, xPOS (0 ,3 )yx=yxPOS (0 ,3 )y,V B x::y Nat,

V C x::y Nat, x∀y x x¬y(Lv xx=yxNAT Py) x=⇒y Deref (Lv x )x=yDeref (Lv x )]

In the formula VC s, which results from the shallow embedding, we have vari-
ous uncontracted λ terms. This is because the VCG does not simplify; it just
plugs annotations and safety formulas into a skeleton of conjunctions and impli-
cations determined by the control flow graph. The contraction of these λ terms
is done when we prove them in Isabelle. In VC d, which results from the deep
embedding, these simplifications are carried out by the substitution function,
which is executed when we run the VCG. Hence, the proof of VC s involves more
simplification steps than the one of VC d. For example in VC s we find after β
contraction this subformula:

m[P 7→POS (0 ,3 )] x = ↼m e(|h:=(h e)@[(0 ,2 )]; cs:=(length (h e),m)#(cs e)|) x

Knowing that x 6= P and the definitions of 7→, ↼m and record updates, we can
simplify this to the triviality m x = m x. In VC d this triviality is already ex-
posed by the wpF operator, which yields Deref (Lv x ) x=y Deref (Lv x ) in this
situation. The VC we get for our example program can be proven automatically
in Isabelle using built in decision procedures for Presburger Arithmetics. The
latter is required for the formula we get for the transition from (1 ,4 ) to (0 ,4 ).



There we have to show that the Addition operation at (0 ,3 ) cannot overflow.
The resulting proof object for the shallow embedding is about twice the size as
the deep embedding. Other experiments [1] confirm this fact.

Formula Optimisations
Another advantage we get from the deep embedding is that we can write Isa-
belle/HOL functions that operate on the structure of formulas. This enables us
to optimise VCs after/during their construction. Elsewhere [1] we present an
optimizer for VCs in the deep embedding. It evaluates constant formulas and
subexpressions, for example xNAT MAXy x6y xNAT MAXy can be reduced to xTruey.
In addition it simplifies implications, for example A x=⇒y xTruey or x

∧
y [. . . ,A,. . . ]

x=⇒y A, and conjunctions, for example x
∧
y [. . . ,xTruey,. . . ] or x

∧
y [A, x

∧
y [B ,C ],D ].

It can also do some trivial deductions, for example V b x=y xNAT b0y implies V
b x::y Nat. These transformations, which can be done in time quadratic to the
formula size, suffice to reduce the size of VCs and their proofs considerably. For
example VC d can be reduced to xTruey. Although these optimisations do not
always trivialise VCs, experiments [1] show that leads to proof objects that are
about 3 times smaller than they are in the shallow embedding. More could be
gained by coupling the optimizer to a proof procedure that performs introduc-
tion and elimination rules on our first order formula language.

Annotation Analysis
In the shallow embedding we cannot analyse annotations in the VCG or its
helper functions. This is because HOL predicates cannot be structurally anal-
ysed by other HOL functions (Isabelle does not support reflection). In the deep
embedding the structure of formulas is accessible and can be used to handle more
complex machine instructions like computed gotos. We simply demand that the
possible targets of such jumps, which are runtime values and therefore hard to
determine statically, must be annotated. Then we can define a succsF function
that reads off the possible successors from the annotation. Since annotations
must be verified in the resulting VC this approach is sound.

6 Conclusion

As we expected the deep embedded safety logic was harder to instantiate within
our PCC framework than the shallow one. One has to define explicit evaluation
and substitution functions and prove them correct. This becomes a non trivial
task when variable renamings are involved. In addition one has to deal with sub-
tle effects pointer instructions or procedure calls have on formulas. However, once
the deep embedding is proven correct it buys us a lot. We can specify and prove
correct an optimiser or pre-prover for VCs and handle more instructions (com-
puted gotos). Homeier [11] also works with a deep embedded assertion language
and points out similar advantages. Based on these experiences we instantiated
our PCC framework to a down-sized version of the Java Virtual Machine [9]
using an extended version of our deep embedded assertion language.
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