
Ordinals and cardinals in HOL

Andrei Popescu & Dmitriy Traytel

Contents

1 Introduction 3

2 More on injections, bijections and inverses 5
2.1 Purely functional properties 6
2.2 Properties involving finite and infinite sets 12
2.3 Properties involving Hilbert choice 17
2.4 Cantor’s Paradox . 21
2.5 The Cantor-Bernstein Theorem 21
2.6 Other facts . 23

3 Basics on order-like relations 25
3.1 Auxiliaries . 25
3.2 The upper and lower bounds operators 27
3.3 Properties depending on more than one relation 42

4 More on well-founded relations 44
4.1 Well-founded recursion via genuine fixpoints 44
4.2 Characterizations of well-founded-ness 45

5 Well-order relations 48
5.1 Auxiliaries . 49
5.2 Well-founded induction and recursion adapted to non-strict

well-order relations . 50
5.3 The notions of maximum, minimum, supremum, successor

and order filter . 51
5.3.1 Properties of max2 . 52
5.3.2 Existence and uniqueness for isMinim and well-definedness

of minim . 53
5.3.3 Properties of minim 54
5.3.4 Properties of supr . 58
5.3.5 Properties of successor 60
5.3.6 Properties of order filters 65
5.3.7 Other properties . 68

1

6 Well-order embeddings 72
6.1 Auxiliaries . 72
6.2 (Well-order) embeddings, strict embeddings, isomorphisms

and order-compatible functions 73
6.3 Given any two well-orders, one can be embedded in the other 82
6.4 Uniqueness of embeddings . 89
6.5 More properties of embeddings, strict embeddings and iso-

morphisms . 91

7 Constructions on wellorders 98
7.1 Restriction to a set . 98
7.2 Order filters versus restrictions and embeddings 101
7.3 The strict inclusion on proper ofilters is well-founded 105
7.4 Ordering the well-orders by existence of embeddings 106
7.5 <o is well-founded . 119
7.6 Copy via direct images . 121
7.7 Ordinal-like sum of two (disjoint) well-orders 125
7.8 Bounded square . 134
7.9 The maxim among a finite set of ordinals 144

8 Cardinal-order relations 148
8.1 Cardinal orders . 149
8.2 Cardinal of a set . 150
8.3 Cardinals versus set operations on arbitrary sets 157
8.4 Cardinals versus set operations involving infinite sets 176
8.5 Cardinals versus lists . 188
8.6 Cardinals versus the set-of-finite-sets operator 193
8.7 The cardinal ω and the finite cardinals 195

8.7.1 First as well-orders . 196
8.7.2 Then as cardinals . 200
8.7.3 ”Backwards compatibility” with the numeric cardinal

operator for finite sets 202
8.8 The successor of a cardinal 203
8.9 Regular cardinals . 209
8.10 Others . 212

9 Cardinal Arithmetic 222
9.1 Zero . 223
9.2 Infinite cardinals . 224
9.3 Binary sum . 225
9.4 One . 229
9.5 Two . 229
9.6 Family sum . 231
9.7 Product . 231

2

9.8 Exponentiation . 237
9.9 Infinite bounds . 246
9.10 Powerset . 248

Abstract

We develop a basic theory of ordinals and cardinals in Isabelle/HOL,
up to the point where some cardinality facts relevant for the “working
mathematician” become available. Unlike in set theory, here we do not
have at hand canonical notions of ordinal and cardinal. Therefore, here
an ordinal is merely a well-order relation and a cardinal is an ordinal
minim w.r.t. order embedding on its field.

1 Introduction

In set theory (under formalizations such as Zermelo-Fraenkel or Von Neumann-
Bernays-Gödel), an ordinal is a special kind of well-order, namely one whose
strict version is the restriction of the membership relation to a set. In partic-
ular, the field of a set-theoretic ordinal is a transitive set, and the non-strict
version of an ordinal relation is set inclusion. Set-theoretic ordinals enjoy
the nice properties of membership on transitive sets, while at the same time
forming a complete class of representatives for well-orders (since any well-
order turns out isomorphic to an ordinal). Moreover, the class of ordinals
is itself transitive and well-ordered by membership as the strict relation
and inclusion as the non-strict relation. Also knowing that any set can be
well-ordered (in the presence of the axiom of choice), one then defines the
cardinal of a set to be the smallest ordinal isomorphic to a well-order on
that set. This makes the class of cardinals a complete set of representatives
for the intuitive notion of set cardinality.1 The ability to produce canonical
well-orders from the membership relation (having the aforementioned con-
venient properties) allows for a harmonious development of the theory of
cardinals in set-theoretic settings. Non-trivial cardinality results, such as A
being equipollent to A × A for any infinite A, follow rather quickly within
this theory.

However, a canonical notion of well-order is not available in HOL. Here,
one has to do with well-order “as is”, but otherwise has all the necessary
infrastructure (including Hilbert choice) to “climb” well-orders recursively
and to well-oder arbitrary sets.

The current work, formalized in Isabelle/HOL, develops the basic theory of
ordinals and cardinals up to the point where there are inferred a collection of
non-trivial cardinality facts useful for the “working mathematician”, among
which:

1The “intuitive” cardinality of a set A is the class of all sets equipollent to A, i.e., being
in bijection with A.

3

• Given any two sets (on any two given types)2, one is injectable in the
other.

• If at least one of two sets is infinite, then their sum and their Cartesian
product are equipollent to the larger of the two.

• The set of lists (and also the set of finite sets) with element from an
infinite set is equipollent with that set.

Our development emulates the standard one from set-theory, but keeps ev-
erything up to order isomorphism. An (HOL) ordinal is merely a well-order.
An ordinal embedding is an injective and order-compatible function which
maps its source into an initial segment (i.e., order filter) of its target. Now,
a cardinal (called in this work a cardinal order) is an ordinal minim w.r.t.
the existence of embeddings among all well-orders on its field. After showing
the existence of cardinals on any given set, we define the cardinal of a set
A, denoted |A|, to be some cardinal order on A. This concept is unique
only up to order isomorphism (denoted =o), but meets its purpose: any two
sets A and B (laying at potentially distinct types) are in bijection if and
only if |A| =o |B|. Moreover, we also show that numeric cardinals assigned
to finite sets3 are conservatively extended by our general (order-theoretic)
notion of cardinal. We study the interaction of cardinals with standard set-
theoretic constructions such as powersets, products, sums and lists. These
constructions are shown to preserve the “cardinal identity” =o and also to
be monotonic w.r.t. ≤o, the ordinal embedding relation. By studying the in-
teraction between these constructions, infinite sets and cardinals, we obtain
the aforementioned results for “working mathematicians”.

For this development, we did not follow closely any particular textbook, and
in fact are not aware of such basic theory of cardinals previously developed
in HOL.4 On the other hand, the set-theoretic versions of the facts proved
here are folklore in set theory, and can be found, e.g., in the textbook [1].
Beyond taking care of some locality aspects concerning the spreading of our
concepts throughout types, we have not departed much from the techniques
used in set theory for establishing these facts – for instance, in the proof
of one of our major theorems, Card-order-Times-same-infinite from Section
8.4,5 we have essentially applied the technique described, e.g., in the proof
of theorem 1.5.11 from [1], page 47.

Here is the structure of the rest of this document.

2Recall that, in HOL, a set on a type α is modeled, just like a predicate, as a function
from α to bool.

3Numeric cardinals of finite sets are already formalized in Isabelle/HOL.
4After writing this formalization, we became aware of Paul Taylor’s membership-free

development of the theory of ordinals [2].
5This theorem states that, for any infinite cardinal r on a set A, |A× A| is not larger

than r.

4

The next three sections, 2-4, develop some mathematical prerequisites. In
Section 2, a large collection of simple facts about injections, bijections, in-
verses, (in)finite sets and numeric cardinals are proved, making life easier
for later, when proving less trivial facts. Section 3 introduces upper and
lower bounds operators for order-like relations and studies their basic prop-
erties. Section 4 states some useful variations of well-founded recursion and
induction principles.

Then come the major sections, 5-8. Section 5 defines and studies, in the
context of a well-order relation, the notions of minimum (of a set), maximum
(of two elements), supremum, successor (of a set), and order filter (i.e.,
initial segment, i.e., downward-closed set). Section 6 defines and studies
(well-order) embeddings, strict embeddings, isomorphisms, and compatible
functions. Section 7 deals with various constructions on well-orders, and
with the relations ≤o, <o and =o of well-order embedding, strict embedding,
and isomorphism, respectively. Section 8 defines and studies cardinal order
relations, the cardinal of a set, the connection of cardinals with set-theoretic
constructs, the canonical cardinal of natural numbers and finite cardinals,
the successor of a cardinal, as well as regular cardinals. (The latter play a
crucial role in the development of a new (co)datatype package in HOL.)

Finally, section 9 provides an abstraction of the previous developments on
cardinals, to provide a simpler user interface to cardinals, which in most of
the cases allows to forget that cardinals are represented by orders and use
them through defined arithmetic operators.

More informal details are provided at the beginning of each section, and also
at the beginning of some of the subsections.

References

[1] M. Holz, K. Steffens, and E. Weitz. Introduction to Cardinal Arithmetic.
Birkhäuser, 1999.

[2] Paul Taylor. Intuitionistic sets and ordinals. J. Symb. Log., 61(3):705–
744, 1996.

2 More on injections, bijections and inverses

theory Fun2 imports ∼∼/src/HOL/Library/Infinite-Set
begin

This section proves more facts (additional to those in Fun.thy, Hilbert-Choice.thy
Finite-Set .thy and Infinite-Set .thy), mainly concerning injections, bijections,
inverses and (numeric) cardinals of finite sets.

5

2.1 Purely functional properties

lemma UNIV-Times:
(UNIV :: (′a ∗ ′b) set) = (UNIV :: ′a set) <∗> (UNIV :: ′b set)
by simp

lemma UNIV-Plus:
(UNIV :: (′a + ′b) set) = (UNIV :: ′a set) <+> (UNIV :: ′b set)
by simp

lemma bij-bij-betw : bij f = bij-betw f UNIV UNIV
unfolding bij-betw-def bij-def surj-def by auto

lemma bij-betw-empty1 :
assumes bij-betw f {} A
shows A = {}
using assms unfolding bij-betw-def by blast

lemma bij-betw-empty2 :
assumes bij-betw f A {}
shows A = {}
using assms unfolding bij-betw-def by blast

lemma inj-on-imp-bij-betw :
inj-on f A =⇒ bij-betw f A (f ‘ A)
unfolding bij-betw-def inj-on-def by blast

lemma inj-on-cong [fundef-cong]:
(
∧

a. a : A =⇒ f a = g a) =⇒ inj-on f A = inj-on g A
unfolding inj-on-def by auto

lemma inj-on-strict-subset :
[[inj-on f B ; A < B]] =⇒ f‘A < f‘B
unfolding inj-on-def unfolding image-def by blast

lemma bij-betw-cong [fundef-cong]:
(
∧

a. a ∈ A =⇒ f a = g a) =⇒ bij-betw f A A ′ = bij-betw g A A ′

unfolding bij-betw-def inj-on-def by force

lemma bij-betw-id : bij-betw id A A
unfolding bij-betw-def id-def by auto

6

lemma bij-betw-id-iff :
(A = B) = (bij-betw id A B)
by(auto simp add : bij-betw-def)

lemma bij-betw-byWitness:
assumes LEFT : ∀ a ∈ A. f ′(f a) = a and

RIGHT : ∀ a ′ ∈ A ′. f (f ′ a ′) = a ′ and
IM1 : f ‘ A ≤ A ′ and IM2 : f ′ ‘ A ′ ≤ A

shows bij-betw f A A ′

using assms
proof(unfold bij-betw-def inj-on-def , auto)

fix a b assume ∗: a ∈ A b ∈ A and ∗∗: f a = f b
have a = f ′(f a) ∧ b = f ′(f b) using ∗ LEFT by auto
with ∗∗ show a = b by simp

next
fix a ′ assume ∗: a ′ ∈ A ′

hence f ′ a ′ ∈ A using IM2 by auto
moreover
have a ′ = f (f ′ a ′) using ∗ RIGHT by auto
ultimately show a ′ ∈ f ‘ A by blast

qed

lemma Int-inj-on: [[inj-on f A; inj-on f B]] =⇒ inj-on f (A Int B)
unfolding inj-on-def by blast

lemma INTER-inj-on:
[[I 6= {};

∧
i . i ∈ I =⇒ inj-on f (A i)]] =⇒ inj-on f (

⋂
i ∈ I . A i)

unfolding inj-on-def by blast

lemma Inter-inj-on:
[[S 6= {};

∧
A. A ∈ S =⇒ inj-on f A]] =⇒ inj-on f (Inter S)

unfolding inj-on-def by blast

lemma UNION-inj-on:
assumes CH :

∧
i j . [[i ∈ I ; j ∈ I]] =⇒ A i ≤ A j ∨ A j ≤ A i and

INJ :
∧

i . i ∈ I =⇒ inj-on f (A i)
shows inj-on f (

⋃
i ∈ I . A i)

proof(unfold inj-on-def UNION-eq , auto)
fix i j x y
assume ∗: i ∈ I j ∈ I and ∗∗: x ∈ A i y ∈ A j

and ∗∗∗: f x = f y
show x = y

7

proof−
{assume A i ≤ A j
with ∗∗ have x ∈ A j by auto
with INJ ∗ ∗∗ ∗∗∗ have ?thesis
by(auto simp add : inj-on-def)
}
moreover
{assume A j ≤ A i
with ∗∗ have y ∈ A i by auto
with INJ ∗ ∗∗ ∗∗∗ have ?thesis
by(auto simp add : inj-on-def)
}
ultimately show ?thesis using CH ∗ by blast

qed
qed

lemma bij-betw-comp:
[[bij-betw f A A ′; bij-betw f ′ A ′ A ′′]] =⇒ bij-betw (f ′ o f) A A ′′

using comp-inj-on[of f A f ′]
by(auto simp add : bij-betw-def comp-def)

lemma UNION-bij-betw :
assumes CH :

∧
i j . [[i ∈ I ; j ∈ I]] =⇒ A i ≤ A j ∨ A j ≤ A i and

BIJ :
∧

i . i ∈ I =⇒ bij-betw f (A i) (A ′ i)
shows bij-betw f (

⋃
i ∈ I . A i) (

⋃
i ∈ I . A ′ i)

proof(unfold bij-betw-def , auto simp add : image-def)
have

∧
i . i ∈ I =⇒ inj-on f (A i)

using BIJ bij-betw-def [of f] by auto
thus inj-on f (

⋃
i ∈ I . A i)

using CH UNION-inj-on[of I A f] by auto
next

fix i x
assume ∗: i ∈ I x ∈ A i
hence f x ∈ A ′ i using BIJ bij-betw-def [of f] by auto
thus ∃ j ∈ I . f x ∈ A ′ j using ∗ by blast

next
fix i x ′

assume ∗: i ∈ I x ′ ∈ A ′ i
hence ∃ x ∈ A i . x ′ = f x using BIJ bij-betw-def [of f] by blast
thus ∃ j ∈ I . ∃ x ∈ A j . x ′ = f x
using ∗ by blast

qed

lemma Disj-Un-bij-betw :
assumes DISJ : A Int B = {} and DISJ ′: A ′ Int B ′ = {} and

B1 : bij-betw f A A ′ and B2 : bij-betw f B B ′

8

shows bij-betw f (A ∪ B) (A ′ ∪ B ′)
proof−

have 1 : inj-on f A ∧ inj-on f B
using B1 B2 by (auto simp add : bij-betw-def)
have 2 : f‘A = A ′ ∧ f‘B = B ′

using B1 B2 by (auto simp add : bij-betw-def)
hence f‘ (A − B) Int f‘ (B − A) = {}
using DISJ DISJ ′ by blast
hence inj-on f (A ∪ B)
using 1 by (auto simp add : inj-on-Un)

moreover
have f‘ (A ∪ B) = A ′ ∪ B ′

using 2 by auto
ultimately show ?thesis
unfolding bij-betw-def by auto

qed

corollary notIn-Un-bij-betw :
assumes NIN : b /∈ A and NIN ′: f b /∈ A ′ and

BIJ : bij-betw f A A ′

shows bij-betw f (A ∪ {b}) (A ′ ∪ {f b})
proof−

have bij-betw f {b} {f b}
unfolding bij-betw-def inj-on-def by auto
with assms show ?thesis
using Disj-Un-bij-betw [of A {b} A ′ {f b} f] by blast

qed

lemma bij-betw-subset :
assumes BIJ : bij-betw f A A ′ and

SUB : B ≤ A and IM : f ‘ B = B ′

shows bij-betw f B B ′

using assms
by(unfold bij-betw-def inj-on-def , auto simp add : inj-on-def)

lemma notIn-Un-bij-betw2 :
assumes NIN : b /∈ A and NIN ′: b ′ /∈ A ′ and

BIJ : bij-betw f A A ′

shows bij-betw f (A ∪ {b}) (A ′ ∪ {b ′}) = (f b = b ′)
proof

assume f b = b ′

thus bij-betw f (A ∪ {b}) (A ′ ∪ {b ′})
using assms notIn-Un-bij-betw [of b A f A ′] by auto

next
assume ∗: bij-betw f (A ∪ {b}) (A ′ ∪ {b ′})

9

hence f b ∈ A ′ ∪ {b ′}
unfolding bij-betw-def by auto
moreover
{assume f b ∈ A ′

then obtain b1 where 1 : b1 ∈ A and 2 : f b1 = f b using BIJ
by (auto simp add : bij-betw-def)
hence b = b1 using ∗
by (auto simp add : bij-betw-def inj-on-def)
with 1 NIN have False by auto
}
ultimately show f b = b ′ by blast

qed

lemma notIn-Un-bij-betw3 :
assumes NIN : b /∈ A and NIN ′: f b /∈ A ′

shows bij-betw f A A ′ = bij-betw f (A ∪ {b}) (A ′ ∪ {f b})
proof

assume bij-betw f A A ′

thus bij-betw f (A ∪ {b}) (A ′ ∪ {f b})
using assms notIn-Un-bij-betw [of b A f A ′] by auto

next
assume ∗: bij-betw f (A ∪ {b}) (A ′ ∪ {f b})
have f ‘ A = A ′

proof(auto)
fix a assume ∗∗: a ∈ A
hence f a ∈ A ′ ∪ {f b} using ∗
by (auto simp add : bij-betw-def)
moreover
{assume f a = f b
hence a = b using ∗ ∗∗
by(auto simp add : bij-betw-def inj-on-def)
with NIN ∗∗ have False by auto
}
ultimately show f a ∈ A ′ by blast

next
fix a ′ assume ∗∗: a ′ ∈ A ′

hence a ′ ∈ f‘ (A ∪ {b})
using ∗ by (auto simp add : bij-betw-def)
then obtain a where 1 : a ∈ A ∪ {b} ∧ f a = a ′ by blast
moreover
{assume a = b with 1 ∗∗ NIN ′ have False by blast
}
ultimately have a ∈ A by blast
with 1 show a ′ ∈ f ‘ A by auto

qed
thus bij-betw f A A ′ using ∗ bij-betw-subset [of f A ∪ {b} - A] by auto

qed

10

lemma bij-betw-diff-singl :
assumes BIJ : bij-betw f A A ′ and IN : a ∈ A
shows bij-betw f (A − {a}) (A ′ − {f a})
proof−

let ?B = A − {a} let ?B ′ = A ′ − {f a}
have f a ∈ A ′ using IN BIJ unfolding bij-betw-def by auto
hence a /∈ ?B ∧ f a /∈ ?B ′ ∧ A = ?B ∪ {a} ∧ A ′ = ?B ′ ∪ {f a}
using IN by blast
thus ?thesis using notIn-Un-bij-betw3 [of a ?B f ?B ′] BIJ by auto

qed

lemma comp-inj-on2 :
inj-on f A =⇒ inj-on f ′ (f ‘ A) = inj-on (f ′ o f) A
by(auto simp add : comp-inj-on inj-on-def)

lemma comp-inj-on3 :
inj-on (f ′ o f) A =⇒ inj-on f A
by(auto simp add : comp-inj-on inj-on-def)

lemma comp-bij-betw2 :
bij-betw f A A ′ =⇒ bij-betw f ′ A ′ A ′′ = bij-betw (f ′ o f) A A ′′

by(auto simp add : bij-betw-def inj-on-def)

lemma comp-bij-betw3 :
assumes BIJ : bij-betw f ′ A ′ A ′′ and IM : f ‘ A ≤ A ′

shows bij-betw f A A ′ = bij-betw (f ′ o f) A A ′′

using assms
proof(auto simp add : bij-betw-comp)

assume ∗: bij-betw (f ′ ◦ f) A A ′′

thus bij-betw f A A ′

using IM
proof(auto simp add : bij-betw-def)

assume inj-on (f ′ ◦ f) A
thus inj-on f A using comp-inj-on3 by blast

next
fix a ′ assume ∗∗: a ′ ∈ A ′

hence f ′ a ′ ∈ A ′′ using BIJ unfolding bij-betw-def by auto
then obtain a where 1 : a ∈ A ∧ f ′(f a) = f ′ a ′ using ∗
unfolding bij-betw-def by force
hence f a ∈ A ′ using IM by auto
hence f a = a ′ using BIJ ∗∗ 1 unfolding bij-betw-def inj-on-def by auto
thus a ′ ∈ f ‘ A using 1 by auto

qed
qed

11

lemma bij-betw-ball :
assumes BIJ : bij-betw f A B
shows (∀ b ∈ B . phi b) = (∀ a ∈ A. phi(f a))
using assms unfolding bij-betw-def inj-on-def by blast

2.2 Properties involving finite and infinite sets

lemma inj-on-finite:
assumes INJ : inj-on f A and SUB : f ‘ A ≤ B and

FIN : finite B
shows finite A
proof−

have finite B =⇒ (∀ (A:: ′a set) f . inj-on f A ∧ f ‘ A ≤ B −→ finite A)
proof(erule finite-induct , auto)

fix x B and A:: ′a set and f
assume 1 : finite B and 2 : x /∈ B and

3 : inj-on f A and 4 : f ‘ A ⊆ insert x B and
IH : ∀ (A:: ′a set). (∃ g . inj-on g A ∧ g ‘ A ⊆ B) −→ finite A

show finite A
proof(cases f ‘ A ≤ B)

assume Case1 : f ‘ A ≤ B
thus ?thesis using 3 IH by blast

next
assume Case2 : ¬ f ‘ A ≤ B
then obtain a where 5 : a ∈ A ∧ f a = x using 4 by blast
let ?A ′ = A − {a}
have inj-on f ?A ′ using 3 subset-inj-on[of f A ?A ′] by blast
moreover
have f ‘ ?A ′ ≤ B
proof(auto)

fix a ′ assume ∗: a ′ ∈ A and f a ′ /∈ B
hence f a ′ = x using 4 by auto
thus a ′ = a using ∗ 5 3 unfolding inj-on-def by auto

qed
ultimately have finite ?A ′ using IH by blast
thus ?thesis using finite-insert by auto

qed
qed
thus ?thesis using assms by blast

qed

lemma bij-betw-finite:
assumes bij-betw f A B
shows finite A = finite B
using assms unfolding bij-betw-def
using inj-on-finite[of f A B] by auto

