
Structured Proofs in Isar/HOL

Tobias Nipkow

Institut für Informatik, TU München
http://www.in.tum.de/∼nipkow/

Abstract. Isar is an extension of the theorem prover Isabelle with a
language for writing human-readable structured proofs. This paper is an
introduction to the basic constructs of this language.

1 Introduction

Isabelle is a generic proof assistant. Isar is an extension of Isabelle with struc-
tured proofs in a stylised language of mathematics. These proofs are readable
for both a human and a machine. Isabelle/HOL [4] is a specialisation of Isabelle
with higher-order logic (HOL). This paper is a compact introduction to struc-
tured proofs in Isar/HOL, an extension of Isabelle/HOL. We intentionally do not
present the full language but concentrate on the essentials. Neither do we give a
formal semantics of Isar. Instead we introduce Isar by example. We believe that
the language “speaks for itself” in the same way that traditional mathematical
proofs do, which are also introduced by example rather than by teaching students
logic first. A detailed exposition of Isar can be found in Markus Wenzel’s PhD
thesis [6] (which also discusses related work) and the Isar reference manual [7].

1.1 Background

Interactive theorem proving has been dominated by a model of proof that goes
back to the LCF system [2]: a proof is a more or less structured sequence of
commands that manipulate an implicit proof state. Thus the proof text is only
suitable for the machine; for a human, the proof only comes alive when he can
see the state changes caused by the stepwise execution of the commands. Such
proofs are like uncommented assembly language programs. We call them tactic-
style proofs because LCF proof commands were called tactics.

A radically different approach was taken by the Mizar system [5] where proofs
are written in a stylised language akin to that used in ordinary mathematics
texts. The most important argument in favour of a mathematics-like proof lan-
guage is communication: as soon as not just the theorem but also the proof
becomes an object of interest, it should be readable. From a system develop-
ment point of view there is a second important argument against tactic-style
proofs: they are much harder to maintain when the system is modified.

For these reasons the Isabelle system, originally firmly in the LCF-tradition,
was extended with a language for writing structured proofs in a mathematics-
like style. As the name already indicates, Isar was certainly inspired by Mizar.

http://www.in.tum.de/~nipkow/

However, there are many differences. For a start, Isar is generic: only a few of
the language constructs described below are specific to HOL; many are generic
and thus available for any logic defined in Isabelle, e.g. ZF. Furthermore, we
have Isabelle’s powerful automatic proof procedures at our disposal. A closer
comparison of Isar and Mizar can be found elsewhere [8].

1.2 A first glimpse of Isar

Below you find a simplified grammar for Isar proofs. Parentheses are used for
grouping and ? indicates an optional item:

proof ::= proof method? statement* qed
| by method

statement ::= fix variables
| assume propositions
| (from facts)? (show | have) propositions proof

proposition ::= (label :)? string

fact ::= label

A proof can be either compound (proof – qed) or atomic (by). A method is
a proof method (tactic) offered by the underlying theorem prover. Thus this
grammar is generic both w.r.t. the logic and the theorem prover.

This is a typical proof skeleton:

proof
assume " the-assm"

have " . . . " — intermediate result
...
have " . . . " — intermediate result
show " the-concl"

qed

It proves the-assm =⇒ the-concl. Text starting with “—” is a comment. The
intermediate haves are only there to bridge the gap between the assumption and
the conclusion and do not contribute to the theorem being proved. In contrast,
show establishes the conclusion of the theorem.

1.3 Bits of Isabelle

We recall some basic notions and notation from Isabelle. For more details and
for instructions how to run examples see elsewhere [4].

Isabelle’s meta-logic comes with a type of propositions with implication =⇒
and a universal quantifier

∧
for expressing inference rules and generality. Iterated

implications A1 =⇒ . . . An =⇒ A may be abbreviated to [[A1; . . . ;An]] =⇒ A.
Applying a theorem A =⇒ B (named T) to a theorem A (named U) is written
T[OF U] and yields theorem B.

2

Isabelle terms are simply typed. Function types are written τ1 ⇒ τ2.
Free variables that may be instantiated (“logical variables” in Prolog par-

lance) are prefixed with a ?. Typically, theorems are stated with ordinary free
variables but after the proof those are automatically replaced by ? -variables.
Thus the theorem can be used with arbitrary instances of its free variables.

Isabelle/HOL offers all the usual logical symbols like −→, ∧, ∀ etc. HOL
formulae are propositions, e.g. ∀ can appear below =⇒, but not the other way
around. Beware that −→ binds more tightly than =⇒: in ∀x.P −→ Q the ∀x
covers P −→ Q, whereas in ∀x.P =⇒ Q it covers only P .

Proof methods include rule (which performs a backwards step with a given
rule, unifying the conclusion of the rule with the current subgoal and replacing
the subgoal by the premises of the rule), simp (for simplification) and blast (for
predicate calculus reasoning).

1.4 Overview of the paper

The rest of the paper is divided into two parts. Section 2 introduces proofs in
pure logic based on natural deduction. Section 3 is dedicated to induction, the
key reasoning principle for computer science applications.

There are two further areas where Isar provides specific support, but which
we do not document here. Reasoning by chains of (in)equations is described
elsewhere [1]. Reasoning about axiomatically defined structures by means of so
called “locales” was first described in [3] but has evolved much since then.

Finally, a word of warning for potential writers of Isar proofs. It has always
been easier to write obscure rather than readable texts. Similarly, tactic-style
proofs are often (though by no means always!) easier to write than readable
ones: structure does not emerge automatically but needs to be understood and
imposed. If the precise structure of the proof is unclear at beginning, it can
be useful to start in a tactic-based style for exploratory purposes until one has
found a proof which can be converted into a structured text in a second step.

2 Logic

2.1 Propositional logic

Introduction rules We start with a really trivial toy proof to introduce the
basic features of structured proofs.

lemma "A −→ A"

proof (rule impI)

assume a: "A"

show "A" by(rule a)

qed

The operational reading: the assume-show block proves A =⇒ A (a is a degen-
erate rule (no assumptions) that proves A outright), which rule impI ((?P =⇒
?Q) =⇒ ?P −→ ?Q) turns into the desired A −→ A. However, this text is much
too detailed for comfort. Therefore Isar implements the following principle:

3

Command proof automatically tries to select an introduction rule based
on the goal and a predefined list of rules.

Here impI is applied automatically:

lemma "A −→ A"

proof

assume a: A

show A by(rule a)

qed

Single-identifier formulae such as A need not be enclosed in double quotes. How-
ever, we will continue to do so for uniformity.

Trivial proofs, in particular those by assumption, should be trivial to perform.
Proof “.” does just that (and a bit more). Thus naming of assumptions is often
superfluous:

lemma "A −→ A"

proof

assume "A"

show "A" .

qed

To hide proofs by assumption further, by(method) first applies method and
then tries to solve all remaining subgoals by assumption:

lemma "A −→ A ∧ A"

proof

assume "A"

show "A ∧ A" by(rule conjI)

qed

Rule conjI is of course [[?P; ?Q]] =⇒ ?P ∧ ?Q. A drawback of implicit proofs by
assumption is that it is no longer obvious where an assumption is used.

Proofs of the form by(rule name) can be abbreviated to “..” if name refers
to one of the predefined introduction rules (or elimination rules, see below):

lemma "A −→ A ∧ A"

proof

assume "A"

show "A ∧ A" ..

qed

This is what happens: first the matching introduction rule conjI is applied (first
“.”), then the two subgoals are solved by assumption (second “.”).

Elimination rules A typical elimination rule is conjE, ∧-elimination:

[[?P ∧ ?Q; [[?P; ?Q]] =⇒ ?R]] =⇒ ?R

4

In the following proof it is applied by hand, after its first (major) premise has
been eliminated via [OF AB] :

lemma "A ∧ B −→ B ∧ A"

proof

assume AB: "A ∧ B"

show "B ∧ A"

proof (rule conjE[OF AB]) — conjE[OF AB] : ([[A; B]] =⇒ ?R) =⇒ ?R

assume "A" "B"

show ?thesis ..

qed

qed

Note that the term ?thesis always stands for the “current goal”, i.e. the enclos-
ing show (or have) statement.

This is too much proof text. Elimination rules should be selected automat-
ically based on their major premise, the formula or rather connective to be
eliminated. In Isar they are triggered by facts being fed into a proof. Syntax:

from fact show proposition proof

where fact stands for the name of a previously proved proposition, e.g. an as-
sumption, an intermediate result or some global theorem, which may also be
modified with OF etc. The fact is “piped” into the proof, which can deal with it
how it chooses. If the proof starts with a plain proof, an elimination rule (from
a predefined list) is applied whose first premise is solved by the fact. Thus the
proof above is equivalent to the following one:

lemma "A ∧ B −→ B ∧ A"

proof

assume AB: "A ∧ B"

from AB show "B ∧ A"

proof

assume "A" "B"

show ?thesis ..

qed

qed

Now we come to a second important principle:

Try to arrange the sequence of propositions in a UNIX-like pipe, such
that the proof of each proposition builds on the previous proposition.