12

lemma infinite-imp-bij-betw :
assumes INF : infinite A
shows ∃ h. bij-betw h A (A − {a})
proof(cases a ∈ A)

assume Case1 : a /∈ A hence A − {a} = A by blast
thus ?thesis using bij-betw-id [of A] by auto

next
assume Case2 : a ∈ A
have infinite (A − {a}) using INF infinite-remove by auto
with infinite-iff-countable-subset [of A − {a}] obtain f ::nat ⇒ ′a
where 1 : inj f and 2 : f ‘ UNIV ≤ A − {a} by blast
obtain g where g-def : g = (λ n. if n = 0 then a else f (Suc n)) by blast
obtain A ′ where A ′-def : A ′ = g ‘ UNIV by blast
have temp: ∀ y . f y 6= a using 2 by blast
have 3 : inj-on g UNIV ∧ g ‘ UNIV ≤ A ∧ a ∈ g ‘ UNIV
proof(auto simp add : Case2 g-def , unfold inj-on-def , intro ballI impI ,

case-tac x = 0 , auto simp add : 2)
fix y assume a = (if y = 0 then a else f (Suc y))
thus y = 0 using temp by (case-tac y = 0 , auto)

next
fix x y
assume f (Suc x) = (if y = 0 then a else f (Suc y))
thus x = y using 1 temp unfolding inj-on-def by (case-tac y = 0 , auto)

next
fix n show f (Suc n) ∈ A using 2 by blast

qed
hence 4 : bij-betw g UNIV A ′ ∧ a ∈ A ′ ∧ A ′ ≤ A
using inj-on-imp-bij-betw [of g] unfolding A ′-def by auto
hence 5 : bij-betw (inv g) A ′ UNIV
by (auto simp add : bij-betw-inv-into)

obtain n where g n = a using 3 by auto
hence 6 : bij-betw g (UNIV − {n}) (A ′ − {a})
using 4 bij-betw-diff-singl [of g] by blast

obtain v where v-def : v = (λ m. if m < n then m else Suc m) by blast
have 7 : bij-betw v UNIV (UNIV − {n})
proof(unfold bij-betw-def inj-on-def , intro conjI , clarify)

fix m1 m2 assume v m1 = v m2
thus m1 = m2
by(case-tac m1 < n, case-tac m2 < n,

auto simp add : inj-on-def v-def , case-tac m2 < n, auto)
next

show v ‘ UNIV = UNIV − {n}
proof(auto simp add : v-def)

fix m assume ∗: m 6= n and ∗∗: m /∈ Suc ‘ {m ′. ¬ m ′ < n}
{assume n ≤ m with ∗ have 71 : Suc n ≤ m by auto

13

then obtain m ′ where 72 : m = Suc m ′ using Suc-le-D by auto
with 71 have n ≤ m ′ by auto
with 72 ∗∗ have False by auto
}
thus m < n by force

qed
qed

obtain h ′ where h ′-def : h ′ = g o v o (inv g) by blast
hence 8 : bij-betw h ′ A ′ (A ′ − {a}) using 5 7 6
by (auto simp add : bij-betw-comp)

obtain h where h-def : h = (λ b. if b ∈ A ′ then h ′ b else b) by blast
have ∀ b ∈ A ′. h b = h ′ b unfolding h-def by auto
hence bij-betw h A ′ (A ′ − {a}) using 8 bij-betw-cong [of A ′ h] by auto
moreover
{have ∀ b ∈ A − A ′. h b = b unfolding h-def by auto
hence bij-betw h (A − A ′) (A − A ′)
using bij-betw-cong [of A − A ′ h id] bij-betw-id [of A − A ′] by auto
}
moreover
have (A ′ Int (A − A ′) = {} ∧ A ′ ∪ (A − A ′) = A) ∧

((A ′ − {a}) Int (A − A ′) = {} ∧ (A ′ − {a}) ∪ (A − A ′) = A − {a})
using 4 by blast
ultimately have bij-betw h A (A − {a})
using Disj-Un-bij-betw [of A ′ A − A ′ A ′ − {a} A − A ′ h] by auto
thus ?thesis by blast

qed

lemma infinite-imp-bij-betw2 :
assumes INF : infinite A
shows ∃ h. bij-betw h A (A ∪ {a})
proof(cases a ∈ A)

assume Case1 : a ∈ A hence A ∪ {a} = A by blast
thus ?thesis using bij-betw-id [of A] by auto

next
let ?A ′ = A ∪ {a}
assume Case2 : a /∈ A hence A = ?A ′ − {a} by blast
moreover have infinite ?A ′ using INF by auto
ultimately obtain f where bij-betw f ?A ′ A
using infinite-imp-bij-betw [of ?A ′ a] by auto
hence bij-betw(inv-into ?A ′ f) A ?A ′ using bij-betw-inv-into by blast
thus ?thesis by auto

qed

lemma bij-betw-imp-card :
assumes FIN : finite A and BIJ : bij-betw f A B

14

shows card A = card B
proof−

have finite A =⇒ ∀B . bij-betw f A B −→ card A = card B
proof (erule finite.induct , auto)

fix B assume bij-betw f {} B
thus card B = 0 using bij-betw-empty1 card-empty by blast

next
fix A a B ′

assume ∗: finite A and ∗∗: bij-betw f (insert a A) B ′ and
IH : ∀B . bij-betw f A B −→ card A = card B

show card (insert a A) = card B ′

proof(cases a ∈ A)
assume a ∈ A hence 1 : insert a A = A by auto
hence bij-betw f A B ′ using ∗∗ by auto
thus ?thesis using IH ∗ 1 by auto

next
assume ∗∗∗: a /∈ A
hence 2 : card(insert a A) = card A + 1 using ∗ by auto
obtain b and B where b-def : b = f a and B-def : B = B ′ − {b} by blast
have 3 : b ∈ B ′ using ∗∗ unfolding bij-betw-def b-def by auto
have (insert a A) − {a} = A using ∗∗∗ by auto
hence bij-betw f A B unfolding B-def b-def
using ∗∗ bij-betw-diff-singl [of f insert a A B ′ a] by auto
hence 5 : card A = card B using ∗ IH by auto
have B ′ = insert b B ∧ b /∈ B unfolding B-def using insert-Diff 3 by blast
moreover have finite B unfolding B-def
using bij-betw-finite[of f - B ′] finite-subset [of B B ′] ∗ ∗∗ by auto
ultimately have card B ′ = card B + 1 by auto

with 2 5 show ?thesis by auto
qed

qed
thus ?thesis using assms by blast

qed

lemma bij-betw-iff-card :
assumes FIN : finite A and FIN ′: finite B
shows BIJ : (∃ f . bij-betw f A B) = (card A = card B)
using assms
proof(auto simp add : bij-betw-imp-card)

assume ∗: card A = card B
obtain f where bij-betw f A {0 ..< card A}
using FIN ex-bij-betw-finite-nat by blast
moreover obtain g where bij-betw g {0 ..< card B} B
using FIN ′ ex-bij-betw-nat-finite by blast
ultimately have bij-betw (g o f) A B
using ∗ by (auto simp add : bij-betw-comp)
thus (∃ f . bij-betw f A B) by blast

15

qed

lemma inj-on-iff-card :
assumes FIN : finite A and FIN ′: finite B
shows (∃ f . inj-on f A ∧ f ‘ A ≤ B) = (card A ≤ card B)
using assms
proof(auto simp add : card-inj-on-le)

assume ∗: card A ≤ card B
obtain f where 1 : inj-on f A and 2 : f ‘ A = {0 ..< card A}
using FIN ex-bij-betw-finite-nat unfolding bij-betw-def by force
moreover obtain g where inj-on g {0 ..< card B} and 3 : g ‘ {0 ..< card B}

= B
using FIN ′ ex-bij-betw-nat-finite unfolding bij-betw-def by force
ultimately have inj-on g (f ‘ A) using subset-inj-on[of g - f ‘ A] ∗ by force
hence inj-on (g o f) A using 1 comp-inj-on by blast
moreover
{have {0 ..< card A} ≤ {0 ..< card B} using ∗ by force
with 2 have f ‘ A ≤ {0 ..< card B} by blast
hence (g o f) ‘ A ≤ B unfolding comp-def using 3 by force
}
ultimately show (∃ f . inj-on f A ∧ f ‘ A ≤ B) by blast

qed

lemma inj-on-image-Pow :
assumes inj-on f A
shows inj-on (image f) (Pow A)
unfolding Pow-def inj-on-def proof(clarsimp)

fix X Y assume ∗: X ≤ A and ∗∗: Y ≤ A and
∗∗∗: f ‘ X = f ‘ Y

show X = Y
proof(auto)

fix x assume ∗∗∗∗: x ∈ X
with ∗∗∗ obtain y where y ∈ Y ∧ f x = f y by blast
with ∗∗∗∗ ∗ ∗∗ assms show x ∈ Y
unfolding inj-on-def by auto

next
fix y assume ∗∗∗∗: y ∈ Y
with ∗∗∗ obtain x where x ∈ X ∧ f x = f y by force
with ∗∗∗∗ ∗ ∗∗ assms show y ∈ X
unfolding inj-on-def by auto

qed
qed

lemma image-Pow-mono:
assumes f ‘ A ≤ B
shows (image f) ‘ (Pow A) ≤ Pow B

16

using assms by blast

lemma image-Pow-surjective:
assumes f ‘ A = B
shows (image f) ‘ (Pow A) = Pow B
using assms unfolding Pow-def proof(auto)

fix Y assume ∗: Y ≤ f ‘ A
obtain X where X-def : X = {x ∈ A. f x ∈ Y } by blast
have f ‘ X = Y ∧ X ≤ A unfolding X-def using ∗ by auto
thus Y ∈ (image f) ‘ {X . X ≤ A} by blast

qed

lemma bij-betw-image-Pow :
assumes bij-betw f A B
shows bij-betw (image f) (Pow A) (Pow B)
using assms unfolding bij-betw-def
by (auto simp add : inj-on-image-Pow image-Pow-surjective)

2.3 Properties involving Hilbert choice

lemma bij-betw-inv-into-left :
assumes BIJ : bij-betw f A A ′ and IN : a ∈ A
shows (inv-into A f) (f a) = a
proof(unfold inv-into-def)

let ?phi = (λ b. b ∈ A ∧ f b = f a)
have ?phi a using IN by auto
moreover
have

∧
b. ?phi b =⇒ b = a

using assms by (auto simp add : bij-betw-def inj-on-def)
ultimately
show (SOME a. ?phi a) = a
by (auto simp add : some-equality)

qed

lemma bij-betw-inv-into-right :
assumes BIJ : bij-betw f A A ′ and IN : a ′ ∈ A ′

shows f (inv-into A f a ′) = a ′

proof−
let ?f ′ = (inv-into A f)
have 1 : bij-betw ?f ′ A ′ A
using BIJ by (auto simp add : bij-betw-inv-into)
hence 2 : ?f ′ a ′ ∈ A
using IN by (auto simp add : bij-betw-def)
hence ?f ′(f (?f ′ a ′)) = ?f ′ a ′

using BIJ by (auto simp add : bij-betw-inv-into-left)
moreover

17

have f (?f ′ a ′) ∈ A ′

using BIJ 2 by (auto simp add : bij-betw-def)
ultimately show f (?f ′ a ′) = a ′

using IN 1 by (auto simp add : bij-betw-def inj-on-def)
qed

lemma bij-betw-inv-into-LEFT :
assumes BIJ : bij-betw f A A ′ and SUB : B ≤ A
shows (inv-into A f)‘ (f ‘ B) = B
using assms
proof(auto simp add : bij-betw-inv-into-left)

let ?f ′ = (inv-into A f)
fix a assume ∗: a ∈ B
hence a ∈ A using SUB by auto
hence a = ?f ′ (f a)
using BIJ by (auto simp add : bij-betw-inv-into-left)
thus a ∈ ?f ′ ‘ (f ‘ B) using ∗ by blast

qed

lemma bij-betw-inv-into-RIGHT :
assumes BIJ : bij-betw f A A ′ and SUB : B ′ ≤ A ′

shows f ‘ ((inv-into A f)‘B ′) = B ′

using assms
proof(auto simp add : bij-betw-inv-into-right)

let ?f ′ = (inv-into A f)
fix a ′ assume ∗: a ′ ∈ B ′

hence a ′ ∈ A ′ using SUB by auto
hence a ′ = f (?f ′ a ′)
using BIJ by (auto simp add : bij-betw-inv-into-right)
thus a ′ ∈ f ‘ (?f ′ ‘ B ′) using ∗ by blast

qed

lemma bij-betw-inv-into-LEFT-RIGHT :
assumes BIJ : bij-betw f A A ′ and SUB : B ≤ A and

IM : f ‘ B = B ′

shows (inv-into A f) ‘ B ′ = B
proof−

have (inv-into A f)‘ (f ‘ B) = B
using assms bij-betw-inv-into-LEFT [of f A A ′ B] by auto
thus ?thesis using IM by auto

qed

lemma bij-betw-inv-into-RIGHT-LEFT :
assumes BIJ : bij-betw f A A ′ and SUB : B ′ ≤ A ′ and

IM : (inv-into A f) ‘ B ′ = B

18

shows f ‘ B = B ′

proof−
have f‘ ((inv-into A f)‘ B ′) = B ′

using assms bij-betw-inv-into-RIGHT [of f A A ′ B ′] by auto
thus ?thesis using IM by auto

qed

lemma bij-betw-inv-into-subset :
assumes BIJ : bij-betw f A A ′ and

SUB : B ≤ A and IM : f ‘ B = B ′

shows bij-betw (inv-into A f) B ′ B
proof−

let ?f ′ = (inv-into A f)
have ?f ′ ‘ B ′ = B using assms
by (auto simp add : bij-betw-inv-into-LEFT-RIGHT)
moreover
{have bij-betw ?f ′ A ′ A
using BIJ by (auto simp add : bij-betw-inv-into)
hence inj-on ?f ′ A ′ unfolding bij-betw-def by auto
moreover have B ′ ≤ A ′

using SUB IM BIJ by (auto simp add : bij-betw-def)
ultimately have inj-on ?f ′ B ′ using SUB
by (auto simp add : subset-inj-on)
}
ultimately show ?thesis
unfolding bij-betw-def by blast

qed

lemma bij-betw-inv-into-twice:
assumes bij-betw f A A ′

shows ∀ a ∈ A. inv-into A ′ (inv-into A f) a = f a
proof

let ?f ′ = inv-into A f let ?f ′′ = inv-into A ′ ?f ′

have 1 : bij-betw ?f ′ A ′ A using assms
by (auto simp add : bij-betw-inv-into)
fix a assume ∗: a ∈ A
then obtain a ′ where 2 : a ′ ∈ A ′ and 3 : ?f ′ a ′ = a
using 1 unfolding bij-betw-def by force
hence ?f ′′ a = a ′

using ∗ 1 3 by (auto simp add : bij-betw-inv-into-left)
moreover have f a = a ′ using assms 2 3
by (auto simp add : bij-betw-inv-into-right)
ultimately show ?f ′′ a = f a by simp

qed

lemma inj-on-iff-surjective:

19

assumes A 6= {}
shows (∃ f . inj-on f A ∧ f ‘ A ≤ A ′) = (∃ g . g ‘ A ′ = A)
proof(safe)

fix f assume INJ : inj-on f A and INCL: f ‘ A ≤ A ′

let ?phi = λa ′ a. a ∈ A ∧ f a = a ′ let ?csi = λa. a ∈ A
let ?g = λa ′. if a ′ ∈ f ‘ A then (SOME a. ?phi a ′ a) else (SOME a. ?csi a)
have ?g ‘ A ′ = A
proof

show ?g ‘ A ′ ≤ A
proof(clarify)

fix a ′ assume ∗: a ′ ∈ A ′

show ?g a ′ ∈ A
proof(cases a ′ ∈ f ‘ A)

assume Case1 : a ′ ∈ f ‘ A
then obtain a where ?phi a ′ a by blast
hence ?phi a ′ (SOME a. ?phi a ′ a) using someI [of ?phi a ′ a] by blast
with Case1 show ?thesis by auto

next
assume Case2 : a ′ /∈ f ‘ A
hence ?csi (SOME a. ?csi a) using assms someI-ex [of ?csi] by blast
with Case2 show ?thesis by auto

qed
qed

next
show A ≤ ?g ‘ A ′

proof−
{fix a assume ∗: a ∈ A
let ?b = SOME aa. ?phi (f a) aa
have ?phi (f a) a using ∗ by auto
hence 1 : ?phi (f a) ?b using someI [of ?phi(f a) a] by blast
hence ?g(f a) = ?b using ∗ by auto
moreover have a = ?b using 1 INJ ∗ by (auto simp add : inj-on-def)
ultimately have ?g(f a) = a by simp
with INCL ∗ have ?g(f a) = a ∧ f a ∈ A ′ by auto
}
thus ?thesis by force

qed
qed
thus ∃ g . g ‘ A ′ = A by blast

next
fix g let ?f = inv-into A ′ g
have inj-on ?f (g ‘ A ′)
by (auto simp add : inj-on-inv-into)
moreover
{fix a ′ assume ∗: a ′ ∈ A ′

let ?phi = λ b ′. b ′ ∈ A ′ ∧ g b ′ = g a ′

have ?phi a ′ using ∗ by auto
hence ?phi(SOME b ′. ?phi b ′) using someI [of ?phi] by blast
hence ?f (g a ′) ∈ A ′ unfolding inv-into-def by auto

20

}
ultimately show ∃ f . inj-on f (g ‘ A ′) ∧ f ‘ g ‘ A ′ ⊆ A ′ by auto

qed

lemma UNION-inj-on-Sigma:
∃ f . (inj-on f (

⋃
i ∈ I . A i) ∧ f ‘ (

⋃
i ∈ I . A i) ≤ (SIGMA i : I . A i))

proof
let ?phi = λ a i . i ∈ I ∧ a ∈ A i
let ?sm = λ a. SOME i . ?phi a i
let ?f = λa. (?sm a, a)
have inj-on ?f (

⋃
i ∈ I . A i) unfolding inj-on-def by auto

moreover
{{fix i a assume i ∈ I and a ∈ A i

hence ?sm a ∈ I ∧ a ∈ A(?sm a) using someI [of ?phi a i] by auto
}

hence ?f ‘ (
⋃

i ∈ I . A i) ≤ (SIGMA i : I . A i) by auto
}
ultimately
show inj-on ?f (

⋃
i ∈ I . A i) ∧ ?f ‘ (

⋃
i ∈ I . A i) ≤ (SIGMA i : I . A i)

by auto
qed

2.4 Cantor’s Paradox

lemma Cantors-paradox :
¬(∃ f . f ‘ A = Pow A)
proof(clarify)

fix f assume f ‘ A = Pow A hence ∗: Pow A ≤ f ‘ A by blast
let ?X = {a ∈ A. a /∈ f a}
have ?X ∈ Pow A unfolding Pow-def by auto
with ∗ obtain x where x ∈ A ∧ f x = ?X by blast
thus False by best

qed

2.5 The Cantor-Bernstein Theorem

lemma Cantor-Bernstein-aux :
shows ∃A ′ h. A ′ ≤ A ∧

(∀ a ∈ A ′. a /∈ g‘ (B − f ‘ A ′)) ∧
(∀ a ∈ A ′. h a = f a) ∧
(∀ a ∈ A − A ′. h a ∈ B − (f ‘ A ′) ∧ a = g(h a))

proof−
obtain H where H-def : H = (λ A ′. A − (g‘ (B − (f ‘ A ′)))) by blast
have 0 : mono H unfolding mono-def H-def by blast
then obtain A ′ where 1 : H A ′ = A ′ using lfp-unfold by blast
hence 2 : A ′ = A − (g‘ (B − (f ‘ A ′))) unfolding H-def by simp
hence 3 : A ′ ≤ A by blast
have 4 : ∀ a ∈ A ′. a /∈ g‘ (B − f ‘ A ′)
using 2 by blast

21

have 5 : ∀ a ∈ A − A ′. ∃ b ∈ B − (f ‘ A ′). a = g b
using 2 by blast

obtain h where h-def :
h = (λ a. if a ∈ A ′ then f a else (SOME b. b ∈ B − (f ‘ A ′) ∧ a = g b)) by blast
hence ∀ a ∈ A ′. h a = f a by auto
moreover
have ∀ a ∈ A − A ′. h a ∈ B − (f ‘ A ′) ∧ a = g(h a)
proof

fix a assume ∗: a ∈ A − A ′

let ?phi = λ b. b ∈ B − (f ‘ A ′) ∧ a = g b
have h a = (SOME b. ?phi b) using h-def ∗ by auto
moreover have ∃ b. ?phi b using 5 ∗ by auto
ultimately show ?phi (h a) using someI-ex [of ?phi] by auto

qed
ultimately show ?thesis using 3 4 by blast

qed

theorem Cantor-Bernstein:
assumes INJ1 : inj-on f A and SUB1 : f ‘ A ≤ B and

INJ2 : inj-on g B and SUB2 : g ‘ B ≤ A
shows ∃ h. bij-betw h A B
proof−

obtain A ′ and h where 0 : A ′ ≤ A and
1 : ∀ a ∈ A ′. a /∈ g‘ (B − f ‘ A ′) and
2 : ∀ a ∈ A ′. h a = f a and
3 : ∀ a ∈ A − A ′. h a ∈ B − (f ‘ A ′) ∧ a = g(h a)
using Cantor-Bernstein-aux [of A g B f] by blast
have inj-on h A
proof(unfold inj-on-def , auto)

fix a1 a2
assume 4 : a1 ∈ A and 5 : a2 ∈ A and 6 : h a1 = h a2
show a1 = a2
proof(cases a1 ∈ A ′)

assume Case1 : a1 ∈ A ′

show ?thesis
proof(cases a2 ∈ A ′)

assume Case11 : a2 ∈ A ′

hence f a1 = f a2 using Case1 2 6 by auto
thus ?thesis using INJ1 Case1 Case11 0
unfolding inj-on-def by blast

next
assume Case12 : a2 /∈ A ′

hence False using 3 5 2 6 Case1 by force
thus ?thesis by simp

qed
next
assume Case2 : a1 /∈ A ′

22

show ?thesis
proof(cases a2 ∈ A ′)

assume Case21 : a2 ∈ A ′

hence False using 3 4 2 6 Case2 by auto
thus ?thesis by simp

next
assume Case22 : a2 /∈ A ′

hence a1 = g(h a1) ∧ a2 = g(h a2) using Case2 4 5 3 by auto
thus ?thesis using 6 by simp

qed
qed

qed

moreover
have h ‘ A = B
proof(auto)

fix a assume a ∈ A
thus h a ∈ B using SUB1 2 3 by (case-tac a ∈ A ′, auto)

next
fix b assume ∗: b ∈ B
show b ∈ h ‘ A
proof(cases b ∈ f ‘ A ′)

assume Case1 : b ∈ f ‘ A ′

then obtain a where a ∈ A ′ ∧ b = f a by blast
thus ?thesis using 2 0 by force

next
assume Case2 : b /∈ f ‘ A ′

hence g b /∈ A ′ using 1 ∗ by auto
hence 4 : g b ∈ A − A ′ using ∗ SUB2 by auto
hence h(g b) ∈ B ∧ g(h(g b)) = g b
using 3 by auto
hence h(g b) = b using ∗ INJ2 unfolding inj-on-def by auto
thus ?thesis using 4 by force

qed
qed

ultimately show ?thesis unfolding bij-betw-def by auto
qed

2.6 Other facts

lemma Pow-not-empty : Pow A 6= {}
using Pow-top by blast

lemma atLeastLessThan-injective:
assumes {0 ..< m::nat} = {0 ..< n}
shows m = n
proof−