The previous proposition can be referred to via the fact this. This greatly reduces
the need for explicit naming of propositions:

lemma "A ∧ B −→ B ∧ A"

proof

assume "A ∧ B"

from this show "B ∧ A"

5

proof

assume "A" "B"

show ?thesis ..

qed

qed

Because of the frequency of from this, Isar provides two abbreviations:

then = from this

thus = then show

Here is an alternative proof that operates purely by forward reasoning:

lemma "A ∧ B −→ B ∧ A"

proof

assume ab: "A ∧ B"

from ab have a: "A" ..

from ab have b: "B" ..

from b a show "B ∧ A" ..

qed

It is worth examining this text in detail because it exhibits a number of new
concepts. For a start, it is the first time we have proved intermediate propositions
(have) on the way to the final show. This is the norm in nontrivial proofs where
one cannot bridge the gap between the assumptions and the conclusion in one
step. To understand how the proof works we need to explain more Isar details.

Method rule can be given a list of rules, in which case (rule rules) applies
the first matching rule in the list rules. Command from can be followed by any
number of facts. Given from f1 . . . fn, the proof step (rule rules) following
a have or show searches rules for a rule whose first n premises can be proved
by f1 . . . fn in the given order. Finally one needs to know that “..” is short for
by(rule elim-rules intro-rules) (or by(rule intro-rules) if there are no facts fed
into the proof), i.e. elimination rules are tried before introduction rules.

Thus in the above proof both haves are proved via conjE triggered by
from ab whereas in the show step no elimination rule is applicable and the
proof succeeds with conjI. The latter would fail had we written from a b in-
stead of from b a.

Proofs starting with a plain proof behave the same because the latter is short
for proof (rule elim-rules intro-rules) (or proof (rule intro-rules) if there are
no facts fed into the proof).

2.2 More constructs

In the previous proof of A ∧ B −→ B ∧ A we needed to feed more than one fact
into a proof step, a frequent situation. Then the UNIX-pipe model appears to
break down and we need to name the different facts to refer to them. But this
can be avoided:

6

lemma "A ∧ B −→ B ∧ A"

proof

assume ab: "A ∧ B"

from ab have "B" ..

moreover

from ab have "A" ..

ultimately show "B ∧ A" ..

qed

You can combine any number of facts A1 . . . An into a sequence by separat-
ing their proofs with moreover. After the final fact, ultimately stands for
from A1 . . . An. This avoids having to introduce names for all of the sequence
elements.

Although we have only seen a few introduction and elimination rules so far,
Isar’s predefined rules include all the usual natural deduction rules. We conclude
our exposition of propositional logic with an extended example — which rules
are used implicitly where?

lemma "¬ (A ∧ B) −→ ¬ A ∨ ¬ B"

proof

assume n: "¬ (A ∧ B)"

show "¬ A ∨ ¬ B"

proof (rule ccontr)

assume nn: "¬ (¬ A ∨ ¬ B)"

have "¬ A"

proof

assume "A"

have "¬ B"

proof

assume "B"

have "A ∧ B" ..

with n show False ..

qed

hence "¬ A ∨ ¬ B" ..

with nn show False ..

qed

hence "¬ A ∨ ¬ B" ..

with nn show False ..

qed

qed

Rule ccontr (“classical contradiction”) is (¬ P =⇒ False) =⇒ P. Apart from
demonstrating the strangeness of classical arguments by contradiction, this ex-
ample also introduces two new abbreviations:

hence = then have
with facts = from facts this

7

2.3 Avoiding duplication

So far our examples have been a bit unnatural: normally we want to prove rules
expressed with =⇒, not −→. Here is an example:

lemma "A ∧ B =⇒ B ∧ A"

proof

assume "A ∧ B" thus "B" ..

next

assume "A ∧ B" thus "A" ..

qed

The proof always works on the conclusion, B ∧ A in our case, thus selecting
∧-introduction. Hence we must show B and A ; both are proved by ∧-elimination
and the proofs are separated by next:

next deals with multiple subgoals. For example, when showing A ∧ B we need
to show both A and B. Each subgoal is proved separately, in any order. The
individual proofs are separated by next. 1

Strictly speaking next is only required if the subgoals are proved in different
assumption contexts which need to be separated, which is not the case above.
For clarity we have employed next anyway and will continue to do so.

This is all very well as long as formulae are small. Let us now look at some
devices to avoid repeating (possibly large) formulae. A very general method is
pattern matching:

lemma "large_A ∧ large_B =⇒ large_B ∧ large_A"

(is "?AB =⇒ ?B ∧ ?A")

proof

assume "?AB" thus "?B" ..

next

assume "?AB" thus "?A" ..

qed

Any formula may be followed by (is pattern) which causes the pattern to be
matched against the formula, instantiating the ? -variables in the pattern. Sub-
sequent uses of these variables in other terms causes them to be replaced by the
terms they stand for.

We can simplify things even more by stating the theorem by means of the
assumes and shows elements which allow direct naming of assumptions:

lemma assumes AB: "large_A ∧ large_B"

shows "large_B ∧ large_A" (is "?B ∧ ?A")

proof

from AB show "?B" ..

1 Each show must prove one of the pending subgoals. If a show matches multiple
subgoals, e.g. if the subgoals contain ?-variables, the first one is proved. Thus the
order in which the subgoals are proved can matter — see §3.1 for an example.

8

next

from AB show "?A" ..

qed

Note the difference between ?AB, a term, and AB, a fact.
Finally we want to start the proof with ∧-elimination so we don’t have to

perform it twice, as above. Here is a slick way to achieve this:

lemma assumes AB: "large_A ∧ large_B"

shows "large_B ∧ large_A" (is "?B ∧ ?A")

using AB

proof

assume "?A" "?B" show ?thesis ..

qed

Command using can appear before a proof and adds further facts to those
piped into the proof. Here AB is the only such fact and it triggers ∧-elimination.
Another frequent idiom is as follows:

from major-facts show proposition using minor-facts proof

Sometimes it is necessary to suppress the implicit application of rules in a
proof. For example show A ∨ B would trigger ∨-introduction, requiring us to
prove A. A simple “-” prevents this faux pas:

lemma assumes AB: "A ∨ B" shows "B ∨ A"

proof -

from AB show ?thesis

proof
assume A show ?thesis ..

next
assume B show ?thesis ..

qed
qed

2.4 Predicate calculus

Command fix introduces new local variables into a proof. The pair fix-show
corresponds to

∧
(the universal quantifier at the meta-level) just like assume-

show corresponds to =⇒. Here is a sample proof, annotated with the rules that
are applied implicitly:

lemma assumes P: "∀ x. P x" shows "∀ x. P(f x)"

proof — allI : (
∧
x. ?P x) =⇒ ∀ x. ?P x

fix a

from P show "P(f a)" .. — allE : [[∀ x. ?P x; ?P ?x =⇒ ?R]] =⇒ ?R

qed

Note that in the proof we have chosen to call the bound variable a instead of x
merely to show that the choice of local names is irrelevant.

9

Next we look at ∃ which is a bit more tricky.

lemma assumes Pf: "∃ x. P(f x)" shows "∃ y. P y"

proof -

from Pf show ?thesis

proof — exE : [[∃ x. ?P x;
∧
x. ?P x =⇒ ?Q]] =⇒ ?Q

fix x

assume "P(f x)"

show ?thesis .. — exI : ?P ?x =⇒ ∃ x. ?P x

qed

qed

Explicit ∃-elimination as seen above can become cumbersome in practice. The
derived Isar language element obtain provides a more appealing form of gener-
alised existence reasoning:

lemma assumes Pf: "∃ x. P(f x)" shows "∃ y. P y"

proof -

from Pf obtain x where "P(f x)" ..

thus "∃ y. P y" ..

qed

Note how the proof text follows the usual mathematical style of concluding P (x)
from ∃x.P (x), while carefully introducing x as a new local variable. Technically,
obtain is similar to fix and assume together with a soundness proof of the
elimination involved.

Here is a proof of a well known tautology. Which rule is used where?

lemma assumes ex: "∃ x. ∀ y. P x y" shows "∀ y. ∃ x. P x y"

proof
fix y

from ex obtain x where "∀ y. P x y" ..
hence "P x y" ..
thus "∃ x. P x y" ..

qed

2.5 Making bigger steps

So far we have confined ourselves to single step proofs. Of course powerful auto-
matic methods can be used just as well. Here is an example, Cantor’s theorem
that there is no surjective function from a set to its powerset:

theorem "∃ S. S /∈ range (f :: ’a ⇒ ’a set)"

proof

let ?S = "{x. x /∈ f x}"

show "?S /∈ range f"

proof

assume "?S ∈ range f"

then obtain y where fy: "?S = f y" ..

10

show False

proof cases

assume "y ∈ ?S"

with fy show False by blast

next

assume "y /∈ ?S"

with fy show False by blast

qed

qed

qed

For a start, the example demonstrates two new constructs:

– let introduces an abbreviation for a term, in our case the witness for the
claim.

– Proof by cases starts a proof by cases. Note that it remains implicit what
the two cases are: it is merely expected that the two subproofs prove P =⇒
?thesis and ¬P =⇒ ?thesis (in that order) for some P.

If you wonder how to obtain y : via the predefined elimination rule [[b ∈ range

f;
∧
x. b = f x =⇒ P]] =⇒ P.