23

{assume m < n
hence m ∈ {0 ..< n} by auto
hence {0 ..< m} < {0 ..< n} by auto
hence False using assms by blast
}
moreover
{assume n < m
hence n ∈ {0 ..< m} by auto
hence {0 ..< n} < {0 ..< m} by auto
hence False using assms by blast
}
ultimately show ?thesis by force

qed

lemma atLeastLessThan-injective2 :
bij-betw f {0 ..< m::nat} {0 ..< n} =⇒ m = n
using finite-atLeastLessThan[of m] finite-atLeastLessThan[of n]

card-atLeastLessThan[of m] card-atLeastLessThan[of n]
bij-betw-iff-card [of {0 ..< m} {0 ..< n}] by auto

lemma atLeastLessThan-less-eq :
({0 ..<m} ≤ {0 ..<n}) = ((m::nat) ≤ n)
unfolding ivl-subset by arith

lemma atLeastLessThan-less-eq2 :
assumes inj-on f {0 ..<(m::nat)} ∧ f ‘ {0 ..<m} ≤ {0 ..<n}
shows m ≤ n
using assms
using finite-atLeastLessThan[of m] finite-atLeastLessThan[of n]

card-atLeastLessThan[of m] card-atLeastLessThan[of n]
card-inj-on-le[of f {0 ..< m} {0 ..< n}] by auto

lemma atLeastLessThan-less-eq3 :
(∃ f . inj-on f {0 ..<(m::nat)} ∧ f ‘ {0 ..<m} ≤ {0 ..<n}) = (m ≤ n)
using atLeastLessThan-less-eq2
proof(auto)

assume m ≤ n
hence inj-on id {0 ..<m} ∧ id ‘ {0 ..<m} ⊆ {0 ..<n} unfolding inj-on-def by

force
thus ∃ f . inj-on f {0 ..<m} ∧ f ‘ {0 ..<m} ⊆ {0 ..<n} by blast

qed

lemma atLeastLessThan-less:
({0 ..<m} < {0 ..<n}) = ((m::nat) < n)

24

proof−
have ({0 ..<m} < {0 ..<n}) = ({0 ..<m} ≤ {0 ..<n} ∧ {0 ..<m} ∼= {0 ..<n})
using subset-iff-psubset-eq by blast
also have . . . = (m ≤ n ∧ m ∼= n)
using atLeastLessThan-less-eq atLeastLessThan-injective by blast
also have . . . = (m < n) by auto
finally show ?thesis .

qed

end

3 Basics on order-like relations

theory Order-Relation2
imports ∼∼/src/HOL/Library/Order-Relation
begin

In this section, we develop basic concepts and results pertaining to order-
like relations, i.e., to reflexive and/or transitive and/or symmetric and/or
total relations. The development is placed on top of the definitions from
the theory Order-Relation. We also further define upper and lower bounds
operators.

type-synonym ′a rel = (′a ∗ ′a) set

locale rel = fixes r :: ′a rel

The following context encompasses all this section, except for its last sub-
section. In other words, for the rest of this section except its last subsection,
we consider a fixed relation r.

context rel
begin

3.1 Auxiliaries

lemma refl-on-domain:
[[refl-on A r ; (a,b) : r]] =⇒ a ∈ A ∧ b ∈ A
by(auto simp add : refl-on-def)

corollary well-order-on-domain:
[[well-order-on A r ; (a,b) ∈ r]] =⇒ a ∈ A ∧ b ∈ A
by(auto simp add : refl-on-domain order-on-defs)

25

lemma well-order-on-Field :
well-order-on A r =⇒ A = Field r
by(auto simp add : refl-on-def Field-def order-on-defs)

lemma well-order-on-Well-order :
well-order-on A r =⇒ A = Field r ∧ Well-order r
using well-order-on-Field by auto

lemma Total-Id-Field :
assumes TOT : Total r and NID : ¬ (r <= Id)
shows Field r = Field(r − Id)
using mono-Field [of r − Id r] Diff-subset [of r Id]
proof(auto)

have r 6= {} using NID by auto
then obtain b and c where b 6= c ∧ (b,c) ∈ r using NID by auto
hence 1 : b 6= c ∧ {b,c} ≤ Field r unfolding Field-def by auto

fix a assume ∗: a ∈ Field r
obtain d where 2 : d ∈ Field r and 3 : d 6= a
using ∗ 1 by blast
hence (a,d) ∈ r ∨ (d ,a) ∈ r using ∗ TOT
by (auto simp add : total-on-def)
thus a ∈ Field(r − Id) using 3 unfolding Field-def by blast

qed

lemma Total-subset-Id :
assumes TOT : Total r and SUB : r ≤ Id
shows r = {} ∨ (∃ a. r = {(a,a)})
proof−
{assume r 6= {}
then obtain a b where 1 : (a,b) ∈ r by auto
hence a = b using SUB by blast
hence 2 : (a,a) ∈ r using 1 by auto
{fix c d assume (c,d) ∈ r
hence {a,c,d} ≤ Field r using 1 unfolding Field-def by auto
hence ((a,c) ∈ r ∨ (c,a) ∈ r ∨ a = c) ∧

((a,d) ∈ r ∨ (d ,a) ∈ r ∨ a = d)
using TOT unfolding total-on-def by auto
hence a = c ∧ a = d using SUB by blast
}
hence r ≤ {(a,a)} by auto
with 2 have ∃ a. r = {(a,a)} by blast
}
thus ?thesis by auto

qed

26

lemma Linear-order-in-diff-Id :
assumes LI : Linear-order r and

IN1 : a ∈ Field r and IN2 : b ∈ Field r
shows ((a,b) ∈ r) = ((b,a) /∈ r − Id)
using assms unfolding order-on-defs total-on-def antisym-def Id-def refl-on-def
by force

3.2 The upper and lower bounds operators

Here we define upper (“above”) and lower (“below”) bounds operators. We
think of r as a non-strict relation. The suffix “S” at the names of some
operators indicates that the bounds are strict – e.g., underS a is the set of
all strict lower bounds of a (w.r.t. r). Capitalization of the first letter in
the name reminds that the operator acts on sets, rather than on individual
elements.

definition under :: ′a ⇒ ′a set
where under a ≡ {b. (b,a) ∈ r}

definition underS :: ′a ⇒ ′a set
where underS a ≡ {b. b 6= a ∧ (b,a) ∈ r}

definition Under :: ′a set ⇒ ′a set
where Under A ≡ {b ∈ Field r . ∀ a ∈ A. (b,a) ∈ r}

definition UnderS :: ′a set ⇒ ′a set
where UnderS A ≡ {b ∈ Field r . ∀ a ∈ A. b 6= a ∧ (b,a) ∈ r}

definition above:: ′a ⇒ ′a set
where above a ≡ {b. (a,b) ∈ r}

definition aboveS :: ′a ⇒ ′a set
where aboveS a ≡ {b. b 6= a ∧ (a,b) ∈ r}

definition Above:: ′a set ⇒ ′a set
where Above A ≡ {b ∈ Field r . ∀ a ∈ A. (a,b) ∈ r}

definition AboveS :: ′a set ⇒ ′a set
where AboveS A ≡ {b ∈ Field r . ∀ a ∈ A. b 6= a ∧ (a,b) ∈ r}

Note: In the definitions of Above[S] and Under [S], we bounded comprehen-
sion by Field r in order to properly cover the case of A being empty.

lemma underS-subset-under : underS a ≤ under a
by(auto simp add : underS-def under-def)

lemma UnderS-subset-Under : UnderS A ≤ Under A

27

by(auto simp add : UnderS-def Under-def)

lemma aboveS-subset-above: aboveS a ≤ above a
by(auto simp add : aboveS-def above-def)

lemma AboveS-subset-Above: AboveS A ≤ Above A
by(auto simp add : AboveS-def Above-def)

lemma underS-notIn: a /∈ underS a
by(auto simp add : underS-def)

lemma Refl-under-in: [[Refl r ; a ∈ Field r]] =⇒ a ∈ under a
by(auto simp add : refl-on-def under-def)

lemma UnderS-disjoint : A Int (UnderS A) = {}
by(auto simp add : UnderS-def)

lemma aboveS-notIn: a /∈ aboveS a
by(auto simp add : aboveS-def)

lemma AboveS-disjoint : A Int (AboveS A) = {}
by(auto simp add : AboveS-def)

lemma Refl-above-in: [[Refl r ; a ∈ Field r]] =⇒ a ∈ above a
by(auto simp add : refl-on-def above-def)

lemma in-Above-under : a ∈ Field r =⇒ a ∈ Above (under a)
by(auto simp add : Above-def under-def)

lemma in-Under-above: a ∈ Field r =⇒ a ∈ Under (above a)
by(auto simp add : Under-def above-def)

lemma in-AboveS-underS : a ∈ Field r =⇒ a ∈ AboveS (underS a)
by(auto simp add : AboveS-def underS-def)

lemma in-UnderS-aboveS : a ∈ Field r =⇒ a ∈ UnderS (aboveS a)
by(auto simp add : UnderS-def aboveS-def)

28

lemma subset-Above-Under : B ≤ Field r =⇒ B ≤ Above (Under B)
by(auto simp add : Above-def Under-def)

lemma subset-Under-Above: B ≤ Field r =⇒ B ≤ Under (Above B)
by(auto simp add : Under-def Above-def)

lemma subset-AboveS-UnderS : B ≤ Field r =⇒ B ≤ AboveS (UnderS B)
by(auto simp add : AboveS-def UnderS-def)

lemma subset-UnderS-AboveS : B ≤ Field r =⇒ B ≤ UnderS (AboveS B)
by(auto simp add : UnderS-def AboveS-def)

lemma Under-Above-Galois:
[[B ≤ Field r ; C ≤ Field r]] =⇒ (B ≤ Above C) = (C ≤ Under B)
by(unfold Above-def Under-def , blast)

lemma UnderS-AboveS-Galois:
[[B ≤ Field r ; C ≤ Field r]] =⇒ (B ≤ AboveS C) = (C ≤ UnderS B)
by(unfold AboveS-def UnderS-def , blast)

lemma Refl-under-underS :
assumes REFL: Refl r and IN : a ∈ Field r
shows under a = underS a ∪ {a}
proof(unfold under-def underS-def , auto)

show (a,a) ∈ r using REFL IN refl-on-def [of - r] by blast
qed

lemma Refl-above-aboveS :
assumes REFL: Refl r and IN : a ∈ Field r
shows above a = aboveS a ∪ {a}
proof(unfold above-def aboveS-def , auto)

show (a,a) ∈ r using REFL IN refl-on-def [of - r] by blast
qed

lemma Linear-order-under-aboveS-Field :
assumes LIN : Linear-order r and IN : a ∈ Field r
shows Field r = under a ∪ aboveS a
proof(unfold under-def aboveS-def , auto)

assume a ∈ Field r (a, a) /∈ r

29

with LIN IN order-on-defs[of - r] refl-on-def [of - r]
show False by auto

next
fix b assume b ∈ Field r (b, a) /∈ r
with LIN IN order-on-defs[of Field r r] total-on-def [of Field r r]
have (a,b) ∈ r ∨ a = b by blast
thus (a,b) ∈ r
using LIN IN order-on-defs[of - r] refl-on-def [of - r] by auto

next
fix b assume (b, a) ∈ r
thus b ∈ Field r
using LIN order-on-defs[of - r] refl-on-def [of - r] by blast

next
fix b assume b 6= a (a, b) ∈ r
thus b ∈ Field r
using LIN order-on-defs[of Field r r] refl-on-def [of Field r r] by blast

qed

lemma Linear-order-underS-above-Field :
assumes LIN : Linear-order r and IN : a ∈ Field r
shows Field r = underS a ∪ above a
proof(unfold underS-def above-def , auto)

assume a ∈ Field r (a, a) /∈ r
with LIN IN order-on-defs[of - r] refl-on-def [of - r]
show False by auto

next
fix b assume b ∈ Field r (a, b) /∈ r
with LIN IN order-on-defs[of Field r r] total-on-def [of Field r r]
have (b,a) ∈ r ∨ b = a by blast
thus (b,a) ∈ r
using LIN IN order-on-defs[of - r] refl-on-def [of - r] by auto

next
fix b assume b 6= a (b, a) ∈ r
thus b ∈ Field r
using LIN order-on-defs[of - r] refl-on-def [of - r] by blast

next
fix b assume (a, b) ∈ r
thus b ∈ Field r
using LIN order-on-defs[of Field r r] refl-on-def [of Field r r] by blast

qed

lemma under-empty : a /∈ Field r =⇒ under a = {}
unfolding Field-def under-def by auto

lemma underS-empty : a /∈ Field r =⇒ underS a = {}
unfolding Field-def underS-def by auto

30

lemma under-Field : under a ≤ Field r
by(unfold under-def Field-def , auto)

lemma underS-Field : underS a ≤ Field r
by(unfold underS-def Field-def , auto)

lemma underS-Field2 :
a ∈ Field r =⇒ underS a < Field r
using assms underS-notIn underS-Field by blast

lemma underS-Field3 :
Field r 6= {} =⇒ underS a < Field r
by(cases a ∈ Field r , simp add : underS-Field2 ,

auto simp add : underS-empty)

lemma Under-Field : Under A ≤ Field r
by(unfold Under-def Field-def , auto)

lemma UnderS-Field : UnderS A ≤ Field r
by(unfold UnderS-def Field-def , auto)

lemma above-Field : above a ≤ Field r
by(unfold above-def Field-def , auto)

lemma aboveS-Field : aboveS a ≤ Field r
by(unfold aboveS-def Field-def , auto)

lemma Above-Field : Above A ≤ Field r
by(unfold Above-def Field-def , auto)

lemma AboveS-Field : AboveS A ≤ Field r
by(unfold AboveS-def Field-def , auto)

lemma Refl-under-Under :
assumes REFL: Refl r and NE : A 6= {}
shows Under A = (

⋂
a ∈ A. under a)

proof

31

show Under A ⊆ (
⋂

a ∈ A. under a)
by(unfold Under-def under-def , auto)

next
show (

⋂
a ∈ A. under a) ⊆ Under A

proof(auto)
fix x
assume ∗: ∀ xa ∈ A. x ∈ under xa
hence ∀ xa ∈ A. (x ,xa) ∈ r
by (simp add : under-def)
moreover
{from NE obtain a where a ∈ A by blast
with ∗ have x ∈ under a by simp
hence x ∈ Field r
using under-Field [of a] by auto
}
ultimately show x ∈ Under A
unfolding Under-def by auto

qed
qed

lemma Refl-underS-UnderS :
assumes REFL: Refl r and NE : A 6= {}
shows UnderS A = (

⋂
a ∈ A. underS a)

proof
show UnderS A ⊆ (

⋂
a ∈ A. underS a)

by(unfold UnderS-def underS-def , auto)
next

show (
⋂

a ∈ A. underS a) ⊆ UnderS A
proof(auto)

fix x
assume ∗: ∀ xa ∈ A. x ∈ underS xa
hence ∀ xa ∈ A. x 6= xa ∧ (x ,xa) ∈ r
by (auto simp add : underS-def)
moreover
{from NE obtain a where a ∈ A by blast
with ∗ have x ∈ underS a by simp
hence x ∈ Field r
using underS-Field [of a] by auto
}
ultimately show x ∈ UnderS A
unfolding UnderS-def by auto

qed
qed

lemma Refl-above-Above:
assumes REFL: Refl r and NE : A 6= {}
shows Above A = (

⋂
a ∈ A. above a)

32

proof
show Above A ⊆ (

⋂
a ∈ A. above a)

by(unfold Above-def above-def , auto)
next

show (
⋂

a ∈ A. above a) ⊆ Above A
proof(auto)

fix x
assume ∗: ∀ xa ∈ A. x ∈ above xa
hence ∀ xa ∈ A. (xa,x) ∈ r
by (simp add : above-def)
moreover
{from NE obtain a where a ∈ A by blast
with ∗ have x ∈ above a by simp
hence x ∈ Field r
using above-Field [of a] by auto
}
ultimately show x ∈ Above A
unfolding Above-def by auto

qed
qed

lemma Refl-aboveS-AboveS :
assumes REFL: Refl r and NE : A 6= {}
shows AboveS A = (

⋂
a ∈ A. aboveS a)

proof
show AboveS A ⊆ (

⋂
a ∈ A. aboveS a)

by(unfold AboveS-def aboveS-def , auto)
next

show (
⋂

a ∈ A. aboveS a) ⊆ AboveS A
proof(auto)

fix x
assume ∗: ∀ xa ∈ A. x ∈ aboveS xa
hence ∀ xa ∈ A. xa 6= x ∧ (xa,x) ∈ r
by (auto simp add : aboveS-def)
moreover
{from NE obtain a where a ∈ A by blast
with ∗ have x ∈ aboveS a by simp
hence x ∈ Field r
using aboveS-Field [of a] by auto
}
ultimately show x ∈ AboveS A
unfolding AboveS-def by auto

qed
qed

lemma under-Under-singl : under a = Under {a}
by(unfold Under-def under-def , auto simp add : Field-def)

33

lemma underS-UnderS-singl : underS a = UnderS {a}
by(unfold UnderS-def underS-def , auto simp add : Field-def)

lemma above-Above-singl : above a = Above {a}
by(unfold Above-def above-def , auto simp add : Field-def)

lemma aboveS-AboveS-singl : aboveS a = AboveS {a}
by(unfold AboveS-def aboveS-def , auto simp add : Field-def)

lemma Under-decr : A ≤ B =⇒ Under B ≤ Under A
by(unfold Under-def , auto)

lemma UnderS-decr : A ≤ B =⇒ UnderS B ≤ UnderS A
by(unfold UnderS-def , auto)

lemma Above-decr : A ≤ B =⇒ Above B ≤ Above A
by(unfold Above-def , auto)

lemma AboveS-decr : A ≤ B =⇒ AboveS B ≤ AboveS A
by(unfold AboveS-def , auto)

lemma under-incr :
assumes TRANS : trans r and REL: (a,b) ∈ r
shows under a ≤ under b
proof(unfold under-def , auto)

fix x assume (x ,a) ∈ r
with REL TRANS trans-def [of r]
show (x ,b) ∈ r by blast

qed

lemma under-incl-iff :
assumes TRANS : trans r and REFL: Refl r and IN : a ∈ Field r
shows (under a ≤ under b) = ((a,b) ∈ r)
proof

assume (a,b) ∈ r
thus under a ≤ under b using TRANS
by (auto simp add : under-incr)

next
assume under a ≤ under b

34

moreover
have a ∈ under a using REFL IN
by (auto simp add : Refl-under-in)
ultimately show (a,b) ∈ r
by (auto simp add : under-def)

qed

lemma underS-incr :
assumes TRANS : trans r and ANTISYM : antisym r and

REL: (a,b) ∈ r
shows underS a ≤ underS b
proof(unfold underS-def , auto)

assume ∗: b 6= a and ∗∗: (b,a) ∈ r
with ANTISYM antisym-def [of r] REL
show False by auto

next
fix x assume x 6= a (x ,a) ∈ r
with REL TRANS trans-def [of r]
show (x ,b) ∈ r by blast

qed

lemma underS-incl-iff :
assumes LO : Linear-order r and

INa: a ∈ Field r and INb: b ∈ Field r
shows (underS a ≤ underS b) = ((a,b) ∈ r)
proof

assume (a,b) ∈ r
thus underS a ≤ underS b using LO
by (auto simp add : order-on-defs underS-incr)

next
assume ∗: underS a ≤ underS b
{assume a = b
hence (a,b) ∈ r using assms
by (auto simp add : order-on-defs refl-on-def)
}
moreover
{assume a 6= b ∧ (b,a) ∈ r
hence b ∈ underS a unfolding underS-def by auto
hence b ∈ underS b using ∗ by auto
hence False by (auto simp add : underS-notIn)
}
ultimately
show (a,b) ∈ r using assms
order-on-defs[of Field r r] total-on-def [of Field r r] by blast

qed

35

lemma above-decr :
assumes TRANS : trans r and REL: (a,b) ∈ r
shows above b ≤ above a
proof(unfold above-def , auto)

fix x assume (b,x) ∈ r
with REL TRANS trans-def [of r]
show (a,x) ∈ r by blast

qed

lemma aboveS-decr :
assumes TRANS : trans r and ANTISYM : antisym r and

REL: (a,b) ∈ r
shows aboveS b ≤ aboveS a
proof(unfold aboveS-def , auto)

assume ∗: a 6= b and ∗∗: (b,a) ∈ r
with ANTISYM antisym-def [of r] REL
show False by auto

next
fix x assume x 6= b (b,x) ∈ r
with REL TRANS trans-def [of r]
show (a,x) ∈ r by blast

qed

lemma under-trans:
assumes TRANS : trans r and

IN1 : a ∈ under b and IN2 : b ∈ under c
shows a ∈ under c
proof−

have (a,b) ∈ r ∧ (b,c) ∈ r
using IN1 IN2 under-def by auto
hence (a,c) ∈ r
using TRANS trans-def [of r] by blast
thus ?thesis unfolding under-def by simp

qed

lemma under-underS-trans:
assumes TRANS : trans r and ANTISYM : antisym r and

IN1 : a ∈ under b and IN2 : b ∈ underS c
shows a ∈ underS c
proof−

have 0 : (a,b) ∈ r ∧ (b,c) ∈ r
using IN1 IN2 under-def underS-def by auto
hence 1 : (a,c) ∈ r
using TRANS trans-def [of r] by blast
have 2 : b 6= c using IN2 underS-def by auto
have 3 : a 6= c