Method blast is used because the contradiction does not follow easily by just
a single rule. If you find the proof too cryptic for human consumption, here is a
more detailed version; the beginning up to obtain stays unchanged.

theorem "∃ S. S /∈ range (f :: ’a ⇒ ’a set)"

proof

let ?S = "{x. x /∈ f x}"

show "?S /∈ range f"

proof

assume "?S ∈ range f"

then obtain y where fy: "?S = f y" ..

show False

proof cases

assume "y ∈ ?S"

hence "y /∈ f y" by simp

hence "y /∈ ?S" by(simp add:fy)

thus False by contradiction

next

assume "y /∈ ?S"

hence "y ∈ f y" by simp

hence "y ∈ ?S" by(simp add:fy)

thus False by contradiction

qed

qed

qed

Method contradiction succeeds if both P and ¬P are among the assumptions
and the facts fed into that step, in any order.

11

As it happens, Cantor’s theorem can be proved automatically by best-first
search. Depth-first search would diverge, but best-first search successfully navi-
gates through the large search space:

theorem "∃ S. S /∈ range (f :: ’a ⇒ ’a set)"

by best

2.6 Raw proof blocks

Although we have shown how to employ powerful automatic methods like blast

to achieve bigger proof steps, there may still be the tendency to use the default
introduction and elimination rules to decompose goals and facts. This can lead
to very tedious proofs:

lemma "∀ x y. A x y ∧ B x y −→ C x y"

proof

fix x show "∀ y. A x y ∧ B x y −→ C x y"

proof

fix y show "A x y ∧ B x y −→ C x y"

proof

assume "A x y ∧ B x y"

show "C x y" sorry

qed

qed

qed

Since we are only interested in the decomposition and not the actual proof,
the latter has been replaced by sorry. Command sorry proves anything but is
only allowed in quick and dirty mode, the default interactive mode. It is very
convenient for top down proof development.

Luckily we can avoid this step by step decomposition very easily:

lemma "∀ x y. A x y ∧ B x y −→ C x y"

proof -

have "
∧
x y. [[A x y; B x y]] =⇒ C x y"

proof -

fix x y assume "A x y" "B x y"

show "C x y" sorry

qed

thus ?thesis by blast

qed

This can be simplified further by raw proof blocks, i.e. proofs enclosed in braces:

lemma "∀ x y. A x y ∧ B x y −→ C x y"

proof -

{ fix x y assume "A x y" "B x y"

have "C x y" sorry }

12

thus ?thesis by blast

qed

The result of the raw proof block is the same theorem as above, namely
∧
x

y. [[A x y; B x y]] =⇒ C x y. Raw proof blocks are like ordinary proofs except
that they do not prove some explicitly stated property but that the property
emerges directly out of the fixes, assumes and have in the block. Thus they
again serve to avoid duplication. Note that the conclusion of a raw proof block
is stated with have rather than show because it is not the conclusion of some
pending goal but some independent claim.

The general idea demonstrated in this subsection is very important in Isar
and distinguishes it from tactic-style proofs:

Do not manipulate the proof state into a particular form by applying
tactics but state the desired form explicitly and let the tactic verify that
from this form the original goal follows.

This yields more readable and also more robust proofs.

2.7 Further refinements

This subsection discusses some further tricks that can make life easier although
they are not essential.

and Propositions (following assume etc) may but need not be separated by
and. This is not just for readability (from A and B looks nicer than from A B)
but for structuring lists of propositions into possibly named blocks. In

assume A: A1 A2 and B: A3 and A4

label A refers to the list of propositions A1 A2 and label B to A3.

note If you want to remember intermediate fact(s) that cannot be named di-
rectly, use note. For example the result of raw proof block can be named by
following it with note some_name = this. As a side effect, this is set to the list
of facts on the right-hand side. You can also say note some_fact, which simply
sets this, i.e. recalls some_fact, e.g. in a moreover sequence.

fixes Sometimes it is necessary to decorate a proposition with type constraints,
as in Cantor’s theorem above. These type constraints tend to make the theorem
less readable. The situation can be improved a little by combining the type
constraint with an outer

∧
:

theorem "
∧
f :: ’a ⇒ ’a set. ∃ S. S /∈ range f"

13

However, now f is bound and we need a fix f in the proof before we can refer
to f. This is avoided by fixes:

theorem fixes f :: "’a ⇒ ’a set" shows "∃ S. S /∈ range f"

Even better, fixes allows to introduce concrete syntax locally:

lemma comm_mono:

fixes r :: "’a ⇒ ’a ⇒ bool" (infix ">" 60) and

f :: "’a ⇒ ’a ⇒ ’a" (infixl "++" 70)

assumes comm: "
∧
x y::’a. x ++ y = y ++ x" and

mono: "
∧
x y z::’a. x > y =⇒ x ++ z > y ++ z"

shows "x > y =⇒ z ++ x > z ++ y"

by(simp add: comm mono)

The concrete syntax is dropped at the end of the proof and the theorem becomes

[[
∧
x y. ?f x y = ?f y x;∧

x y z. ?r x y =⇒ ?r (?f x z) (?f y z); ?r ?x ?y]]
=⇒ ?r (?f ?z ?x) (?f ?z ?y)

obtain The obtain construct can introduce multiple witnesses and propositions
as in the following proof fragment:

lemma assumes A: "∃ x y. P x y ∧ Q x y" shows "R"

proof -

from A obtain x y where P: "P x y" and Q: "Q x y" by blast

Remember also that one does not even need to start with a formula containing
∃ as we saw in the proof of Cantor’s theorem.

Combining proof styles Finally, whole “scripts” (tactic-based proofs in the
style of [4]) may appear in the leaves of the proof tree, although this is best
avoided. Here is a contrived example:

lemma "A −→ (A −→ B) −→ B"

proof

assume a: "A"

show "(A −→B) −→ B"

apply(rule impI)

apply(erule impE)

apply(rule a)

apply assumption

done

qed

You may need to resort to this technique if an automatic step fails to prove the
desired proposition.

14

When converting a proof from tactic-style into Isar you can proceed in a
top-down manner: parts of the proof can be left in script form while the outer
structure is already expressed in Isar.

3 Case distinction and induction

Computer science applications abound with inductively defined structures, which
is why we treat them in more detail. HOL already comes with a datatype of lists
with the two constructors Nil and Cons. Nil is written [] and Cons x xs is
written x # xs.

3.1 Case distinction

We have already met the cases method for performing binary case splits. Here
is another example:

lemma "¬ A ∨ A"

proof cases

assume "A" thus ?thesis ..

next

assume "¬ A" thus ?thesis ..

qed

The two cases must come in this order because cases merely abbreviates (rule

case_split_thm) where case_split_thm is [[?P =⇒ ?Q; ¬ ?P =⇒ ?Q]] =⇒ ?Q. If
we reverse the order of the two cases in the proof, the first case would prove ¬ A

=⇒ ¬ A ∨ A which would solve the first premise of case_split_thm, instantiating
?P with ¬ A, thus making the second premise ¬ ¬ A =⇒ ¬ A ∨ A. Therefore the
order of subgoals is not always completely arbitrary.

The above proof is appropriate if A is textually small. However, if A is large,
we do not want to repeat it. This can be avoided by the following idiom

lemma "¬ A ∨ A"

proof (cases "A")

case True thus ?thesis ..

next

case False thus ?thesis ..

qed

which is like the previous proof but instantiates ?P right away with A. Thus
we could prove the two cases in any order. The phrase ‘case True ’ abbreviates
‘assume True: A ’ and analogously for False and ¬ A.

The same game can be played with other datatypes, for example lists, where
tl is the tail of a list, and length returns a natural number (remember: 0−1 = 0):

lemma "length(tl xs) = length xs - 1"

15

proof (cases xs)

case Nil thus ?thesis by simp

next

case Cons thus ?thesis by simp

qed

Here ‘case Nil ’ abbreviates ‘assume Nil: xs = [] ’ and ‘case Cons ’ abbrevi-
ates ‘fix ? ?? assume Cons: xs = ? # ?? ’ where ? and ?? stand for variable
names that have been chosen by the system. Therefore we cannot refer to them.
Luckily, this proof is simple enough we do not need to refer to them. However,
sometimes one may have to. Hence Isar offers a simple scheme for naming those
variables: replace the anonymous Cons by (Cons y ys), which abbreviates ‘fix y

ys assume Cons: xs = y # ys ’. In each case the assumption can be referred to
inside the proof by the name of the constructor. In Section 3.3 below we will
come across an example of this.

3.2 Structural induction

We start with an inductive proof where both cases are proved automatically:

lemma "2 * (
∑

i<n+1. i) = n*(n+1)"

by (induct n, simp_all)

If we want to expose more of the structure of the proof, we can use pattern
matching to avoid having to repeat the goal statement:

lemma "2 * (
∑

i<n+1. i) = n*(n+1)" (is "?P n")

proof (induct n)

show "?P 0" by simp

next

fix n assume "?P n"

thus "?P(Suc n)" by simp

qed

We could refine this further to show more of the equational proof. Instead we
explore the same avenue as for case distinctions: introducing context via the
case command:

lemma "2 * (
∑

i<n+1. i) = n*(n+1)"

proof (induct n)

case 0 show ?case by simp

next

case Suc thus ?case by simp

qed

The implicitly defined ?case refers to the corresponding case to be proved, i.e.
?P 0 in the first case and ?P(Suc n) in the second case. Context case 0 is empty
whereas case Suc assumes ?P n. Again we have the same problem as with case
distinctions: we cannot refer to an anonymous n in the induction step because it

16

has not been introduced via fix (in contrast to the previous proof). The solution
is the one outlined for Cons above: replace Suc by (Suc i) :

lemma fixes n::nat shows "n < n*n + 1"

proof (induct n)

case 0 show ?case by simp

next

case (Suc i) thus "Suc i < Suc i * Suc i + 1" by simp

qed

Of course we could again have written thus ?case instead of giving the term
explicitly but we wanted to use i somewhere.