36

proof
assume a = c with 0 2 ANTISYM antisym-def [of r]
show False by auto

qed
from 1 3 show ?thesis unfolding underS-def by simp

qed

lemma underS-under-trans:
assumes TRANS : trans r and ANTISYM : antisym r and

IN1 : a ∈ underS b and IN2 : b ∈ under c
shows a ∈ underS c
proof−

have 0 : (a,b) ∈ r ∧ (b,c) ∈ r
using IN1 IN2 under-def underS-def by auto
hence 1 : (a,c) ∈ r
using TRANS trans-def [of r] by blast
have 2 : a 6= b using IN1 underS-def by auto
have 3 : a 6= c
proof

assume a = c with 0 2 ANTISYM antisym-def [of r]
show False by auto

qed
from 1 3 show ?thesis unfolding underS-def by simp

qed

lemma underS-underS-trans:
assumes TRANS : trans r and ANTISYM : antisym r and

IN1 : a ∈ underS b and IN2 : b ∈ underS c
shows a ∈ underS c
proof−

have a ∈ under b
using IN1 underS-subset-under by auto
with assms under-underS-trans show ?thesis by auto

qed

lemma above-trans:
assumes TRANS : trans r and

IN1 : b ∈ above a and IN2 : c ∈ above b
shows c ∈ above a
proof−

have (a,b) ∈ r ∧ (b,c) ∈ r
using IN1 IN2 above-def by auto
hence (a,c) ∈ r
using TRANS trans-def [of r] by blast
thus ?thesis unfolding above-def by simp

37

qed

lemma above-aboveS-trans:
assumes TRANS : trans r and ANTISYM : antisym r and

IN1 : b ∈ above a and IN2 : c ∈ aboveS b
shows c ∈ aboveS a
proof−

have 0 : (a,b) ∈ r ∧ (b,c) ∈ r
using IN1 IN2 above-def aboveS-def by auto
hence 1 : (a,c) ∈ r
using TRANS trans-def [of r] by blast
have 2 : b 6= c using IN2 aboveS-def by auto
have 3 : a 6= c
proof

assume a = c with 0 2 ANTISYM antisym-def [of r]
show False by auto

qed
from 1 3 show ?thesis unfolding aboveS-def by simp

qed

lemma aboveS-above-trans:
assumes TRANS : trans r and ANTISYM : antisym r and

IN1 : b ∈ aboveS a and IN2 : c ∈ above b
shows c ∈ aboveS a
proof−

have 0 : (a,b) ∈ r ∧ (b,c) ∈ r
using IN1 IN2 above-def aboveS-def by auto
hence 1 : (a,c) ∈ r
using TRANS trans-def [of r] by blast
have 2 : a 6= b using IN1 aboveS-def by auto
have 3 : a 6= c
proof

assume a = c with 0 2 ANTISYM antisym-def [of r]
show False by auto

qed
from 1 3 show ?thesis unfolding aboveS-def by simp

qed

lemma aboveS-aboveS-trans:
assumes TRANS : trans r and ANTISYM : antisym r and

IN1 : b ∈ aboveS a and IN2 : c ∈ aboveS b
shows c ∈ aboveS a
proof−

have b ∈ above a
using IN1 aboveS-subset-above by auto
with assms above-aboveS-trans show ?thesis by auto

38

qed

lemma under-Under-trans:
assumes TRANS : trans r and

IN1 : a ∈ under b and IN2 : b ∈ Under C
shows a ∈ Under C
proof−

have (a,b) ∈ r ∧ (∀ c ∈ C . (b,c) ∈ r)
using IN1 IN2 under-def Under-def by auto
hence ∀ c ∈ C . (a,c) ∈ r
using TRANS trans-def [of r] by blast
moreover
have a ∈ Field r using IN1 Field-def under-def by force
ultimately
show ?thesis unfolding Under-def by auto

qed

lemma underS-Under-trans:
assumes TRANS : trans r and ANTISYM : antisym r and

IN1 : a ∈ underS b and IN2 : b ∈ Under C
shows a ∈ UnderS C
proof−

from IN1 have a ∈ under b
using underS-subset-under [of b] by blast
with assms under-Under-trans
have a ∈ Under C by auto

moreover
have a /∈ C
proof

assume ∗: a ∈ C
have 1 : b 6= a ∧ (a,b) ∈ r
using IN1 underS-def [of b] by auto
have ∀ c ∈ C . (b,c) ∈ r
using IN2 Under-def [of C] by auto
with ∗ have (b,a) ∈ r by simp
with 1 ANTISYM antisym-def [of r]
show False by blast

qed

ultimately
show ?thesis unfolding UnderS-def
using Under-def by auto

qed

lemma under-UnderS-trans:

39

assumes TRANS : trans r and ANTISYM : antisym r and
IN1 : a ∈ under b and IN2 : b ∈ UnderS C

shows a ∈ UnderS C
proof−

from IN2 have b ∈ Under C
using UnderS-subset-Under [of C] by blast
with assms under-Under-trans
have a ∈ Under C by auto

moreover
have a /∈ C
proof

assume ∗: a ∈ C
have 1 : (a,b) ∈ r
using IN1 under-def [of b] by auto
have ∀ c ∈ C . b 6= c ∧ (b,c) ∈ r
using IN2 UnderS-def [of C] by auto
with ∗ have b 6= a ∧ (b,a) ∈ r by simp
with 1 ANTISYM antisym-def [of r]
show False by blast

qed

ultimately
show ?thesis unfolding UnderS-def
using Under-def by auto

qed

lemma underS-UnderS-trans:
assumes TRANS : trans r and ANTISYM : antisym r and

IN1 : a ∈ underS b and IN2 : b ∈ UnderS C
shows a ∈ UnderS C
proof−

from IN2 have b ∈ Under C
using UnderS-subset-Under [of C] by blast
with underS-Under-trans assms
show ?thesis by auto

qed

lemma above-Above-trans:
assumes TRANS : trans r and

IN1 : a ∈ above b and IN2 : b ∈ Above C
shows a ∈ Above C
proof−

have (b,a) ∈ r ∧ (∀ c ∈ C . (c,b) ∈ r)
using IN1 IN2 above-def Above-def by auto
hence ∀ c ∈ C . (c,a) ∈ r
using TRANS trans-def [of r] by blast

40

moreover
have a ∈ Field r using IN1 Field-def above-def by force
ultimately
show ?thesis unfolding Above-def by auto

qed

lemma aboveS-Above-trans:
assumes TRANS : trans r and ANTISYM : antisym r and

IN1 : a ∈ aboveS b and IN2 : b ∈ Above C
shows a ∈ AboveS C
proof−

from IN1 have a ∈ above b
using aboveS-subset-above[of b] by blast
with assms above-Above-trans
have a ∈ Above C by auto

moreover
have a /∈ C
proof

assume ∗: a ∈ C
have 1 : b 6= a ∧ (b,a) ∈ r
using IN1 aboveS-def [of b] by auto
have ∀ c ∈ C . (c,b) ∈ r
using IN2 Above-def [of C] by auto
with ∗ have (a,b) ∈ r by simp
with 1 ANTISYM antisym-def [of r]
show False by blast

qed

ultimately
show ?thesis unfolding AboveS-def
using Above-def by auto

qed

lemma above-AboveS-trans:
assumes TRANS : trans r and ANTISYM : antisym r and

IN1 : a ∈ above b and IN2 : b ∈ AboveS C
shows a ∈ AboveS C
proof−

from IN2 have b ∈ Above C
using AboveS-subset-Above[of C] by blast
with assms above-Above-trans
have a ∈ Above C by auto

moreover
have a /∈ C
proof

41

assume ∗: a ∈ C
have 1 : (b,a) ∈ r
using IN1 above-def [of b] by auto
have ∀ c ∈ C . b 6= c ∧ (c,b) ∈ r
using IN2 AboveS-def [of C] by auto
with ∗ have b 6= a ∧ (a,b) ∈ r by simp
with 1 ANTISYM antisym-def [of r]
show False by blast

qed

ultimately
show ?thesis unfolding AboveS-def
using Above-def by auto

qed

lemma aboveS-AboveS-trans:
assumes TRANS : trans r and ANTISYM : antisym r and

IN1 : a ∈ aboveS b and IN2 : b ∈ AboveS C
shows a ∈ AboveS C
proof−

from IN2 have b ∈ Above C
using AboveS-subset-Above[of C] by blast
with aboveS-Above-trans assms
show ?thesis by auto

qed

end

3.3 Properties depending on more than one relation

abbreviation under ≡ rel .under
abbreviation underS ≡ rel .underS
abbreviation Under ≡ rel .Under
abbreviation UnderS ≡ rel .UnderS
abbreviation above ≡ rel .above
abbreviation aboveS ≡ rel .aboveS
abbreviation Above ≡ rel .Above
abbreviation AboveS ≡ rel .AboveS

lemma under-incr2 :
r ≤ r ′ =⇒ under r a ≤ under r ′ a
unfolding rel .under-def by blast

lemma underS-incr2 :
r ≤ r ′ =⇒ underS r a ≤ underS r ′ a

42

unfolding rel .underS-def by blast

lemma Under-incr :
r ≤ r ′ =⇒ Under r A ≤ Under r A
unfolding rel .Under-def by blast

lemma UnderS-incr :
r ≤ r ′ =⇒ UnderS r A ≤ UnderS r A
unfolding rel .UnderS-def by blast

lemma Under-incr-decr :
[[r ≤ r ′; A ′ ≤ A]] =⇒ Under r A ≤ Under r A ′

unfolding rel .Under-def by blast

lemma UnderS-incr-decr :
[[r ≤ r ′; A ′ ≤ A]] =⇒ UnderS r A ≤ UnderS r A ′

unfolding rel .UnderS-def by blast

lemma above-incr2 :
r ≤ r ′ =⇒ above r a ≤ above r ′ a
unfolding rel .above-def by blast

lemma aboveS-incr2 :
r ≤ r ′ =⇒ aboveS r a ≤ aboveS r ′ a
unfolding rel .aboveS-def by blast

lemma Above-incr :
r ≤ r ′ =⇒ Above r A ≤ Above r A
unfolding rel .Above-def by blast

lemma AboveS-incr :
r ≤ r ′ =⇒ AboveS r A ≤ AboveS r A
unfolding rel .AboveS-def by blast

lemma Above-incr-decr :
[[r ≤ r ′; A ′ ≤ A]] =⇒ Above r A ≤ Above r A ′

unfolding rel .Above-def by blast

lemma AboveS-incr-decr :

43

[[r ≤ r ′; A ′ ≤ A]] =⇒ AboveS r A ≤ AboveS r A ′

unfolding rel .AboveS-def by blast

end

4 More on well-founded relations

theory Wellfounded2 imports Wellfounded Order-Relation2 ∼∼/src/HOL/Library/Wfrec
begin

This section contains some variations of results in the theory Wellfounded .thy :

• means for slightly more direct definitions by well-founded recursion;

• variations of well-founded induction;

• means for proving a linear order to be a well-order.

4.1 Well-founded recursion via genuine fixpoints

lemma wfrec-fixpoint :
fixes r :: (′a ∗ ′a) set and

H :: (′a ⇒ ′b) ⇒ ′a ⇒ ′b
assumes WF : wf r and ADM : adm-wf r H
shows wfrec r H = H (wfrec r H)
proof(rule ext)

fix x
have wfrec r H x = H (cut (wfrec r H) r x) x
using wfrec[of r H] WF by simp
also
{have

∧
y . (y ,x) : r =⇒ (cut (wfrec r H) r x) y = (wfrec r H) y

by (auto simp add : cut-apply)
hence H (cut (wfrec r H) r x) x = H (wfrec r H) x
using ADM adm-wf-def [of r H] by auto
}
finally show wfrec r H x = H (wfrec r H) x .

qed

lemma adm-wf-unique-fixpoint :
fixes r :: (′a ∗ ′a) set and

H :: (′a ⇒ ′b) ⇒ ′a ⇒ ′b and
f :: ′a ⇒ ′b and g :: ′a ⇒ ′b

assumes WF : wf r and ADM : adm-wf r H and fFP : f = H f and gFP : g = H
g
shows f = g

44

proof−
{fix x
have f x = g x
proof(rule wf-induct [of r (λx . f x = g x)],

auto simp add : WF)
fix x assume ∀ y . (y , x) ∈ r −→ f y = g y
hence H f x = H g x using ADM adm-wf-def [of r H] by auto
thus f x = g x using fFP and gFP by simp

qed
}
thus ?thesis by (simp add : ext)

qed

lemma wfrec-unique-fixpoint :
fixes r :: (′a ∗ ′a) set and

H :: (′a ⇒ ′b) ⇒ ′a ⇒ ′b and
f :: ′a ⇒ ′b

assumes WF : wf r and ADM : adm-wf r H and
fp: f = H f

shows f = wfrec r H
proof−

have H (wfrec r H) = wfrec r H
using assms wfrec-fixpoint [of r H] by simp
thus ?thesis
using assms adm-wf-unique-fixpoint [of r H wfrec r H] by simp

qed

4.2 Characterizations of well-founded-ness

A transitive relation is well-founded iff it is “locally” well-founded, i.e., iff
its restriction to the lower bounds of of any element is well-founded.

lemma trans-wf-iff :
assumes trans r
shows wf r = (∀ a. wf (r Int (rˆ−1‘‘{a} × rˆ−1‘‘{a})))
proof−

obtain R where R-def : R = (λ a. r Int (rˆ−1‘‘{a} × rˆ−1‘‘{a})) by blast
{assume ∗: wf r
{fix a
have wf (R a)
using ∗ R-def wf-subset [of r R a] by auto
}
}

moreover
{assume ∗: ∀ a. wf (R a)
have wf r
proof(unfold wf-def , clarify)

fix phi a

45

assume ∗∗: ∀ a. (∀ b. (b,a) ∈ r −→ phi b) −→ phi a
obtain chi where chi-def : chi = (λb. (b,a) ∈ r −→ phi b) by blast
with ∗ have wf (R a) by auto
hence (∀ b. (∀ c. (c,b) ∈ R a −→ chi c) −→ chi b) −→ (∀ b. chi b)
unfolding wf-def by blast
moreover
have ∀ b. (∀ c. (c,b) ∈ R a −→ chi c) −→ chi b
proof(auto simp add : chi-def R-def)

fix b
assume 1 : (b,a) ∈ r and 2 : ∀ c. (c, b) ∈ r ∧ (c, a) ∈ r −→ phi c
hence ∀ c. (c, b) ∈ r −→ phi c
using assms trans-def [of r] by blast
thus phi b using ∗∗ by blast

qed
ultimately have ∀ b. chi b by (rule mp)
with ∗∗ chi-def show phi a by blast

qed
}
ultimately show ?thesis using R-def by blast

qed

The next lemma is a variation of wf-eq-minimal from Wellfounded, allowing
one to assume the set included in the field.

lemma wf-eq-minimal2 :
wf r = (∀A. A <= Field r ∧ A 6= {} −→ (∃ a ∈ A. ∀ a ′ ∈ A. ¬ (a ′,a) ∈ r))
proof−

let ?phi = λ A. A 6= {} −→ (∃ a ∈ A. ∀ a ′ ∈ A. ¬ (a ′,a) ∈ r)
have wf r = (∀A. ?phi A)
proof(unfold wf-eq-minimal , auto)

fix A c assume ∗: ∀A. (∃ c. c ∈ A) −→ (∃ a∈A. ∀ a ′. (a ′, a) ∈ r −→ a ′ /∈ A)
and

∗∗: ∀ a∈A. ∃ a ′∈A. (a ′, a) ∈ r and
∗∗∗: c ∈ A

obtain a where a ∈ A ∧ (∀ a ′. (a ′, a) ∈ r −→ a ′ /∈ A)
using ∗ ∗∗∗ by auto
with ∗∗ show False by blast

next
fix A:: ′a set and c
assume ∗: ∀A. A 6= {} −→ (∃ a∈A. ∀ a ′∈A. (a ′, a) /∈ r) and

∗∗: c ∈ A
obtain a where a ∈ A ∧ (∀ a ′∈A. (a ′, a) /∈ r) using ∗ ∗∗ by blast
thus ∃ a∈A. ∀ a ′. (a ′, a) ∈ r −→ a ′ /∈ A by blast

qed

also have (∀A. ?phi A) = (∀B ≤ Field r . ?phi B)
proof

assume ∀A. ?phi A
thus ∀B ≤ Field r . ?phi B by simp

next

46

assume ∗: ∀B ≤ Field r . ?phi B
show ∀A. ?phi A
proof(clarify)

fix A:: ′a set assume ∗∗: A 6= {}
obtain B where B-def : B = A Int (Field r) by blast
show ∃ a ∈ A. ∀ a ′ ∈ A. (a ′,a) /∈ r
proof(cases B = {})

assume Case1 : B = {}
obtain a where 1 : a ∈ A ∧ a /∈ Field r using ∗∗ Case1 B-def by auto
hence ∀ a ′ ∈ A. (a ′,a) /∈ r using 1 unfolding Field-def by blast
thus ?thesis using 1 by auto

next
assume Case2 : B 6= {} have 1 : B ≤ Field r using B-def by auto
obtain a where 2 : a ∈ B ∧ (∀ a ′ ∈ B . (a ′,a) /∈ r)
using Case2 1 ∗ by blast
have ∀ a ′ ∈ A. (a ′,a) /∈ r
proof(clarify)

fix a ′ assume a ′ ∈ A and ∗∗: (a ′,a) ∈ r
hence a ′ ∈ B using B-def Field-def by fastsimp
thus False using 2 ∗∗ by auto

qed
thus ?thesis using 2 B-def by auto

qed
qed

qed
finally show ?thesis by blast

qed

The next lemma and its corollary enable one to prove that a linear order is
a well-order in a way which is more standard than via well-founded-ness of
the strict version of the relation.

lemma Linear-order-wf-diff-Id :
assumes LI : Linear-order r
shows wf (r − Id) = (∀A ≤ Field r . A 6= {} −→ (∃ a ∈ A. ∀ a ′ ∈ A. (a,a ′) ∈ r))
proof(cases r ≤ Id)

assume Case1 : r ≤ Id
hence temp: r − Id = {} by blast
hence wf (r − Id) by (auto simp add : temp)
moreover
{fix A assume ∗: A ≤ Field r and ∗∗: A 6= {}
obtain a where 1 : r = {} ∨ r = {(a,a)} using LI
unfolding order-on-defs using Case1 rel .Total-subset-Id by blast
hence A = {a} ∧ r = {(a,a)} using ∗ ∗∗ unfolding Field-def by blast
hence ∃ a ∈ A. ∀ a ′ ∈ A. (a,a ′) ∈ r using 1 by auto
}
ultimately show ?thesis by blast

next
assume Case2 : ¬ r ≤ Id
hence 1 : Field r = Field(r − Id) using rel .Total-Id-Field LI

47

unfolding order-on-defs by blast
show ?thesis
proof

assume ∗: wf (r − Id)
show ∀A ≤ Field r . A 6= {} −→ (∃ a ∈ A. ∀ a ′ ∈ A. (a,a ′) ∈ r)
proof(clarify)

fix A assume ∗∗: A ≤ Field r and ∗∗∗: A 6= {}
hence ∃ a ∈ A. ∀ a ′ ∈ A. (a ′,a) /∈ r − Id
using 1 ∗ unfolding wf-eq-minimal2 by auto
moreover have ∀ a ∈ A. ∀ a ′ ∈ A. ((a,a ′) ∈ r) = ((a ′,a) /∈ r − Id)
using rel .Linear-order-in-diff-Id [of r] ∗∗ LI by blast
ultimately show ∃ a ∈ A. ∀ a ′ ∈ A. (a,a ′) ∈ r by blast

qed
next

assume ∗: ∀A ≤ Field r . A 6= {} −→ (∃ a ∈ A. ∀ a ′ ∈ A. (a,a ′) ∈ r)
show wf (r − Id)
proof(unfold wf-eq-minimal2 , clarify)

fix A assume ∗∗: A ≤ Field(r − Id) and ∗∗∗: A 6= {}
hence ∃ a ∈ A. ∀ a ′ ∈ A. (a,a ′) ∈ r
using 1 ∗ by auto
moreover have ∀ a ∈ A. ∀ a ′ ∈ A. ((a,a ′) ∈ r) = ((a ′,a) /∈ r − Id)
using rel .Linear-order-in-diff-Id [of r] ∗∗ LI mono-Field [of r − Id r] by blast
ultimately show ∃ a ∈ A. ∀ a ′ ∈ A. (a ′,a) /∈ r − Id by blast

qed
qed

qed

corollary Linear-order-Well-order-iff :
assumes LI : Linear-order r
shows Well-order r = (∀A ≤ Field r . A 6= {} −→ (∃ a ∈ A. ∀ a ′ ∈ A. (a,a ′) ∈
r))
using assms unfolding well-order-on-def using Linear-order-wf-diff-Id [of r] by
auto

end

5 Well-order relations

theory Wellorder-Relation imports Wellfounded2
begin

In this section, we develop basic concepts and results pertaining to well-order
relations. Note that we consider well-order relations as non-strict relations,
i.e., as containing the diagonals of their fields.

locale wo-rel = rel + assumes WELL: Well-order r

48

begin

The following context encompasses all this section. In other words, for the
whole section, we consider a fixed well-order relation r.