3.3 Induction formulae involving
∧

or =⇒

Let us now consider the situation where the goal to be proved contains
∧

or
=⇒, say

∧
x. P x =⇒ Q x — motivation and a real example follow shortly. This

means that in each case of the induction, ?case would be of the form
∧
x. P’

x =⇒ Q’ x. Thus the first proof steps will be the canonical ones, fixing x and
assuming P’ x. To avoid this tedium, induction performs these steps automati-
cally: for example in case (Suc n), ?case is only Q’ x whereas the assumptions
(named Suc !) contain both the usual induction hypothesis and P’ x. It should
be clear how this generalises to more complex formulae.

As an example we will now prove complete induction via structural induction.

lemma assumes A: "(
∧
n. (

∧
m. m < n =⇒ P m) =⇒ P n)"

shows "P(n::nat)"

proof (rule A)

show "
∧
m. m < n =⇒ P m"

proof (induct n)

case 0 thus ?case by simp

next

case (Suc n) — fix m assume Suc : "?m < n =⇒ P ?m" "m < Suc n"

show ?case — P m

proof cases

assume eq: "m = n"

from Suc and A have "P n" by blast

with eq show "P m" by simp

next

assume "m 6= n"

with Suc have "m < n" by arith

thus "P m" by(rule Suc)

qed

qed

qed

Given the explanations above and the comments in the proof text (only necessary
for novices), the proof should be quite readable.

17

The statement of the lemma is interesting because it deviates from the style
in the Tutorial [4], which suggests to introduce ∀ or −→ into a theorem to
strengthen it for induction. In Isar proofs we can use

∧
and =⇒ instead. This

simplifies the proof and means we do not have to convert between the two kinds
of connectives.

Note that in a nested induction over the same data type, the inner case
labels hide the outer ones of the same name. If you want to refer to the outer
ones inside, you need to name them on the outside, e.g. note outer_IH = Suc.

3.4 Rule induction

HOL also supports inductively defined sets. See [4] for details. As an example
we define our own version of the reflexive transitive closure of a relation — HOL
provides a predefined one as well.

consts rtc :: "(’a × ’a)set ⇒ (’a × ’a)set" ("_*" [1000] 999)

inductive "r*"

intros

refl: "(x,x) ∈ r*"

step: " [[(x,y) ∈ r; (y,z) ∈ r*]] =⇒ (x,z) ∈ r*"

First the constant is declared as a function on binary relations (with concrete
syntax r* instead of rtc r), then the defining clauses are given. We will now
prove that r* is indeed transitive:

lemma assumes A: "(x,y) ∈ r*" shows "(y,z) ∈ r* =⇒ (x,z) ∈ r*"

using A

proof induct

case refl thus ?case .

next

case step thus ?case by(blast intro: rtc.step)

qed

Rule induction is triggered by a fact (x1, . . . , xn) ∈ R piped into the proof, here
using A. The proof itself follows the inductive definition very closely: there is one
case for each rule, and it has the same name as the rule, analogous to structural
induction.

However, this proof is rather terse. Here is a more readable version:

lemma assumes A: "(x,y) ∈ r*" and B: "(y,z) ∈ r*"

shows "(x,z) ∈ r*"

proof -

from A B show ?thesis

proof induct

fix x assume "(x,z) ∈ r*" — B [y := x]

thus "(x,z) ∈ r*" .

next

fix x’ x y

18

assume 1: "(x’,x) ∈ r" and

IH: "(y,z) ∈ r* =⇒ (x,z) ∈ r*" and

B: "(y,z) ∈ r*"

from 1 IH[OF B] show "(x’,z) ∈ r*" by(rule rtc.step)

qed

qed

We start the proof with from A B. Only A is “consumed” by the induction step.
Since B is left over we don’t just prove ?thesis but B =⇒ ?thesis, just as in
the previous proof. The base case is trivial. In the assumptions for the induction
step we can see very clearly how things fit together and permit ourselves the
obvious forward step IH[OF B].

The notation ‘case (constructor vars) ’ is also supported for inductive def-
initions. The constructor is (the name of) the rule and the vars fix the free
variables in the rule; the order of the vars must correspond to the alphabetical
order of the variables as they appear in the rule. For example, we could start the
above detailed proof of the induction with case (step x’ x y). However, we can
then only refer to the assumptions named step collectively and not individually,
as the above proof requires.

3.5 More induction

We close the section by demonstrating how arbitrary induction rules are applied.
As a simple example we have chosen recursion induction, i.e. induction based
on a recursive function definition. However, most of what we show works for
induction in general.

The example is an unusual definition of rotation:

consts rot :: "’a list ⇒ ’a list"

recdef rot "measure length" — for the internal termination proof

"rot [] = []"

"rot [x] = [x]"

"rot (x#y#zs) = y # rot(x#zs)"

This yields, among other things, the induction rule rot.induct :

[[P [];
∧
x. P [x];

∧
x y zs. P (x # zs) =⇒ P (x # y # zs)]] =⇒ P x

In the following proof we rely on a default naming scheme for cases: they are
called 1, 2, etc, unless they have been named explicitly. The latter happens only
with datatypes and inductively defined sets, but not with recursive functions.

lemma "xs 6= [] =⇒ rot xs = tl xs @ [hd xs]"

proof (induct xs rule: rot.induct)

case 1 thus ?case by simp

next

case 2 show ?case by simp

next

19

case (3 a b cs)

have "rot (a # b # cs) = b # rot(a # cs)" by simp

also have " . . . = b # tl(a # cs) @ [hd(a # cs)]" by(simp add:3)

also have " . . . = tl (a # b # cs) @ [hd (a # b # cs)]" by simp

finally show ?case .

qed

The third case is only shown in gory detail (see [1] for how to reason with chains
of equations) to demonstrate that the ‘case (constructor vars) ’ notation also
works for arbitrary induction theorems with numbered cases. The order of the
vars corresponds to the order of the

∧
-quantified variables in each case of the

induction theorem. For induction theorems produced by recdef it is the order
in which the variables appear on the left-hand side of the equation.

The proof is so simple that it can be condensed to

by (induct xs rule: rot.induct, simp_all)

Acknowledgement I am deeply indebted to Markus Wenzel for conceiving Isar. Clemens
Ballarin, Gertrud Bauer, Stefan Berghofer, Gerwin Klein, Norbert Schirmer, Markus
Wenzel and Freek Wiedijk commented on and improved this paper.

References

1. Gertrud Bauer and Markus Wenzel. Calculational reasoning revisited — an
Isabelle/Isar experience. In R. Boulton and P. Jackson, editors, Theorem Proving
in Higher Order Logics, TPHOLs 2001, volume 2152 of Lect. Notes in Comp. Sci.,
pages 75–90. Springer-Verlag, 2001.

2. M.C.J. Gordon, Robin Milner, and C.P. Wadsworth. Edinburgh LCF: a
Mechanised Logic of Computation, volume 78 of Lect. Notes in Comp. Sci.
Springer-Verlag, 1979.

3. Florian Kammüller, Markus Wenzel, and Lawrence C. Paulson. Locales: A
sectioning concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin,
and L. Thery, editors, Theorem Proving in Higher Order Logics, TPHOLs’99,
volume 1690 of Lect. Notes in Comp. Sci., pages 149–165. Springer-Verlag, 1999.

4. Tobias Nipkow, Lawrence Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of Lect. Notes in Comp. Sci.
Springer-Verlag, 2002. http://www.in.tum.de/∼nipkow/LNCS2283/.

5. P. Rudnicki. An overview of the Mizar project. In Workshop on Types for Proofs
and Programs. Chalmers University of Technology, 1992.

6. Markus Wenzel. Isabelle/Isar — A Versatile Environment for Human-Readable
Formal Proof Documents. PhD thesis, Institut für Informatik, Technische
Universität München, 2002.
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html.

7. Markus Wenzel. The Isabelle/Isar Reference Manual. Technische Universität
München, 2002. http://isabelle.in.tum.de/dist/Isabelle2002/doc/isar-ref.pdf.

8. Markus Wenzel and Freek Wiedijk. A comparison of the mathematical proof
languages Mizar and Isar. J. Automated Reasoning, 2003. To appear.

20

http://www.in.tum.de/~nipkow/LNCS2283/
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html
http://isabelle.in.tum.de/dist/Isabelle2002/doc/isar-ref.pdf

	Introduction
	Background
	A first glimpse of Isar
	Bits of Isabelle
	Overview of the paper

	Logic
	Propositional logic
	More constructs
	Avoiding duplication
	Predicate calculus
	Making bigger steps
	Raw proof blocks
	Further refinements

	Case distinction and induction
	Case distinction
	Structural induction
	Induction formulae involving PD1OT1cmttcmrmmslnslsl or PD1OT1cmttcmrmmslnslsl=-3mu
	Rule induction
	More induction