5.1 Auxiliaries

lemma REFL: Refl r
using WELL order-on-defs[of - r] by auto

lemma TRANS : trans r
using WELL order-on-defs[of - r] by auto

lemma ANTISYM : antisym r
using WELL order-on-defs[of - r] by auto

lemma PREORD : Preorder r
using WELL order-on-defs[of - r] by auto

lemma PARORD : Partial-order r
using WELL order-on-defs[of - r] by auto

lemma TOTAL: Total r
using WELL order-on-defs[of - r] by auto

lemma TOTALS : ∀ a ∈ Field r . ∀ b ∈ Field r . (a,b) ∈ r ∨ (b,a) ∈ r
using REFL TOTAL refl-on-def [of - r] total-on-def [of - r] by force

lemma LIN : Linear-order r
using WELL well-order-on-def [of - r] by auto

lemma WF : wf (r − Id)
using WELL well-order-on-def [of - r] by auto

lemma cases-Total :∧
phi a b. [[{a,b} <= Field r ; ((a,b) ∈ r =⇒ phi a b); ((b,a) ∈ r =⇒ phi a b)]]

=⇒ phi a b
using TOTALS by auto

49

lemma cases-Total2 :∧
phi a b. [[{a,b} ≤ Field r ; ((a,b) ∈ r − Id =⇒ phi a b);

((b,a) ∈ r − Id =⇒ phi a b); (a = b =⇒ phi a b)]]
=⇒ phi a b

using TOTALS by auto

lemma cases-Total3 :∧
phi a b. [[{a,b} ≤ Field r ; ((a,b) ∈ r − Id ∨ (b,a) ∈ r − Id =⇒ phi a b);

(a = b =⇒ phi a b)]] =⇒ phi a b
using TOTALS by auto

5.2 Well-founded induction and recursion adapted to non-
strict well-order relations

Here we provide induction and recursion principles specific to non-strict
well-order relations. Although minor variations of those for well-founded
relations, they will be useful for doing away with the tediousness of having
to take out the diagonal each time in order to switch to a well-founded
relation.

lemma well-order-induct :
assumes IND :

∧
x . ∀ y . y 6= x ∧ (y , x) ∈ r −→ P y =⇒ P x

shows P a
proof−

have
∧

x . ∀ y . (y , x) ∈ r − Id −→ P y =⇒ P x
using IND by blast
thus P a using WF wf-induct [of r − Id P a] by blast

qed

definition
worec :: ((′a ⇒ ′b) ⇒ ′a ⇒ ′b) ⇒ ′a ⇒ ′b
where
worec F ≡ wfrec (r − Id) F

definition
adm-wo :: ((′a ⇒ ′b) ⇒ ′a ⇒ ′b) ⇒ bool
where
adm-wo H ≡ ∀ f g x . (∀ y ∈ underS x . f y = g y) −→ H f x = H g x

lemma worec-fixpoint :
assumes ADM : adm-wo H
shows worec H = H (worec H)
proof−

let ?rS = r − Id
have adm-wf (r − Id) H

50

unfolding adm-wf-def
using ADM adm-wo-def [of H] underS-def by auto
hence wfrec ?rS H = H (wfrec ?rS H)
using WF wfrec-fixpoint [of ?rS H] by simp
thus ?thesis unfolding worec-def .

qed

lemma worec-unique-fixpoint :
assumes ADM : adm-wo H and fp: f = H f
shows f = worec H
proof−

have adm-wf (r − Id) H
unfolding adm-wf-def
using ADM adm-wo-def [of H] underS-def by auto
hence f = wfrec (r − Id) H
using fp WF wfrec-unique-fixpoint [of r − Id H] by simp
thus ?thesis unfolding worec-def .

qed

5.3 The notions of maximum, minimum, supremum, succes-
sor and order filter

We define the successor of a set, and not of an element (the latter is of
course a particular case). Also, we define the maximum of two elements,
max2, and the minimum of a set, minim – we chose these variants since we
consider them the most useful for well-orders. The minimum is defined in
terms of the auxiliary relational operator isMinim. Then, supremum and
successor are defined in terms of minimum as expected. The minimum is
only meaningful for non-empty sets, and the successor is only meaningful
for sets for which strict upper bounds exist. Order filters for well-orders are
also known as “initial segments”.

definition max2 :: ′a ⇒ ′a ⇒ ′a
where max2 a b ≡ if (a,b) ∈ r then b else a

definition isMinim :: ′a set ⇒ ′a ⇒ bool
where isMinim A b ≡ b ∈ A ∧ (∀ a ∈ A. (b,a) ∈ r)

definition minim :: ′a set ⇒ ′a
where minim A ≡ THE b. isMinim A b

definition supr :: ′a set ⇒ ′a
where supr A ≡ minim (Above A)

definition suc :: ′a set ⇒ ′a
where suc A ≡ minim (AboveS A)

51

definition ofilter :: ′a set ⇒ bool
where
ofilter A ≡ (A ≤ Field r) ∧ (∀ a ∈ A. under a ≤ A)

5.3.1 Properties of max2

lemma max2-greater-among :
assumes a ∈ Field r and b ∈ Field r
shows (a, max2 a b) ∈ r ∧ (b, max2 a b) ∈ r ∧ max2 a b ∈ {a,b}
proof−
{assume (a,b) ∈ r
hence ?thesis using max2-def assms REFL refl-on-def
by (auto simp add : refl-on-def)
}
moreover
{assume a = b
hence (a,b) ∈ r using REFL assms
by (auto simp add : refl-on-def)
}
moreover
{assume ∗: a 6= b ∧ (b,a) ∈ r
hence (a,b) /∈ r using ANTISYM
by (auto simp add : antisym-def)
hence ?thesis using ∗ max2-def assms REFL refl-on-def
by (auto simp add : refl-on-def)
}
ultimately show ?thesis using assms TOTAL
total-on-def [of Field r r] by blast

qed

lemma max2-greater :
assumes a ∈ Field r and b ∈ Field r
shows (a, max2 a b) ∈ r ∧ (b, max2 a b) ∈ r
using assms by (auto simp add : max2-greater-among)

lemma max2-among :
assumes a ∈ Field r and b ∈ Field r
shows max2 a b ∈ {a, b}
using assms max2-greater-among [of a b] by simp

lemma max2-equals1 :
assumes a ∈ Field r and b ∈ Field r
shows (max2 a b = a) = ((b,a) ∈ r)
using assms ANTISYM unfolding antisym-def using TOTALS
by(auto simp add : max2-def max2-among)

52

lemma max2-equals2 :
assumes a ∈ Field r and b ∈ Field r
shows (max2 a b = b) = ((a,b) ∈ r)
using assms ANTISYM unfolding antisym-def using TOTALS
unfolding max2-def by auto

lemma max2-iff :
assumes a ∈ Field r and b ∈ Field r
shows ((max2 a b, c) ∈ r) = ((a,c) ∈ r ∧ (b,c) ∈ r)
proof

assume (max2 a b, c) ∈ r
thus (a,c) ∈ r ∧ (b,c) ∈ r
using assms max2-greater [of a b] TRANS trans-def [of r] by blast

next
assume (a,c) ∈ r ∧ (b,c) ∈ r
thus (max2 a b, c) ∈ r
using assms max2-among [of a b] by auto

qed

5.3.2 Existence and uniqueness for isMinim and well-definedness
of minim

lemma isMinim-unique:
assumes MINIM : isMinim B a and MINIM ′: isMinim B a ′

shows a = a ′

proof−
{have a ∈ B
using MINIM isMinim-def by simp
hence (a ′,a) ∈ r
using MINIM ′ isMinim-def by simp
}
moreover
{have a ′ ∈ B
using MINIM ′ isMinim-def by simp
hence (a,a ′) ∈ r
using MINIM isMinim-def by simp
}
ultimately
show ?thesis using ANTISYM antisym-def [of r] by blast

qed

lemma Well-order-isMinim-exists:
assumes SUB : B ≤ Field r and NE : B 6= {}
shows ∃ b. isMinim B b
proof−

53

from WF wf-eq-minimal [of r − Id] NE Id-def obtain b where
∗: b ∈ B ∧ (∀ b ′. b ′ 6= b ∧ (b ′,b) ∈ r −→ b ′ /∈ B) by force
show ?thesis
proof(simp add : isMinim-def , rule exI [of - b], auto)

show b ∈ B using ∗ by simp
next

fix b ′ assume As: b ′ ∈ B
hence ∗∗: b ∈ Field r ∧ b ′ ∈ Field r using As SUB ∗ by auto

from As ∗ have b ′ = b ∨ (b ′,b) /∈ r by auto
moreover
{assume b ′ = b
hence (b,b ′) ∈ r
using ∗∗ REFL by (auto simp add : refl-on-def)
}
moreover
{assume b ′ 6= b ∧ (b ′,b) /∈ r
hence (b,b ′) ∈ r
using ∗∗ TOTAL by (auto simp add : total-on-def)
}
ultimately show (b,b ′) ∈ r by blast

qed
qed

lemma minim-isMinim:
assumes SUB : B ≤ Field r and NE : B 6= {}
shows isMinim B (minim B)
proof−

let ?phi = (λ b. isMinim B b)
from assms Well-order-isMinim-exists
obtain b where ∗: ?phi b by blast
moreover
have

∧
b ′. ?phi b ′ =⇒ b ′ = b

using isMinim-unique ∗ by auto
ultimately show ?thesis
unfolding minim-def using theI [of ?phi b] by blast

qed

5.3.3 Properties of minim

lemma minim-in[simp]:
assumes B ≤ Field r and B 6= {}
shows minim B ∈ B
proof−

from minim-isMinim[of B] assms
have isMinim B (minim B) by simp
thus ?thesis by (simp add : isMinim-def)

qed

54

lemma minim-inField [simp]:
assumes B ≤ Field r and B 6= {}
shows minim B ∈ Field r
proof−

have minim B ∈ B using assms by simp
thus ?thesis using assms by blast

qed

lemma minim-least [simp]:
assumes SUB : B ≤ Field r and IN : b ∈ B
shows (minim B , b) ∈ r
proof−

from minim-isMinim[of B] assms
have isMinim B (minim B) by auto
thus ?thesis by (auto simp add : isMinim-def IN)

qed

lemma minim-Under :
[[B ≤ Field r ; B 6= {}]] =⇒ minim B ∈ Under B
by(auto simp add : Under-def)

lemma equals-minim:
assumes SUB : B ≤ Field r and IN : a ∈ B and

LEAST :
∧

b. b ∈ B =⇒ (a,b) ∈ r
shows a = minim B
proof−

from minim-isMinim[of B] assms
have isMinim B (minim B) by auto
moreover have isMinim B a using IN LEAST isMinim-def by auto
ultimately show ?thesis
using isMinim-unique by auto

qed

lemma equals-minim-Under :
[[B ≤ Field r ; a ∈ B ; a ∈ Under B]]
=⇒ a = minim B

by(auto simp add : Under-def equals-minim)

lemma minim-iff-In-Under :
assumes SUB : B ≤ Field r and NE : B 6= {}
shows (a = minim B) = (a ∈ B ∧ a ∈ Under B)
proof

55

assume a = minim B
thus a ∈ B ∧ a ∈ Under B
using assms minim-in minim-Under by simp

next
assume a ∈ B ∧ a ∈ Under B
thus a = minim B
using assms equals-minim-Under by simp

qed

lemma minim-Under-under :
assumes NE : A 6= {} and SUB : A ≤ Field r
shows Under A = under (minim A)
proof−

have 1 : minim A ∈ A
using assms minim-in by auto
have 2 : ∀ x ∈ A. (minim A, x) ∈ r
using assms minim-least by auto

have Under A ≤ under (minim A)
proof

fix x assume x ∈ Under A
with 1 Under-def have (x ,minim A) ∈ r by auto
thus x ∈ under(minim A) unfolding under-def by simp

qed

moreover

have under (minim A) ≤ Under A
proof

fix x assume x ∈ under(minim A)
hence 11 : (x ,minim A) ∈ r unfolding under-def by simp
hence x ∈ Field r unfolding Field-def by auto
moreover
{fix a assume a ∈ A
with 2 have (minim A, a) ∈ r by simp
with 11 have (x ,a) ∈ r
using TRANS trans-def [of r] by blast
}
ultimately show x ∈ Under A by (unfold Under-def , auto)

qed

ultimately show ?thesis by blast
qed

lemma minim-UnderS-underS :
assumes NE : A 6= {} and SUB : A ≤ Field r

56

shows UnderS A = underS (minim A)
proof−

have 1 : minim A ∈ A
using assms minim-in by auto
have 2 : ∀ x ∈ A. (minim A, x) ∈ r
using assms minim-least by auto

have UnderS A ≤ underS (minim A)
proof

fix x assume x ∈ UnderS A
with 1 UnderS-def have x 6= minim A ∧ (x ,minim A) ∈ r by auto
thus x ∈ underS (minim A) unfolding underS-def by simp

qed

moreover

have underS (minim A) ≤ UnderS A
proof

fix x assume x ∈ underS (minim A)
hence 11 : x 6= minim A ∧ (x ,minim A) ∈ r unfolding underS-def by simp
hence x ∈ Field r unfolding Field-def by auto
moreover
{fix a assume a ∈ A
with 2 have 3 : (minim A, a) ∈ r by simp
with 11 have (x ,a) ∈ r
using TRANS trans-def [of r] by blast
moreover
have x 6= a
proof

assume x = a
with 11 3 ANTISYM antisym-def [of r]
show False by auto

qed
ultimately
have x 6= a ∧ (x ,a) ∈ r by simp
}
ultimately show x ∈ UnderS A by (unfold UnderS-def , auto)

qed

ultimately show ?thesis by blast
qed

5.3.4 Properties of supr

lemma supr-Above:
assumes SUB : B ≤ Field r and ABOVE : Above B 6= {}
shows supr B ∈ Above B
proof(unfold supr-def)

57

have Above B ≤ Field r
using Above-Field by auto
thus minim (Above B) ∈ Above B
using assms by simp

qed

lemma supr-greater :
assumes SUB : B ≤ Field r and ABOVE : Above B 6= {} and

IN : b ∈ B
shows (b, supr B) ∈ r
proof−

from assms supr-Above
have supr B ∈ Above B by simp
with IN Above-def show ?thesis by simp

qed

lemma supr-least-Above:
assumes SUB : B ≤ Field r and

ABOVE : a ∈ Above B
shows (supr B , a) ∈ r
proof(unfold supr-def)

have Above B ≤ Field r
using Above-Field by auto
thus (minim (Above B), a) ∈ r
using assms minim-least
by simp

qed

lemma supr-least :
[[B ≤ Field r ; a ∈ Field r ; (

∧
b. b ∈ B =⇒ (b,a) ∈ r)]]

=⇒ (supr B , a) ∈ r
by(auto simp add : supr-least-Above Above-def)

lemma equals-supr-Above:
assumes SUB : B ≤ Field r and ABV : a ∈ Above B and

MINIM :
∧

a ′. a ′ ∈ Above B =⇒ (a,a ′) ∈ r
shows a = supr B
proof(unfold supr-def)

have Above B ≤ Field r
using Above-Field by auto
thus a = minim (Above B)
using assms equals-minim by simp

qed

58

lemma equals-supr :
assumes SUB : B ≤ Field r and IN : a ∈ Field r and

ABV :
∧

b. b ∈ B =⇒ (b,a) ∈ r and
MINIM :

∧
a ′. [[a ′ ∈ Field r ;

∧
b. b ∈ B =⇒ (b,a ′) ∈ r]] =⇒ (a,a ′) ∈ r

shows a = supr B
proof−

have a ∈ Above B
unfolding Above-def using ABV IN by simp
moreover
have

∧
a ′. a ′ ∈ Above B =⇒ (a,a ′) ∈ r

unfolding Above-def using MINIM by simp
ultimately show ?thesis
using equals-supr-Above SUB by auto

qed

lemma supr-inField :
assumes B ≤ Field r and Above B 6= {}
shows supr B ∈ Field r
proof−

have supr B ∈ Above B using supr-Above assms by simp
thus ?thesis using assms Above-Field by auto

qed

lemma supr-above-Above:
assumes SUB : B ≤ Field r and ABOVE : Above B 6= {}
shows Above B = above (supr B)
proof(unfold Above-def above-def , auto)

fix a assume a ∈ Field r ∀ b ∈ B . (b,a) ∈ r
with supr-least assms
show (supr B , a) ∈ r by auto

next
fix b assume (supr B , b) ∈ r
thus b ∈ Field r
using REFL refl-on-def [of - r] by auto

next
fix a b
assume 1 : (supr B , b) ∈ r and 2 : a ∈ B
with assms supr-greater
have (a,supr B) ∈ r by auto
thus (a,b) ∈ r
using 1 TRANS trans-def [of r] by blast

qed

lemma supr-under :
assumes IN : a ∈ Field r

59

shows a = supr (under a)
proof−

have under a ≤ Field r
using under-Field by auto
moreover
have under a 6= {}
using IN Refl-under-in REFL by auto
moreover
have a ∈ Above (under a)
using in-Above-under IN by auto
moreover
have ∀ a ′ ∈ Above (under a). (a,a ′) ∈ r
proof(unfold Above-def under-def , auto)

fix a ′

assume ∀ aa. (aa, a) ∈ r −→ (aa, a ′) ∈ r
hence (a,a) ∈ r −→ (a,a ′) ∈ r by blast
moreover have (a,a) ∈ r
using REFL IN by (auto simp add : refl-on-def)
ultimately
show (a, a ′) ∈ r by (rule mp)

qed
ultimately show ?thesis
using equals-supr-Above by auto

qed

5.3.5 Properties of successor

lemma suc-AboveS :
assumes SUB : B ≤ Field r and ABOVES : AboveS B 6= {}
shows suc B ∈ AboveS B
proof(unfold suc-def)

have AboveS B ≤ Field r
using AboveS-Field by auto
thus minim (AboveS B) ∈ AboveS B
using assms by simp

qed

lemma suc-greater :
assumes SUB : B ≤ Field r and ABOVES : AboveS B 6= {} and

IN : b ∈ B
shows suc B 6= b ∧ (b,suc B) ∈ r
proof−

from assms suc-AboveS
have suc B ∈ AboveS B by simp
with IN AboveS-def show ?thesis by simp

qed

60

lemma suc-least-AboveS :
assumes ABOVES : a ∈ AboveS B
shows (suc B ,a) ∈ r
proof(unfold suc-def)

have AboveS B ≤ Field r
using AboveS-Field by auto
thus (minim (AboveS B),a) ∈ r
using assms minim-least by simp

qed

lemma suc-least :
[[B ≤ Field r ; a ∈ Field r ; (

∧
b. b ∈ B =⇒ a 6= b ∧ (b,a) ∈ r)]]

=⇒ (suc B , a) ∈ r
by(auto simp add : suc-least-AboveS AboveS-def)

lemma suc-inField :
assumes B ≤ Field r and AboveS B 6= {}
shows suc B ∈ Field r
proof−

have suc B ∈ AboveS B using suc-AboveS assms by simp
thus ?thesis
using assms AboveS-Field by auto

qed

lemma equals-suc-AboveS :
assumes SUB : B ≤ Field r and ABV : a ∈ AboveS B and

MINIM :
∧

a ′. a ′ ∈ AboveS B =⇒ (a,a ′) ∈ r
shows a = suc B
proof(unfold suc-def)

have AboveS B ≤ Field r
using AboveS-Field [of B] by auto
thus a = minim (AboveS B)
using assms equals-minim
by simp

qed

lemma equals-suc:
assumes SUB : B ≤ Field r and IN : a ∈ Field r and
ABVS :

∧
b. b ∈ B =⇒ a 6= b ∧ (b,a) ∈ r and

MINIM :
∧

a ′. [[a ′ ∈ Field r ;
∧

b. b ∈ B =⇒ a ′ 6= b ∧ (b,a ′) ∈ r]] =⇒ (a,a ′) ∈ r
shows a = suc B
proof−

have a ∈ AboveS B
unfolding AboveS-def using ABVS IN by simp
moreover

61

have
∧

a ′. a ′ ∈ AboveS B =⇒ (a,a ′) ∈ r
unfolding AboveS-def using MINIM by simp
ultimately show ?thesis
using equals-suc-AboveS SUB by auto

qed

lemma suc-above-AboveS :
assumes SUB : B ≤ Field r and

ABOVE : AboveS B 6= {}
shows AboveS B = above (suc B)
proof(unfold AboveS-def above-def , auto)

fix a assume a ∈ Field r ∀ b ∈ B . a 6= b ∧ (b,a) ∈ r
with suc-least assms
show (suc B ,a) ∈ r by auto

next
fix b assume (suc B , b) ∈ r
thus b ∈ Field r
using REFL refl-on-def [of - r] by auto

next
fix a b
assume 1 : (suc B , b) ∈ r and 2 : a ∈ B
with assms suc-greater [of B a]
have (a,suc B) ∈ r by auto
thus (a,b) ∈ r
using 1 TRANS trans-def [of r] by blast

next
fix a
assume 1 : (suc B , a) ∈ r and 2 : a ∈ B
with assms suc-greater [of B a]
have (a,suc B) ∈ r by auto
moreover have suc B ∈ Field r
using assms suc-inField by simp
ultimately have a = suc B
using 1 2 SUB ANTISYM antisym-def [of r] by auto
thus False
using assms suc-greater [of B a] 2 by auto

qed

lemma suc-underS :
assumes IN : a ∈ Field r
shows a = suc (underS a)
proof−

have underS a ≤ Field r
using underS-Field by auto
moreover
have a ∈ AboveS (underS a)
using in-AboveS-underS IN by auto

62

moreover
have ∀ a ′ ∈ AboveS (underS a). (a,a ′) ∈ r
proof(clarify)

fix a ′

assume ∗: a ′ ∈ AboveS (underS a)
hence ∗∗: a ′ ∈ Field r
using AboveS-Field by auto
{assume (a,a ′) /∈ r
hence a ′ = a ∨ (a ′,a) ∈ r
using TOTAL IN ∗∗ by (auto simp add : total-on-def)
moreover
{assume a ′ = a
hence (a,a ′) ∈ r
using REFL IN ∗∗ by (auto simp add : refl-on-def)
}
moreover
{assume a ′ 6= a ∧ (a ′,a) ∈ r
hence a ′ ∈ underS a
unfolding underS-def by simp
hence a ′ /∈ AboveS (underS a)
using AboveS-disjoint by blast
with ∗ have False by simp
}
ultimately have (a,a ′) ∈ r by blast
}
thus (a, a ′) ∈ r by blast

qed
ultimately show ?thesis
using equals-suc-AboveS by auto

qed

lemma suc-singl-pred :
assumes IN : a ∈ Field r and ABOVE-NE : aboveS a 6= {} and

REL: (a ′,suc {a}) ∈ r and DIFF : a ′ 6= suc {a}
shows a ′ = a ∨ (a ′,a) ∈ r
proof−

have ∗: suc {a} ∈ Field r ∧ a ′ ∈ Field r
using WELL REL well-order-on-domain by auto
{assume ∗∗: a ′ 6= a
hence (a,a ′) ∈ r ∨ (a ′,a) ∈ r
using TOTAL IN ∗ by (auto simp add : total-on-def)
moreover
{assume (a,a ′) ∈ r
with ∗∗ ∗ assms WELL suc-least [of {a} a ′]
have (suc {a},a ′) ∈ r by auto
with REL DIFF ∗ ANTISYM antisym-def [of r]
have False by simp
}

63

ultimately have (a ′,a) ∈ r
by blast
}
thus ?thesis by blast

qed

lemma under-underS-suc:
assumes IN : a ∈ Field r and ABV : aboveS a 6= {}
shows underS (suc {a}) = under a
proof−

have 1 : AboveS {a} 6= {}
using ABV aboveS-AboveS-singl by auto
have 2 : a 6= suc {a} ∧ (a,suc {a}) ∈ r
using suc-greater [of {a} a] IN 1 by auto

have underS (suc {a}) ≤ under a
proof(unfold underS-def under-def , auto)

fix x assume ∗: x 6= suc {a} and ∗∗: (x ,suc {a}) ∈ r
with suc-singl-pred [of a x] IN ABV
have x = a ∨ (x ,a) ∈ r by auto
with REFL refl-on-def [of - r] IN
show (x ,a) ∈ r by auto

qed

moreover

have under a ≤ underS (suc {a})
proof(unfold underS-def under-def , auto)

assume (suc {a}, a) ∈ r
with 2 ANTISYM antisym-def [of r]
show False by auto

next
fix x assume ∗: (x ,a) ∈ r
with 2 TRANS trans-def [of r]
show (x ,suc {a}) ∈ r by blast

qed

ultimately show ?thesis by blast
qed

5.3.6 Properties of order filters

lemma under-ofilter [simp]:
ofilter (under a)
proof(unfold ofilter-def under-def , auto simp add : Field-def)

fix aa x
assume (aa,a) ∈ r (x ,aa) ∈ r

64

thus (x ,a) ∈ r
using TRANS trans-def [of r] by blast

qed

lemma underS-ofilter [simp]:
ofilter (underS a)
proof(unfold ofilter-def underS-def under-def , auto simp add : Field-def)

fix aa assume (a, aa) ∈ r (aa, a) ∈ r and DIFF : aa 6= a
thus False
using ANTISYM antisym-def [of r] by blast

next
fix aa x
assume (aa,a) ∈ r aa 6= a (x ,aa) ∈ r
thus (x ,a) ∈ r
using TRANS trans-def [of r] by blast

qed

lemma Field-ofilter [simp]:
ofilter (Field r)
by(unfold ofilter-def under-def , auto simp add : Field-def)

lemma ofilter-underS-Field :
ofilter A = ((∃ a ∈ Field r . A = underS a) ∨ (A = Field r))
proof

assume (∃ a∈Field r . A = underS a) ∨ A = Field r
thus ofilter A
by auto

next
assume ∗: ofilter A
let ?One = (∃ a∈Field r . A = underS a)
let ?Two = (A = Field r)
show ?One ∨ ?Two
proof(cases ?Two, simp)

let ?B = (Field r) − A
let ?a = minim ?B
assume A 6= Field r
moreover have A ≤ Field r using ∗ ofilter-def by simp
ultimately have 1 : ?B 6= {} by blast
hence 2 : ?a ∈ Field r using minim-inField [of ?B] by blast
have 3 : ?a ∈ ?B using minim-in[of ?B] 1 by blast
hence 4 : ?a /∈ A by blast
have 5 : A ≤ Field r using ∗ ofilter-def [of A] by auto

moreover
have A = underS ?a
proof

65

show A ≤ underS ?a
proof(unfold underS-def , auto simp add : 4)

fix x assume ∗∗: x ∈ A
hence 11 : x ∈ Field r using 5 by auto
have 12 : x 6= ?a using 4 ∗∗ by auto
have 13 : under x ≤ A using ∗ ofilter-def ∗∗ by auto
{assume (x ,?a) /∈ r
hence (?a,x) ∈ r
using TOTAL total-on-def [of Field r r]

2 4 11 12 by auto
hence ?a ∈ under x using under-def by auto
hence ?a ∈ A using ∗∗ 13 by blast
with 4 have False by simp
}
thus (x ,?a) ∈ r by blast

qed
next

show underS ?a ≤ A
proof(unfold underS-def , auto)

fix x
assume ∗∗: x 6= ?a and ∗∗∗: (x ,?a) ∈ r
hence 11 : x ∈ Field r using Field-def by fastforce
{assume x /∈ A
hence x ∈ ?B using 11 by auto
hence (?a,x) ∈ r using 3 minim-least [of ?B x] by blast
hence False
using ANTISYM antisym-def [of r] ∗∗ ∗∗∗ by auto
}

thus x ∈ A by blast
qed

qed
ultimately have ?One using 2 by blast
thus ?thesis by simp

qed
qed

lemma ofilter-Under [simp]:
assumes A ≤ Field r
shows ofilter(Under A)
proof(unfold ofilter-def , auto)

fix x assume x ∈ Under A
thus x ∈ Field r
using Under-Field assms by auto

next
fix a x
assume a ∈ Under A and x ∈ under a
thus x ∈ Under A
using TRANS under-Under-trans by auto

66

qed

lemma ofilter-UnderS [simp]:
assumes A ≤ Field r
shows ofilter(UnderS A)
proof(unfold ofilter-def , auto)

fix x assume x ∈ UnderS A
thus x ∈ Field r
using UnderS-Field assms by auto

next
fix a x
assume a ∈ UnderS A and x ∈ under a
thus x ∈ UnderS A
using TRANS ANTISYM under-UnderS-trans by auto

qed

lemma ofilter-Int [simp]: [[ofilter A; ofilter B]] =⇒ ofilter(A Int B)
unfolding ofilter-def by blast

lemma ofilter-INTER:
[[I 6= {};

∧
i . i ∈ I =⇒ ofilter(A i)]] =⇒ ofilter (

⋂
i ∈ I . A i)

unfolding ofilter-def by blast

lemma ofilter-Inter :
[[S 6= {};

∧
A. A ∈ S =⇒ ofilter A]] =⇒ ofilter (Inter S)

unfolding ofilter-def by blast

lemma ofilter-Un[simp]: [[ofilter A; ofilter B]] =⇒ ofilter(A ∪ B)
unfolding ofilter-def by blast

lemma ofilter-UNION :
(
∧

i . i ∈ I =⇒ ofilter(A i)) =⇒ ofilter (
⋃

i ∈ I . A i)
unfolding ofilter-def by blast

lemma ofilter-Union:
(
∧

A. A ∈ S =⇒ ofilter A) =⇒ ofilter (Union S)
unfolding ofilter-def by blast

lemma ofilter-under-UNION :
assumes ofilter A
shows A = (

⋃
a ∈ A. under a)

67

proof
have ∀ a ∈ A. under a ≤ A
using assms ofilter-def by auto
thus (

⋃
a ∈ A. under a) ≤ A by blast

next
have ∀ a ∈ A. a ∈ under a
using REFL Refl-under-in assms ofilter-def by blast
thus A ≤ (

⋃
a ∈ A. under a) by blast

qed

lemma ofilter-under-Union:
ofilter A =⇒ A = Union {under a| a. a ∈ A}
using ofilter-under-UNION [of A]
by(unfold Union-eq , auto)

5.3.7 Other properties

lemma Trans-Under-regressive:
assumes NE : A 6= {} and SUB : A ≤ Field r
shows Under(Under A) ≤ Under A
proof

let ?a = minim A

have 1 : minim A ∈ Under A
using assms minim-Under by auto
have 2 : ∀ y ∈ A. (minim A, y) ∈ r
using assms minim-least by auto

fix x assume x ∈ Under(Under A)
with 1 have 1 : (x ,minim A) ∈ r
using Under-def by auto
with Field-def have x ∈ Field r by fastforce
moreover
{fix y assume ∗: y ∈ A
hence (x ,y) ∈ r
using 1 2 TRANS trans-def [of r] by blast
with Field-def have (x ,y) ∈ r by auto
}
ultimately
show x ∈ Under A unfolding Under-def by auto

qed

lemma ofilter-linord :
assumes OF1 : ofilter A and OF2 : ofilter B
shows A ≤ B ∨ B ≤ A
proof(cases A = Field r)

assume Case1 : A = Field r

68

hence B ≤ A using OF2 ofilter-def by auto
thus ?thesis by simp

next
assume Case2 : A 6= Field r
with ofilter-underS-Field OF1 obtain a where
1 : a ∈ Field r ∧ A = underS a by auto
show ?thesis
proof(cases B = Field r)

assume Case21 : B = Field r
hence A ≤ B using OF1 ofilter-def by auto
thus ?thesis by simp

next
assume Case22 : B 6= Field r
with ofilter-underS-Field OF2 obtain b where
2 : b ∈ Field r ∧ B = underS b by auto
have a = b ∨ (a,b) ∈ r ∨ (b,a) ∈ r
using 1 2 TOTAL total-on-def [of - r] by auto
moreover
{assume a = b with 1 2 have ?thesis by auto
}
moreover
{assume (a,b) ∈ r
with underS-incr TRANS ANTISYM 1 2
have A ≤ B by auto
hence ?thesis by auto
}
moreover
{assume (b,a) ∈ r
with underS-incr TRANS ANTISYM 1 2
have B ≤ A by auto
hence ?thesis by auto
}
ultimately show ?thesis by blast

qed
qed

lemma ofilter-AboveS-Field :
assumes ofilter A
shows A ∪ (AboveS A) = Field r
proof

show A ∪ (AboveS A) ≤ Field r
using assms ofilter-def AboveS-Field by auto

next
{fix x assume ∗: x ∈ Field r and ∗∗: x /∈ A
{fix y assume ∗∗∗: y ∈ A
with ∗∗ have 1 : y 6= x by auto
{assume (y ,x) /∈ r
moreover

69

have y ∈ Field r using assms ofilter-def ∗∗∗ by auto
ultimately have (x ,y) ∈ r
using 1 ∗ TOTAL total-on-def [of - r] by auto
with ∗∗∗ assms ofilter-def under-def have x ∈ A by auto
with ∗∗ have False by contradiction
}
hence (y ,x) ∈ r by blast
with 1 have y 6= x ∧ (y ,x) ∈ r by auto
}
with ∗ have x ∈ AboveS A unfolding AboveS-def by auto
}
thus Field r ≤ A ∪ (AboveS A) by blast

qed

lemma ofilter-suc-Field :
assumes OF : ofilter A and NE : A 6= Field r
shows ofilter (A ∪ {suc A})
proof−

have 1 : A ≤ Field r using OF ofilter-def by auto
hence 2 : AboveS A 6= {}
using ofilter-AboveS-Field NE OF by blast
from 1 2 suc-inField
have 3 : suc A ∈ Field r by auto

show ?thesis
proof(unfold ofilter-def , auto simp add : 1 3)

fix a x
assume a ∈ A x ∈ under a x /∈ A
with OF ofilter-def have False by auto
thus x = suc A by simp

next
fix x assume ∗: x ∈ under (suc A) and ∗∗: x /∈ A
hence x ∈ Field r using under-def Field-def by fastforce
with ∗∗ have x ∈ AboveS A
using ofilter-AboveS-Field [of A] OF by auto
hence (suc A,x) ∈ r
using suc-least-AboveS by auto
moreover
have (x ,suc A) ∈ r using ∗ under-def by auto
ultimately show x = suc A
using ANTISYM antisym-def [of r] by auto

qed
qed

lemma suc-ofilter-in:
assumes OF : ofilter A and ABOVE-NE : AboveS A 6= {} and

70

REL: (b,suc A) ∈ r and DIFF : b 6= suc A
shows b ∈ A
proof−

have ∗: suc A ∈ Field r ∧ b ∈ Field r
using WELL REL well-order-on-domain by auto
{assume ∗∗: b /∈ A
hence b ∈ AboveS A
using OF ∗ ofilter-AboveS-Field by auto
hence (suc A, b) ∈ r
using suc-least-AboveS by auto
hence False using REL DIFF ANTISYM ∗
by (auto simp add : antisym-def)
}
thus ?thesis by blast

qed

end

abbreviation worec ≡ wo-rel .worec
abbreviation adm-wo ≡ wo-rel .adm-wo
abbreviation isMinim ≡ wo-rel .isMinim
abbreviation minim ≡ wo-rel .minim
abbreviation max2 ≡ wo-rel .max2
abbreviation supr ≡ wo-rel .supr
abbreviation suc ≡ wo-rel .suc
abbreviation ofilter ≡ wo-rel .ofilter

end

6 Well-order embeddings

theory Wellorder-Embedding imports ∼∼/src/HOL/Library/Zorn Fun2 Wellorder-Relation
begin

In this section, we introduce well-order embeddings and isomorphisms and
prove their basic properties. The notion of embedding is considered from the
point of view of the theory of ordinals, and therefore requires the source to be

71

injected as an initial segment (i.e., order filter) of the target. A main result
of this section is the existence of embeddings (in one direction or another)
between any two well-orders, having as a consequence the fact that, given
any two sets on any two types, one is smaller than (i.e., can be injected into)
the other.

6.1 Auxiliaries

lemma UNION-inj-on-ofilter :
assumes WELL: Well-order r and

OF :
∧

i . i ∈ I =⇒ ofilter r (A i) and
INJ :

∧
i . i ∈ I =⇒ inj-on f (A i)

shows inj-on f (
⋃

i ∈ I . A i)
proof−

have wo-rel r using WELL by (simp add : wo-rel-def)
hence

∧
i j . [[i ∈ I ; j ∈ I]] =⇒ A i <= A j ∨ A j <= A i

using wo-rel .ofilter-linord [of r] OF by blast
with WELL INJ show ?thesis
by (auto simp add : UNION-inj-on)

qed

lemma UNION-bij-betw-ofilter :
assumes WELL: Well-order r and

OF :
∧

i . i ∈ I =⇒ ofilter r (A i) and
BIJ :

∧
i . i ∈ I =⇒ bij-betw f (A i) (A ′ i)

shows bij-betw f (
⋃

i ∈ I . A i) (
⋃

i ∈ I . A ′ i)
proof−

have wo-rel r using WELL by (simp add : wo-rel-def)
hence

∧
i j . [[i ∈ I ; j ∈ I]] =⇒ A i ≤ A j ∨ A j ≤ A i

using wo-rel .ofilter-linord [of r] OF by blast
with WELL BIJ show ?thesis
by (auto simp add : UNION-bij-betw)

qed

lemma under-underS-bij-betw :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and

IN : a ∈ Field r and IN ′: f a ∈ Field r ′ and
BIJ : bij-betw f (underS r a) (underS r ′ (f a))

shows bij-betw f (under r a) (under r ′ (f a))
proof−

have a /∈ underS r a ∧ f a /∈ underS r ′ (f a)
unfolding rel .underS-def by auto
moreover
{have Refl r ∧ Refl r ′ using WELL WELL ′

by (auto simp add : order-on-defs)
hence under r a = underS r a ∪ {a} ∧

under r ′ (f a) = underS r ′ (f a) ∪ {f a}

72

using IN IN ′ by(auto simp add : rel .Refl-under-underS)
}
ultimately show ?thesis
using BIJ notIn-Un-bij-betw [of a underS r a f underS r ′ (f a)] by auto

qed

6.2 (Well-order) embeddings, strict embeddings, isomorphisms
and order-compatible functions

Standardly, a function is an embedding of a well-order in another if it in-
jectively and order-compatibly maps the former into an order filter of the
latter. Here we opt for a more succinct definition (operator embed), ask-
ing that, for any element in the source, the function should be a bijection
between the set of strict lower bounds of that element and the set of strict
lower bounds of its image. (Later we prove equivalence with the standard
definition – lemma embed-iff-compat-inj-on-ofilter.) A strict embedding (op-
erator embedS) is a non-bijective embedding and an isomorphism (operator
iso) is a bijective embedding.

definition embed :: ′a rel ⇒ ′a ′ rel ⇒ (′a ⇒ ′a ′) ⇒ bool
where
embed r r ′ f ≡ ∀ a ∈ Field r . bij-betw f (under r a) (under r ′ (f a))

lemmas embed-defs = embed-def embed-def-raw

Strict embeddings:

definition embedS :: ′a rel ⇒ ′a ′ rel ⇒ (′a ⇒ ′a ′) ⇒ bool
where
embedS r r ′ f ≡ embed r r ′ f ∧ ¬ bij-betw f (Field r) (Field r ′)

lemmas embedS-defs = embedS-def embedS-def-raw

definition iso :: ′a rel ⇒ ′a ′ rel ⇒ (′a ⇒ ′a ′) ⇒ bool
where
iso r r ′ f ≡ embed r r ′ f ∧ bij-betw f (Field r) (Field r ′)

lemmas iso-defs = iso-def iso-def-raw

definition compat :: ′a rel ⇒ ′a ′ rel ⇒ (′a ⇒ ′a ′) ⇒ bool
where
compat r r ′ f ≡ ∀ a b. (a,b) ∈ r −→ (f a, f b) ∈ r ′

73

lemma embed-halfcong :
assumes EQ :

∧
a. a ∈ Field r =⇒ f a = g a and

EMB : embed r r ′ f
shows embed r r ′ g
proof(unfold embed-def , auto)

fix a assume ∗: a ∈ Field r
hence bij-betw f (under r a) (under r ′ (f a))
using EMB unfolding embed-def by simp
moreover
{have under r a ≤ Field r
by (auto simp add : rel .under-Field)
hence

∧
b. b ∈ under r a =⇒ f b = g b

using EQ by blast
}
moreover have f a = g a using ∗ EQ by auto
ultimately show bij-betw g (under r a) (under r ′ (g a))
using bij-betw-cong [of under r a f g under r ′ (f a)] by auto

qed

lemma embed-cong [fundef-cong]:
assumes

∧
a. a ∈ Field r =⇒ f a = g a

shows embed r r ′ f = embed r r ′ g
using assms embed-halfcong [of r f g r ′]

embed-halfcong [of r g f r ′] by auto

lemma embedS-cong [fundef-cong]:
assumes

∧
a. a ∈ Field r =⇒ f a = g a

shows embedS r r ′ f = embedS r r ′ g
unfolding embedS-def using assms
embed-cong [of r f g r ′] bij-betw-cong [of Field r f g Field r ′] by blast

lemma iso-cong [fundef-cong]:
assumes

∧
a. a ∈ Field r =⇒ f a = g a

shows iso r r ′ f = iso r r ′ g
unfolding iso-def using assms
embed-cong [of r f g r ′] bij-betw-cong [of Field r f g Field r ′] by blast

lemma id-compat : compat r r id
by(auto simp add : id-def compat-def)

lemma comp-compat :
[[compat r r ′ f ; compat r ′ r ′′ f ′]] =⇒ compat r r ′′ (f ′ o f)
by(auto simp add : comp-def compat-def)

74

lemma compat-wf :
assumes CMP : compat r r ′ f and WF : wf r ′

shows wf r
proof−

have r ≤ inv-image r ′ f
unfolding inv-image-def using CMP
by (auto simp add : compat-def)
with WF show ?thesis
using wf-inv-image[of r ′ f] wf-subset [of inv-image r ′ f] by auto

qed

lemma id-embed : embed r r id
by(auto simp add : id-def embed-def bij-betw-def)

lemma id-iso: iso r r id
by(auto simp add : id-def embed-def iso-def bij-betw-def)

lemma embed-in-Field :
assumes WELL: Well-order r and

EMB : embed r r ′ f and IN : a ∈ Field r
shows f a ∈ Field r ′

proof−
have Well : wo-rel r
using WELL by (auto simp add : wo-rel-def)
hence 1 : Refl r
by (auto simp add : wo-rel .REFL)
hence a ∈ under r a using IN rel .Refl-under-in by fastforce
hence f a ∈ under r ′ (f a)
using EMB IN by (auto simp add : embed-def bij-betw-def)
thus ?thesis unfolding Field-def
by (auto simp: rel .under-def)

qed

lemma comp-embed :
assumes WELL: Well-order r and

EMB : embed r r ′ f and EMB ′: embed r ′ r ′′ f ′

shows embed r r ′′ (f ′ o f)
proof(unfold embed-def , auto)

fix a assume ∗: a ∈ Field r
hence bij-betw f (under r a) (under r ′ (f a))
using embed-def [of r] EMB by auto
moreover
{have f a ∈ Field r ′

using EMB WELL ∗ by (auto simp add : embed-in-Field)

75

hence bij-betw f ′ (under r ′ (f a)) (under r ′′ (f ′ (f a)))
using embed-def [of r ′] EMB ′ by auto
}
ultimately
show bij-betw (f ′ ◦ f) (under r a) (under r ′′ (f ′(f a)))
by(auto simp add : bij-betw-comp)

qed

lemma comp-iso:
assumes WELL: Well-order r and

EMB : iso r r ′ f and EMB ′: iso r ′ r ′′ f ′

shows iso r r ′′ (f ′ o f)
using assms unfolding iso-def
by (auto simp add : comp-embed bij-betw-comp)

That embedS is also preserved by function composition shall be proved only
later.

lemma embed-Field :
[[Well-order r ; embed r r ′ f]] =⇒ f‘ (Field r) ≤ Field r ′

by (auto simp add : embed-in-Field)

lemma embed-preserves-ofilter :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and

EMB : embed r r ′ f and OF : ofilter r A
shows ofilter r ′ (f‘A)
proof−

from WELL have Well : wo-rel r unfolding wo-rel-def .
from WELL ′ have Well ′: wo-rel r ′ unfolding wo-rel-def .
from OF have 0 : A ≤ Field r by(auto simp add : Well wo-rel .ofilter-def)

show ?thesis using Well ′ WELL EMB 0 embed-Field [of r r ′ f]
proof(unfold wo-rel .ofilter-def , auto simp add : image-def)

fix a b ′

assume ∗: a ∈ A and ∗∗: b ′ ∈ under r ′ (f a)
hence a ∈ Field r using 0 by auto
hence bij-betw f (under r a) (under r ′ (f a))
using ∗ EMB by (auto simp add : embed-def)
hence f‘ (under r a) = under r ′ (f a)
by (simp add : bij-betw-def)
with ∗∗ image-def [of f under r a] obtain b where
1 : b ∈ under r a ∧ b ′ = f b by blast
hence b ∈ A using Well ∗ OF
by (auto simp add : wo-rel .ofilter-def)
with 1 show ∃ b ∈ A. b ′ = f b by blast

qed
qed

76

lemma embed-Field-ofilter :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and

EMB : embed r r ′ f
shows ofilter r ′ (f‘ (Field r))
proof−

have ofilter r (Field r)
using WELL by (auto simp add : wo-rel-def wo-rel .Field-ofilter)
with WELL WELL ′ EMB
show ?thesis by (auto simp add : embed-preserves-ofilter)

qed

lemma embed-compat :
assumes EMB : embed r r ′ f
shows compat r r ′ f
proof(unfold compat-def , clarify)

fix a b
assume ∗: (a,b) ∈ r
hence 1 : b ∈ Field r using Field-def [of r] by blast
have a ∈ under r b
using ∗ rel .under-def [of r] by simp
hence f a ∈ under r ′ (f b)
using EMB embed-def [of r r ′ f]

bij-betw-def [of f under r b under r ′ (f b)]
image-def [of f under r b] 1 by auto

thus (f a, f b) ∈ r ′

by (auto simp add : rel .under-def)
qed

lemma embed-inj-on:
assumes WELL: Well-order r and EMB : embed r r ′ f
shows inj-on f (Field r)
proof(unfold inj-on-def , clarify)

from WELL have Well : wo-rel r unfolding wo-rel-def .
with wo-rel .TOTAL[of r]
have Total : Total r by simp
from Well wo-rel .REFL[of r]
have Refl : Refl r by simp

fix a b
assume ∗: a ∈ Field r and ∗∗: b ∈ Field r and

∗∗∗: f a = f b
hence 1 : a ∈ Field r ∧ b ∈ Field r
unfolding Field-def by auto
{assume (a,b) ∈ r

77

hence a ∈ under r b ∧ b ∈ under r b
using Refl by(auto simp add : rel .under-def refl-on-def)
hence a = b
using EMB 1 ∗∗∗
by (auto simp add : embed-def bij-betw-def inj-on-def)
}
moreover
{assume (b,a) ∈ r
hence a ∈ under r a ∧ b ∈ under r a
using Refl by(auto simp add : rel .under-def refl-on-def)
hence a = b
using EMB 1 ∗∗∗
by (auto simp add : embed-def bij-betw-def inj-on-def)
}
ultimately
show a = b using Total 1
by (auto simp add : total-on-def)

qed

lemma embed-underS :
assumes WELL: Well-order r and WELL: Well-order r ′ and

EMB : embed r r ′ f and IN : a ∈ Field r
shows bij-betw f (underS r a) (underS r ′ (f a))
proof−

have bij-betw f (under r a) (under r ′ (f a))
using assms by (auto simp add : embed-def)
moreover
{have f a ∈ Field r ′ using assms embed-Field [of r r ′ f] by auto
hence under r a = underS r a ∪ {a} ∧

under r ′ (f a) = underS r ′ (f a) ∪ {f a}
using assms by (auto simp add : order-on-defs rel .Refl-under-underS)
}
moreover
{have a /∈ underS r a ∧ f a /∈ underS r ′ (f a)
unfolding rel .underS-def by blast
}
ultimately show ?thesis
by (auto simp add : notIn-Un-bij-betw3)

qed

lemma embed-iff-compat-inj-on-ofilter :
assumes WELL: Well-order r and WELL ′: Well-order r ′

shows embed r r ′ f = (compat r r ′ f ∧ inj-on f (Field r) ∧ ofilter r ′ (f‘ (Field r)))
using assms
proof(auto simp add : embed-compat embed-inj-on embed-Field-ofilter ,

unfold embed-def , auto)
fix a

78

assume ∗: inj-on f (Field r) and
∗∗: compat r r ′ f and
∗∗∗: ofilter r ′ (f‘ (Field r)) and
∗∗∗∗: a ∈ Field r

have Well : wo-rel r
using WELL wo-rel-def [of r] by simp
hence Refl : Refl r
using wo-rel .REFL[of r] by simp
have Total : Total r
using Well wo-rel .TOTAL[of r] by simp
have Well ′: wo-rel r ′

using WELL ′ wo-rel-def [of r ′] by simp
hence Antisym ′: antisym r ′

using wo-rel .ANTISYM [of r ′] by simp
have (a,a) ∈ r
using ∗∗∗∗ Well wo-rel .REFL[of r]

refl-on-def [of - r] by auto
hence (f a, f a) ∈ r ′

using ∗∗ by(auto simp add : compat-def)
hence 0 : f a ∈ Field r ′

unfolding Field-def by auto
have f a ∈ f‘ (Field r)
using ∗∗∗∗ by auto
hence 2 : under r ′ (f a) ≤ f‘ (Field r)
using Well ′ ∗∗∗ wo-rel .ofilter-def [of r ′ f‘ (Field r)] by fastforce

show bij-betw f (under r a) (under r ′ (f a))
proof(unfold bij-betw-def , auto)

show inj-on f (under r a)
using ∗
by (auto simp add : rel .under-Field subset-inj-on)

next
fix b assume b ∈ under r a
thus f b ∈ under r ′ (f a)
unfolding rel .under-def using ∗∗
by (auto simp add : compat-def)

next
fix b ′ assume ∗∗∗∗∗: b ′ ∈ under r ′ (f a)
hence b ′ ∈ f‘ (Field r)
using 2 by auto
with Field-def [of r] obtain b where
3 : b ∈ Field r and 4 : b ′ = f b by auto
have (b,a): r
proof−
{assume (a,b) ∈ r
with ∗∗ 4 have (f a, b ′): r ′

by (auto simp add : compat-def)
with ∗∗∗∗∗ Antisym ′ have f a = b ′

79

by(auto simp add : rel .under-def antisym-def)
with 3 ∗∗∗∗ 4 ∗ have a = b
by(auto simp add : inj-on-def)
}
moreover
{assume a = b
hence (b,a) ∈ r using Refl ∗∗∗∗ 3
by (auto simp add : refl-on-def)
}
ultimately
show ?thesis using Total ∗∗∗∗ 3 by (fastforce simp add : total-on-def)

qed
with 4 show b ′ ∈ f‘ (under r a)
unfolding rel .under-def by auto

qed
qed

lemma inv-into-ofilter-embed :
assumes WELL: Well-order r and OF : ofilter r A and

BIJ : ∀ b ∈ A. bij-betw f (under r b) (under r ′ (f b)) and
IMAGE : f ‘ A = Field r ′

shows embed r ′ r (inv-into A f)
proof−

have Well : wo-rel r
using WELL wo-rel-def [of r] by simp
have Refl : Refl r
using Well wo-rel .REFL[of r] by simp
have Total : Total r
using Well wo-rel .TOTAL[of r] by simp

have 1 : bij-betw f A (Field r ′)
proof(unfold bij-betw-def inj-on-def , auto simp add : IMAGE)

fix b1 b2
assume ∗: b1 ∈ A and ∗∗: b2 ∈ A and

∗∗∗: f b1 = f b2
have 11 : b1 ∈ Field r ∧ b2 ∈ Field r
using ∗ ∗∗ Well OF by (auto simp add : wo-rel .ofilter-def)
moreover
{assume (b1 ,b2) ∈ r
hence b1 ∈ under r b2 ∧ b2 ∈ under r b2
unfolding rel .under-def using 11 Refl
by (auto simp add : refl-on-def)
hence b1 = b2 using BIJ ∗ ∗∗ ∗∗∗
by (auto simp add : bij-betw-def inj-on-def)
}
moreover
{assume (b2 ,b1) ∈ r

80

hence b1 ∈ under r b1 ∧ b2 ∈ under r b1
unfolding rel .under-def using 11 Refl
by (auto simp add : refl-on-def)
hence b1 = b2 using BIJ ∗ ∗∗ ∗∗∗
by (auto simp add : bij-betw-def inj-on-def)
}
ultimately
show b1 = b2
using Total by (auto simp add : total-on-def)

qed

let ?f ′ = (inv-into A f)

have 2 : ∀ b ∈ A. bij-betw ?f ′ (under r ′ (f b)) (under r b)
proof(clarify)

fix b assume ∗: b ∈ A
hence under r b ≤ A
using Well OF by(auto simp add : wo-rel .ofilter-def)
moreover
have f ‘ (under r b) = under r ′ (f b)
using ∗ BIJ by (auto simp add : bij-betw-def)
ultimately
show bij-betw ?f ′ (under r ′ (f b)) (under r b)
using 1 by (auto simp add : bij-betw-inv-into-subset)

qed

have 3 : ∀ b ′ ∈ Field r ′. bij-betw ?f ′ (under r ′ b ′) (under r (?f ′ b ′))
proof(clarify)

fix b ′ assume ∗: b ′ ∈ Field r ′

have b ′ = f (?f ′ b ′) using ∗ 1
by (auto simp add : bij-betw-inv-into-right)
moreover
{obtain b where 31 : b ∈ A and f b = b ′ using IMAGE ∗ by force
hence ?f ′ b ′ = b using 1 by (auto simp add : bij-betw-inv-into-left)
with 31 have ?f ′ b ′ ∈ A by auto
}
ultimately
show bij-betw ?f ′ (under r ′ b ′) (under r (?f ′ b ′))
using 2 by auto

qed

thus ?thesis unfolding embed-def .
qed

lemma inv-into-underS-embed :
assumes WELL: Well-order r and

BIJ : ∀ b ∈ underS r a. bij-betw f (under r b) (under r ′ (f b)) and
IN : a ∈ Field r and

81

IMAGE : f ‘ (underS r a) = Field r ′

shows embed r ′ r (inv-into (underS r a) f)
using assms
by(auto simp add : wo-rel-def wo-rel .underS-ofilter inv-into-ofilter-embed)

lemma inv-into-Field-embed :
assumes WELL: Well-order r and EMB : embed r r ′ f and

IMAGE : Field r ′ ≤ f ‘ (Field r)
shows embed r ′ r (inv-into (Field r) f)
proof−

have (∀ b ∈ Field r . bij-betw f (under r b) (under r ′ (f b)))
using EMB by (auto simp add : embed-def)
moreover
have f ‘ (Field r) ≤ Field r ′

using EMB WELL by (auto simp add : embed-Field)
ultimately
show ?thesis using assms
by(auto simp add : wo-rel-def wo-rel .Field-ofilter inv-into-ofilter-embed)

qed

lemma inv-into-Field-embed-bij-betw :
assumes WELL: Well-order r and

EMB : embed r r ′ f and BIJ : bij-betw f (Field r) (Field r ′)
shows embed r ′ r (inv-into (Field r) f)
proof−

have Field r ′ ≤ f ‘ (Field r)
using BIJ by (auto simp add : bij-betw-def)
thus ?thesis using assms
by(auto simp add : inv-into-Field-embed)

qed

6.3 Given any two well-orders, one can be embedded in the
other

Here is an overview of the proof of of this fact, stated in theorem wellorders-totally-ordered :

Fix the well-orders r :: ′a rel and r ′:: ′a ′ rel. Attempt to define an embedding
f :: ′a ⇒ ′a ′ from r to r ′ in the natural way by well-order recursion (”hoping”
that Field r turns out to be smaller than Field r ′), but also record, at the
recursive step, in a function g :: ′a ⇒ bool, the extra information of whether
Field r ′ gets exhausted or not.

If Field r ′ does not get exhausted, then Field r is indeed smaller and f is
the desired embedding from r to r ′ (lemma wellorders-totally-ordered-aux).

Otherwise, it means that Field r ′ is the smaller one, and the inverse of
(the ”good” segment of) f is the desired embedding from r ′ to r (lemma
wellorders-totally-ordered-aux2).

82

lemma wellorders-totally-ordered-aux :
fixes r :: ′a rel and r ′:: ′a ′ rel and

f :: ′a ⇒ ′a ′ and a:: ′a
assumes WELL: Well-order r and WELL ′: Well-order r ′ and IN : a ∈ Field r
and

IH : ∀ b ∈ underS r a. bij-betw f (under r b) (under r ′ (f b)) and
NOT : f ‘ (underS r a) 6= Field r ′ and SUC : f a = suc r ′ (f‘ (underS r a))

shows bij-betw f (under r a) (under r ′ (f a))
proof−

have Well : wo-rel r using WELL unfolding wo-rel-def .
hence Refl : Refl r using wo-rel .REFL[of r] by auto
have Trans: trans r using Well wo-rel .TRANS [of r] by auto
have Well ′: wo-rel r ′ using WELL ′ unfolding wo-rel-def .
have OF : ofilter r (underS r a)
by (auto simp add : Well wo-rel .underS-ofilter)
hence UN : underS r a = (

⋃
b ∈ underS r a. under r b)

using Well wo-rel .ofilter-under-UNION [of r underS r a] by blast

{fix b assume ∗: b ∈ underS r a
hence t0 : (b,a) ∈ r ∧ b 6= a unfolding rel .underS-def by auto
have t1 : b ∈ Field r
using ∗ rel .underS-Field [of r a] by auto
have t2 : f‘ (under r b) = under r ′ (f b)
using IH ∗ by (auto simp add : bij-betw-def)
hence t3 : ofilter r ′ (f‘ (under r b))
using Well ′ by (auto simp add : wo-rel .under-ofilter)
have f‘ (under r b) ≤ Field r ′

using t2 by (auto simp add : rel .under-Field)
moreover
have b ∈ under r b
using t1 by(auto simp add : Refl rel .Refl-under-in)
ultimately
have t4 : f b ∈ Field r ′ by auto
have f‘ (under r b) = under r ′ (f b) ∧

ofilter r ′ (f‘ (under r b)) ∧
f b ∈ Field r ′

using t2 t3 t4 by auto
}
hence bFact :
∀ b ∈ underS r a. f‘ (under r b) = under r ′ (f b) ∧

ofilter r ′ (f‘ (under r b)) ∧
f b ∈ Field r ′ by blast

have subField : f‘ (underS r a) ≤ Field r ′

using bFact by blast

have OF ′: ofilter r ′ (f‘ (underS r a))
proof−

83

have f‘ (underS r a) = f‘ (
⋃

b ∈ underS r a. under r b)
using UN by auto
also have . . . = (

⋃
b ∈ underS r a. f‘ (under r b)) by blast

also have . . . = (
⋃

b ∈ underS r a. (under r ′ (f b)))
using bFact by auto
finally
have f‘ (underS r a) = (

⋃
b ∈ underS r a. (under r ′ (f b))) .

thus ?thesis
using Well ′ bFact

wo-rel .ofilter-UNION [of r ′ underS r a λ b. under r ′ (f b)] by fastforce
qed

have f‘ (underS r a) ∪ AboveS r ′ (f‘ (underS r a)) = Field r ′

using Well ′ OF ′ by (auto simp add : wo-rel .ofilter-AboveS-Field)
hence NE : AboveS r ′ (f‘ (underS r a)) 6= {}
using subField NOT by blast

have INCL1 : f‘ (underS r a) ≤ underS r ′ (f a)
proof(auto)

fix b assume ∗: b ∈ underS r a
have f b 6= f a ∧ (f b, f a) ∈ r ′

using subField Well ′ SUC NE ∗
wo-rel .suc-greater [of r ′ f‘ (underS r a) f b] by auto

thus f b ∈ underS r ′ (f a)
unfolding rel .underS-def by simp

qed

have INCL2 : underS r ′ (f a) ≤ f‘ (underS r a)
proof

fix b ′ assume b ′ ∈ underS r ′ (f a)
hence b ′ 6= f a ∧ (b ′, f a) ∈ r ′

unfolding rel .underS-def by simp
thus b ′ ∈ f‘ (underS r a)
using Well ′ SUC NE OF ′

wo-rel .suc-ofilter-in[of r ′ f ‘ underS r a b ′] by auto
qed

have INJ : inj-on f (underS r a)
proof−

have ∀ b ∈ underS r a. inj-on f (under r b)
using IH by (auto simp add : bij-betw-def)
moreover
have ∀ b. ofilter r (under r b)
using Well by (auto simp add : wo-rel .under-ofilter)
ultimately show ?thesis
using WELL bFact UN

UNION-inj-on-ofilter [of r underS r a λb. under r b f]
by auto

qed

84

have BIJ : bij-betw f (underS r a) (underS r ′ (f a))
unfolding bij-betw-def
using INJ INCL1 INCL2 by auto

have f a ∈ Field r ′

using Well ′ subField NE SUC
by (auto simp add : wo-rel .suc-inField)
thus ?thesis
using WELL WELL ′ IN BIJ under-underS-bij-betw [of r r ′ a f] by auto

qed

lemma wellorders-totally-ordered-aux2 :
fixes r :: ′a rel and r ′:: ′a ′ rel and

f :: ′a ⇒ ′a ′ and g :: ′a ⇒ bool and a:: ′a
assumes WELL: Well-order r and WELL ′: Well-order r ′ and
MAIN1 :∧

a. (False /∈ g‘ (underS r a) ∧ f‘ (underS r a) 6= Field r ′

−→ f a = suc r ′ (f‘ (underS r a)) ∧ g a = True)
∧
(¬(False /∈ (g‘ (underS r a)) ∧ f‘ (underS r a) 6= Field r ′)
−→ g a = False) and

MAIN2 :
∧

a. a ∈ Field r ∧ False /∈ g‘ (under r a) −→
bij-betw f (under r a) (under r ′ (f a)) and

Case: a ∈ Field r ∧ False ∈ g‘ (under r a)
shows ∃ f ′. embed r ′ r f ′

proof−
have Well : wo-rel r using WELL unfolding wo-rel-def .
hence Refl : Refl r using wo-rel .REFL[of r] by auto
have Trans: trans r using Well wo-rel .TRANS [of r] by auto
have Antisym: antisym r using Well wo-rel .ANTISYM [of r] by auto
have Well ′: wo-rel r ′ using WELL ′ unfolding wo-rel-def .

have 0 : under r a = underS r a ∪ {a}
using Refl Case by(auto simp add : rel .Refl-under-underS)

have 1 : g a = False
proof−
{assume g a 6= False
with 0 Case have False ∈ g‘ (underS r a) by blast
with MAIN1 have g a = False by blast}

thus ?thesis by blast
qed
let ?A = {a ∈ Field r . g a = False}
let ?a = (minim r ?A)

have 2 : ?A 6= {} ∧ ?A ≤ Field r using Case 1 by blast

85

have 3 : False /∈ g‘ (underS r ?a)
proof

assume False ∈ g‘ (underS r ?a)
then obtain b where b ∈ underS r ?a and 31 : g b = False by auto
hence 32 : (b,?a) ∈ r ∧ b 6= ?a
by (auto simp add : rel .underS-def)
hence b ∈ Field r unfolding Field-def by auto
with 31 have b ∈ ?A by auto
hence (?a,b) ∈ r using wo-rel .minim-least 2 Well by fastforce

with 32 Antisym show False
by (auto simp add : antisym-def)

qed
have temp: ?a ∈ ?A
using Well 2 wo-rel .minim-in[of r ?A] by auto
hence 4 : ?a ∈ Field r by auto

have 5 : g ?a = False using temp by blast

have 6 : f‘ (underS r ?a) = Field r ′

using MAIN1 [of ?a] 3 5 by blast

have 7 : ∀ b ∈ underS r ?a. bij-betw f (under r b) (under r ′ (f b))
proof

fix b assume as: b ∈ underS r ?a
moreover
have ofilter r (underS r ?a)
using Well by (auto simp add : wo-rel .underS-ofilter)
ultimately
have False /∈ g‘ (under r b) using 3 Well by (auto simp add : wo-rel .ofilter-def)
moreover have b ∈ Field r
unfolding Field-def using as by (auto simp add : rel .underS-def)
ultimately
show bij-betw f (under r b) (under r ′ (f b))
using MAIN2 by auto

qed

have embed r ′ r (inv-into (underS r ?a) f)
using WELL WELL ′ 7 4 6 inv-into-underS-embed [of r ?a f r ′] by auto
thus ?thesis
unfolding embed-def by blast

qed

theorem wellorders-totally-ordered :
fixes r :: ′a rel and r ′:: ′a ′ rel
assumes WELL: Well-order r and WELL ′: Well-order r ′

shows (∃ f . embed r r ′ f) ∨ (∃ f ′. embed r ′ r f ′)
proof−

86

have Well : wo-rel r using WELL unfolding wo-rel-def .
hence Refl : Refl r using wo-rel .REFL[of r] by auto
have Trans: trans r using Well wo-rel .TRANS [of r] by auto
have Well ′: wo-rel r ′ using WELL ′ unfolding wo-rel-def .

obtain H where H-def : H =
(λh a. if False /∈ (snd o h)‘ (underS r a) ∧ (fst o h)‘ (underS r a) 6= Field r ′

then (suc r ′ ((fst o h)‘ (underS r a)), True)
else (undefined , False)) by blast

have Adm: adm-wo r H
using Well
proof(unfold wo-rel .adm-wo-def , clarify)

fix h1 :: ′a ⇒ ′a ′ ∗ bool and h2 :: ′a ⇒ ′a ′ ∗ bool and x
assume ∀ y∈underS r x . h1 y = h2 y
hence ∀ y∈underS r x . (fst o h1) y = (fst o h2) y ∧

(snd o h1) y = (snd o h2) y by auto
hence (fst o h1)‘ (underS r x) = (fst o h2)‘ (underS r x) ∧

(snd o h1)‘ (underS r x) = (snd o h2)‘ (underS r x)
by (auto simp add : image-def)
thus H h1 x = H h2 x by (simp add : H-def)

qed

obtain h:: ′a ⇒ ′a ′ ∗ bool and f :: ′a ⇒ ′a ′ and g :: ′a ⇒ bool
where h-def : h = worec r H and

f-def : f = fst o h and g-def : g = snd o h by blast
obtain test where test-def :
test = (λ a. False /∈ (g‘ (underS r a)) ∧ f‘ (underS r a) 6= Field r ′) by blast

have ∗:
∧

a. h a = H h a
using Adm Well wo-rel .worec-fixpoint [of r H] by (simp add : h-def)
have Main1 :∧

a. (test a −→ f a = suc r ′ (f‘ (underS r a)) ∧ g a = True) ∧
(¬(test a) −→ g a = False)

proof−
fix a show (test a −→ f a = suc r ′ (f‘ (underS r a)) ∧ g a = True) ∧

(¬(test a) −→ g a = False)
using ∗[of a] test-def f-def g-def H-def by auto

qed

let ?phi = λ a. a ∈ Field r ∧ False /∈ g‘ (under r a) −→
bij-betw f (under r a) (under r ′ (f a))

have Main2 :
∧

a. ?phi a
proof−

fix a show ?phi a
proof(rule wo-rel .well-order-induct [of r ?phi],

simp only : Well , clarify)
fix a
assume IH : ∀ b. b 6= a ∧ (b,a) ∈ r −→ ?phi b and

87

∗: a ∈ Field r and
∗∗: False /∈ g‘ (under r a)

have 1 : ∀ b ∈ underS r a. bij-betw f (under r b) (under r ′ (f b))
proof(clarify)

fix b assume ∗∗∗: b ∈ underS r a
hence 0 : (b,a) ∈ r ∧ b 6= a unfolding rel .underS-def by auto
moreover have b ∈ Field r
using ∗∗∗ rel .underS-Field [of r a] by auto
moreover have False /∈ g‘ (under r b)
using 0 ∗∗ Trans rel .under-incr [of r b a] by auto
ultimately show bij-betw f (under r b) (under r ′ (f b))
using IH by auto

qed

have 21 : False /∈ g‘ (underS r a)
using ∗∗ rel .underS-subset-under [of r a] by auto
have 22 : g‘ (under r a) ≤ {True} using ∗∗ by auto
moreover have 23 : a ∈ under r a
using Refl ∗ by (auto simp add : rel .Refl-under-in)
ultimately have 24 : g a = True by blast
have 2 : f‘ (underS r a) 6= Field r ′

proof
assume f‘ (underS r a) = Field r ′

hence g a = False using Main1 test-def by blast
with 24 show False using ∗∗ by blast

qed

have 3 : f a = suc r ′ (f‘ (underS r a))
using 21 2 Main1 test-def by blast

show bij-betw f (under r a) (under r ′ (f a))
using WELL WELL ′ 1 2 3 ∗

wellorders-totally-ordered-aux [of r r ′ a f] by auto
qed

qed

let ?chi = (λ a. a ∈ Field r ∧ False ∈ g‘ (under r a))
show ?thesis
proof(cases ∃ a. ?chi a)

assume ¬ (∃ a. ?chi a)
hence ∀ a ∈ Field r . bij-betw f (under r a) (under r ′ (f a))
using Main2 by blast
thus ?thesis unfolding embed-def by blast

next
assume ∃ a. ?chi a
then obtain a where ?chi a by blast
hence ∃ f ′. embed r ′ r f ′

using wellorders-totally-ordered-aux2 [of r r ′ g f a]
WELL WELL ′ Main1 Main2 test-def by blast

88

thus ?thesis by blast
qed

qed

corollary one-set-greater :
(∃ f :: ′a ⇒ ′a ′. f ‘ A ≤ A ′ ∧ inj-on f A) ∨ (∃ g :: ′a ′⇒ ′a. g ‘ A ′ ≤ A ∧ inj-on g A ′)
proof−

obtain r where well-order-on A r by (fastforce simp add : well-order-on)
hence 1 : A = Field r ∧ Well-order r
using rel .well-order-on-Well-order by auto
obtain r ′ where 2 : well-order-on A ′ r ′ by (fastforce simp add : well-order-on)
hence 2 : A ′ = Field r ′ ∧ Well-order r ′

using rel .well-order-on-Well-order by auto
hence (∃ f . embed r r ′ f) ∨ (∃ g . embed r ′ r g)
using 1 2 by (auto simp add : wellorders-totally-ordered)
moreover
{fix f assume embed r r ′ f
hence f‘A ≤ A ′ ∧ inj-on f A
using 1 2 by (auto simp add : embed-Field embed-inj-on)
}
moreover
{fix g assume embed r ′ r g
hence g‘A ′ ≤ A ∧ inj-on g A ′

using 1 2 by (auto simp add : embed-Field embed-inj-on)
}
ultimately show ?thesis by blast

qed

corollary one-type-greater :
(∃ f :: ′a ⇒ ′a ′. inj f) ∨ (∃ g :: ′a ′⇒ ′a. inj g)
using one-set-greater [of UNIV UNIV] by auto

6.4 Uniqueness of embeddings

Here we show a fact complementary to the one from the previous subsection
– namely, that between any two well-orders there is at most one embed-
ding, and is the one definable by the expected well-order recursive equation.
As a consequence, any two embeddings of opposite directions are mutually
inverse.

lemma embed-determined :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and

EMB : embed r r ′ f and IN : a ∈ Field r
shows f a = suc r ′ (f‘ (underS r a))
proof−

have bij-betw f (underS r a) (underS r ′ (f a))
using assms by (auto simp add : embed-underS)

89

hence f‘ (underS r a) = underS r ′ (f a)
by (auto simp add : bij-betw-def)
moreover
{have f a ∈ Field r ′ using IN
using EMB WELL embed-Field [of r r ′ f] by auto
hence f a = suc r ′ (underS r ′ (f a))
using WELL ′ by (auto simp add : wo-rel-def wo-rel .suc-underS)
}
ultimately show ?thesis by simp

qed

lemma embed-unique:
assumes WELL: Well-order r and WELL ′: Well-order r ′ and

EMBf : embed r r ′ f and EMBg : embed r r ′ g
shows a ∈ Field r −→ f a = g a
proof(rule wo-rel .well-order-induct [of r], auto simp add : WELL wo-rel-def)

fix a
assume IH : ∀ b. b 6= a ∧ (b,a): r −→ b ∈ Field r −→ f b = g b and

∗: a ∈ Field r
hence ∀ b ∈ underS r a. f b = g b
unfolding rel .underS-def by (auto simp add : Field-def)
hence f‘ (underS r a) = g‘ (underS r a) by force
thus f a = g a
using assms ∗ embed-determined [of r r ′ f a] embed-determined [of r r ′ g a] by

auto
qed

lemma embed-bothWays-inverse:
assumes WELL: Well-order r and WELL ′: Well-order r ′ and

EMB : embed r r ′ f and EMB ′: embed r ′ r f ′

shows (∀ a ∈ Field r . f ′(f a) = a) ∧ (∀ a ′ ∈ Field r ′. f (f ′ a ′) = a ′)
proof−

have embed r r (f ′ o f) using assms
by(auto simp add : comp-embed)
moreover have embed r r id using assms
by (auto simp add : id-embed)
ultimately have ∀ a ∈ Field r . f ′(f a) = a
using assms embed-unique[of r r f ′ o f id] id-def by auto
moreover
{have embed r ′ r ′ (f o f ′) using assms
by(auto simp add : comp-embed)
moreover have embed r ′ r ′ id using assms
by (auto simp add : id-embed)
ultimately have ∀ a ′ ∈ Field r ′. f (f ′ a ′) = a ′

using assms embed-unique[of r ′ r ′ f o f ′ id] id-def by auto
}
ultimately show ?thesis by blast

90

qed

6.5 More properties of embeddings, strict embeddings and
isomorphisms

lemma embed-bothWays-Field-bij-betw :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and

EMB : embed r r ′ f and EMB ′: embed r ′ r f ′

shows bij-betw f (Field r) (Field r ′)
proof−

have (∀ a ∈ Field r . f ′(f a) = a) ∧ (∀ a ′ ∈ Field r ′. f (f ′ a ′) = a ′)
using assms by (auto simp add : embed-bothWays-inverse)
moreover
have f‘ (Field r) ≤ Field r ′ ∧ f ′ ‘ (Field r ′) ≤ Field r
using assms by (auto simp add : embed-Field)
ultimately
show ?thesis using bij-betw-byWitness[of Field r f ′ f Field r ′] by auto

qed

lemma embedS-comp-embed :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and WELL ′′: Well-order
r ′′

and EMB : embedS r r ′ f and EMB ′: embed r ′ r ′′ f ′

shows embedS r r ′′ (f ′ o f)
proof−

let ?g = (f ′ o f) let ?h = inv-into (Field r) ?g
have 1 : embed r r ′ f ∧ ¬ (bij-betw f (Field r) (Field r ′))
using EMB by (auto simp add : embedS-def)
hence 2 : embed r r ′′ ?g
using WELL EMB ′ comp-embed [of r r ′ f r ′′ f ′] by auto
moreover
{assume bij-betw ?g (Field r) (Field r ′′)
hence embed r ′′ r ?h using 2 WELL
by (auto simp add : inv-into-Field-embed-bij-betw)
hence embed r ′ r (?h o f ′) using WELL ′ EMB ′

by (auto simp add : comp-embed)
hence bij-betw f (Field r) (Field r ′) using WELL WELL ′ 1
by (auto simp add : embed-bothWays-Field-bij-betw)
with 1 have False by blast
}
ultimately show ?thesis unfolding embedS-def by auto

qed

lemma embed-comp-embedS :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and WELL ′′: Well-order
r ′′

and EMB : embed r r ′ f and EMB ′: embedS r ′ r ′′ f ′

91

shows embedS r r ′′ (f ′ o f)
proof−

let ?g = (f ′ o f) let ?h = inv-into (Field r) ?g
have 1 : embed r ′ r ′′ f ′ ∧ ¬ (bij-betw f ′ (Field r ′) (Field r ′′))
using EMB ′ by (auto simp add : embedS-def)
hence 2 : embed r r ′′ ?g
using WELL EMB comp-embed [of r r ′ f r ′′ f ′] by auto
moreover
{assume bij-betw ?g (Field r) (Field r ′′)
hence embed r ′′ r ?h using 2 WELL
by (auto simp add : inv-into-Field-embed-bij-betw)
hence embed r ′′ r ′ (f o ?h) using WELL ′′ EMB
by (auto simp add : comp-embed)
hence bij-betw f ′ (Field r ′) (Field r ′′) using WELL ′ WELL ′′ 1
by (auto simp add : embed-bothWays-Field-bij-betw)
with 1 have False by blast
}
ultimately show ?thesis unfolding embedS-def by auto

qed

lemma comp-embedS :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and WELL ′′: Well-order
r ′′

and EMB : embedS r r ′ f and EMB ′: embedS r ′ r ′′ f ′

shows embedS r r ′′ (f ′ o f)
proof−

have embed r ′ r ′′ f ′ using EMB ′ unfolding embedS-def by simp
thus ?thesis using assms by (auto simp add : embedS-comp-embed)

qed

lemma embed-comp-iso:
assumes WELL: Well-order r and WELL ′: Well-order r ′ and WELL ′′: Well-order
r ′′

and EMB : embed r r ′ f and EMB ′: iso r ′ r ′′ f ′

shows embed r r ′′ (f ′ o f)
using assms unfolding iso-def
by (auto simp add : comp-embed)

lemma iso-comp-embed :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and WELL ′′: Well-order
r ′′

and EMB : iso r r ′ f and EMB ′: embed r ′ r ′′ f ′

shows embed r r ′′ (f ′ o f)
using assms unfolding iso-def
by (auto simp add : comp-embed)

92

lemma embedS-comp-iso:
assumes WELL: Well-order r and WELL ′: Well-order r ′ and WELL ′′: Well-order
r ′′

and EMB : embedS r r ′ f and EMB ′: iso r ′ r ′′ f ′

shows embedS r r ′′ (f ′ o f)
using assms unfolding iso-def
by (auto simp add : embedS-comp-embed)

lemma iso-comp-embedS :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and WELL ′′: Well-order
r ′′

and EMB : iso r r ′ f and EMB ′: embedS r ′ r ′′ f ′

shows embedS r r ′′ (f ′ o f)
using assms unfolding iso-def using embed-comp-embedS
by (auto simp add : embed-comp-embedS)

lemma embedS-Field :
assumes WELL: Well-order r and EMB : embedS r r ′ f
shows f ‘ (Field r) < Field r ′

proof−
have f‘ (Field r) ≤ Field r ′ using assms
by (auto simp add : embed-Field embedS-def)
moreover
{have inj-on f (Field r) using assms
by (auto simp add : embedS-def embed-inj-on)
hence f‘ (Field r) 6= Field r ′ using EMB
by (auto simp add : embedS-def bij-betw-def)
}
ultimately show ?thesis by blast

qed

lemma embedS-iff :
assumes WELL: Well-order r and ISO : embed r r ′ f
shows embedS r r ′ f = (f ‘ (Field r) < Field r ′)
proof

assume embedS r r ′ f
thus f ‘ Field r ⊂ Field r ′

using WELL by (auto simp add : embedS-Field)
next

assume f ‘ Field r ⊂ Field r ′

hence ¬ bij-betw f (Field r) (Field r ′)
unfolding bij-betw-def by blast
thus embedS r r ′ f unfolding embedS-def
using ISO by auto

qed

93

lemma iso-Field :
iso r r ′ f =⇒ f ‘ (Field r) = Field r ′

using assms by (auto simp add : iso-def bij-betw-def)

lemma iso-iff :
assumes Well-order r
shows iso r r ′ f = (embed r r ′ f ∧ f ‘ (Field r) = Field r ′)
proof

assume iso r r ′ f
thus embed r r ′ f ∧ f ‘ (Field r) = Field r ′

by (auto simp add : iso-Field iso-def)
next

assume ∗: embed r r ′ f ∧ f ‘ Field r = Field r ′

hence inj-on f (Field r) using assms by (auto simp add : embed-inj-on)
with ∗ have bij-betw f (Field r) (Field r ′)
unfolding bij-betw-def by simp
with ∗ show iso r r ′ f unfolding iso-def by auto

qed

lemma iso-iff2 :
assumes Well-order r
shows iso r r ′ f = (bij-betw f (Field r) (Field r ′) ∧

(∀ a ∈ Field r . ∀ b ∈ Field r .
(((a,b) ∈ r) = ((f a, f b) ∈ r ′))))

using assms
proof(auto simp add : iso-def)

fix a b
assume embed r r ′ f
hence compat r r ′ f using embed-compat [of r] by auto
moreover assume (a,b) ∈ r
ultimately show (f a, f b) ∈ r ′ using compat-def [of r] by auto

next
let ?f ′ = inv-into (Field r) f
assume embed r r ′ f and 1 : bij-betw f (Field r) (Field r ′)
hence embed r ′ r ?f ′ using assms
by (auto simp add : inv-into-Field-embed-bij-betw)
hence 2 : compat r ′ r ?f ′ using embed-compat [of r ′] by auto
fix a b assume ∗: a ∈ Field r b ∈ Field r and ∗∗: (f a,f b) ∈ r ′

hence ?f ′(f a) = a ∧ ?f ′(f b) = b using 1
by (auto simp add : bij-betw-inv-into-left)
thus (a,b) ∈ r using ∗∗ 2 compat-def [of r ′ r ?f ′] by fastforce

next
assume ∗: bij-betw f (Field r) (Field r ′) and

∗∗: ∀ a∈Field r . ∀ b∈Field r . ((a, b) ∈ r) = ((f a, f b) ∈ r ′)
have 1 :

∧
a. under r a ≤ Field r ∧ under r ′ (f a) ≤ Field r ′

94

by (auto simp add : rel .under-Field)
have 2 : inj-on f (Field r) using ∗ by (auto simp add : bij-betw-def)
{fix a assume ∗∗∗: a ∈ Field r
have bij-betw f (under r a) (under r ′ (f a))
proof(unfold bij-betw-def , auto)

show inj-on f (under r a)
using 1 2 by (auto simp add : subset-inj-on)

next
fix b assume b ∈ under r a
hence a ∈ Field r ∧ b ∈ Field r ∧ (b,a) ∈ r
unfolding rel .under-def by (auto simp add : Field-def Range-def Domain-def)
with 1 ∗∗ show f b ∈ under r ′ (f a)
unfolding rel .under-def by auto

next
fix b ′ assume b ′ ∈ under r ′ (f a)
hence 3 : (b ′,f a) ∈ r ′ unfolding rel .under-def by simp
hence b ′ ∈ Field r ′ unfolding Field-def by auto
with ∗ obtain b where b ∈ Field r ∧ f b = b ′

unfolding bij-betw-def by force
with 3 ∗∗ ∗∗∗
show b ′ ∈ f ‘ (under r a) unfolding rel .under-def by blast

qed
}
thus embed r r ′ f unfolding embed-def using ∗ by auto

qed

lemma iso-iff3 :
assumes WELL: Well-order r and WELL ′: Well-order r ′

shows iso r r ′ f = (bij-betw f (Field r) (Field r ′) ∧ compat r r ′ f)
proof

assume iso r r ′ f
thus bij-betw f (Field r) (Field r ′) ∧ compat r r ′ f
unfolding compat-def using WELL by (auto simp add : iso-iff2 Field-def)

next
have Well : wo-rel r ∧ wo-rel r ′ using WELL WELL ′

by (auto simp add : wo-rel-def)
assume ∗: bij-betw f (Field r) (Field r ′) ∧ compat r r ′ f
thus iso r r ′ f
unfolding compat-def using assms
proof(auto simp add : iso-iff2)

fix a b assume ∗∗: a ∈ Field r b ∈ Field r and
∗∗∗: (f a, f b) ∈ r ′

{assume (b,a) ∈ r ∨ b = a
hence (b,a): rusing Well ∗∗ wo-rel .REFL[of r] refl-on-def [of - r] by blast
hence (f b, f a) ∈ r ′ using ∗ unfolding compat-def by auto
hence f a = f b
using Well ∗∗∗ wo-rel .ANTISYM [of r ′] antisym-def [of r ′] by blast
hence a = b using ∗ ∗∗ unfolding bij-betw-def inj-on-def by auto

95

hence (a,b) ∈ r using Well ∗∗ wo-rel .REFL[of r] refl-on-def [of - r] by blast
}
thus (a,b) ∈ r
using Well ∗∗ wo-rel .TOTAL[of r] total-on-def [of - r] by blast

qed
qed

lemma embed-bothWays-bij-betw :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and

EMB : embed r r ′ f and EMB ′: embed r ′ r g
shows bij-betw f (Field r) (Field r ′)
proof−

let ?A = Field r let ?A ′ = Field r ′

have embed r r (g o f) ∧ embed r ′ r ′ (f o g)
using assms by (auto simp add : comp-embed)
hence 1 : (∀ a ∈ ?A. g(f a) = a) ∧ (∀ a ′ ∈ ?A ′. f (g a ′) = a ′)
using WELL id-embed [of r] embed-unique[of r r g o f id]

WELL ′ id-embed [of r ′] embed-unique[of r ′ r ′ f o g id]
id-def by auto

have 2 : (∀ a ∈ ?A. f a ∈ ?A ′) ∧ (∀ a ′ ∈ ?A ′. g a ′ ∈ ?A)
using assms embed-Field [of r r ′ f] embed-Field [of r ′ r g] by blast

show ?thesis
proof(unfold bij-betw-def inj-on-def , auto simp add : 2)

fix a b assume ∗: a ∈ ?A b ∈ ?A and ∗∗: f a = f b
have a = g(f a) ∧ b = g(f b) using ∗ 1 by auto
with ∗∗ show a = b by auto

next
fix a ′ assume ∗: a ′ ∈ ?A ′

hence g a ′ ∈ ?A ∧ f (g a ′) = a ′ using 1 2 by auto
thus a ′ ∈ f ‘ ?A by force

qed
qed

lemma embed-bothWays-iso:
assumes WELL: Well-order r and WELL ′: Well-order r ′ and

EMB : embed r r ′ f and EMB ′: embed r ′ r g
shows iso r r ′ f
unfolding iso-def using assms by (auto simp add : embed-bothWays-bij-betw)

lemma iso-iff4 :
assumes WELL: Well-order r and WELL ′: Well-order r ′

shows iso r r ′ f = (embed r r ′ f ∧ embed r ′ r (inv-into (Field r) f))
using assms embed-bothWays-iso
by(unfold iso-def , auto simp add : inv-into-Field-embed-bij-betw)

96

lemma embed-embedS-iso:
embed r r ′ f = (embedS r r ′ f ∨ iso r r ′ f)
unfolding embedS-def iso-def by blast

lemma not-embedS-iso:
¬ (embedS r r ′ f ∧ iso r r ′ f)
unfolding embedS-def iso-def by blast

lemma embed-embedS-iff-not-iso:
assumes embed r r ′ f
shows embedS r r ′ f = (¬ iso r r ′ f)
using assms unfolding embedS-def iso-def by blast

lemma iso-inv-into:
assumes WELL: Well-order r and ISO : iso r r ′ f
shows iso r ′ r (inv-into (Field r) f)
using assms unfolding iso-def
using bij-betw-inv-into inv-into-Field-embed-bij-betw by blast

lemma embedS-or-iso:
assumes WELL: Well-order r and WELL ′: Well-order r ′

shows (∃ g . embedS r r ′ g) ∨ (∃ h. embedS r ′ r h) ∨ (∃ f . iso r r ′ f)
proof−
{fix f assume ∗: embed r r ′ f
{assume bij-betw f (Field r) (Field r ′)
hence ?thesis using ∗ by (auto simp add : iso-def)
}
moreover
{assume ¬ bij-betw f (Field r) (Field r ′)
hence ?thesis using ∗ by (auto simp add : embedS-def)
}
ultimately have ?thesis by auto
}
moreover
{fix f assume ∗: embed r ′ r f
{assume bij-betw f (Field r ′) (Field r)
hence iso r ′ r f using ∗ by (auto simp add : iso-def)
hence iso r r ′ (inv-into (Field r ′) f)
using WELL ′ by (auto simp add : iso-inv-into)
hence ?thesis by blast
}
moreover
{assume ¬ bij-betw f (Field r ′) (Field r)
hence ?thesis using ∗ by (auto simp add : embedS-def)

97

}
ultimately have ?thesis by auto
}
ultimately show ?thesis using WELL WELL ′

wellorders-totally-ordered [of r r ′] by blast
qed

end

7 Constructions on wellorders

theory Constructions-on-Wellorders imports Wellorder-Embedding
begin

In this section, we study basic constructions on well-orders, such as restric-
tion to a set/order filter, copy via direct images, ordinal-like sum of disjoint
well-orders, and bounded square. We also define between well-orders the
relations ordLeq, of being embedded (abbreviated ≤o), ordLess, of being
strictly embedded (abbreviated <o), and ordIso, of being isomorphic (ab-
breviated =o). We study the connections between these relations, order
filters, and the aforementioned constructions. A main result of this section
is that <o is well-founded.

7.1 Restriction to a set

abbreviation Restr :: ′a rel ⇒ ′a set ⇒ ′a rel
where Restr r A ≡ r Int (A × A)

lemma Restr-incr2 :
r <= r ′ =⇒ Restr r A <= Restr r ′ A
by blast

lemma Restr-incr :
[[r ≤ r ′; A ≤ A ′]] =⇒ Restr r A ≤ Restr r ′ A ′

by blast

lemma Restr-Int :
Restr (Restr r A) B = Restr r (A Int B)
by blast

98

lemma Restr-subset :
A ≤ B =⇒ Restr (Restr r B) A = Restr r A
by blast

lemma Restr-iff : (a,b) : Restr r A = (a : A ∧ b : A ∧ (a,b) : r)
by (auto simp add : Field-def)

lemma Restr-subset1 : Restr r A ≤ r
by auto

lemma Restr-subset2 : Restr r A ≤ A × A
by auto

lemma Restr-Field : Restr r (Field r) = r
unfolding Field-def by auto

lemma Refl-Restr : Refl r =⇒ Refl(Restr r A)
unfolding refl-on-def Field-def by auto

lemma antisym-Restr :
antisym r =⇒ antisym(Restr r A)
unfolding antisym-def Field-def by auto

lemma Total-Restr :
Total r =⇒ Total(Restr r A)
unfolding total-on-def Field-def by auto

lemma trans-Restr :
trans r =⇒ trans(Restr r A)
unfolding trans-def Field-def by blast

lemma Preorder-Restr :
Preorder r =⇒ Preorder(Restr r A)
unfolding preorder-on-def by(auto simp add : Refl-Restr trans-Restr)

lemma Partial-order-Restr :
Partial-order r =⇒ Partial-order(Restr r A)
unfolding partial-order-on-def by (auto simp add : Preorder-Restr antisym-Restr)

99

lemma Linear-order-Restr :
Linear-order r =⇒ Linear-order(Restr r A)
unfolding linear-order-on-def by (auto simp add : Partial-order-Restr Total-Restr)

lemma wf-Restr :
wf r =⇒ wf (Restr r A)
using wf-subset Restr-subset by blast

lemma Well-order-Restr :
assumes Well-order r
shows Well-order(Restr r A)
proof−

have Restr r A − Id ≤ r − Id using Restr-subset by blast
hence wf (Restr r A − Id) using assms
using well-order-on-def wf-subset by blast
thus ?thesis using assms unfolding well-order-on-def
by (auto simp add : Linear-order-Restr)

qed

lemma Field-Restr-subset : Field(Restr r A) ≤ A
by(auto simp add : Field-def)

lemma Refl-Field-Restr :
Refl r =⇒ Field(Restr r A) = (Field r) Int A
by(auto simp add : refl-on-def Field-def)

lemma Refl-Field-Restr2 :
[[Refl r ; A ≤ Field r]] =⇒ Field(Restr r A) = A
by (auto simp add : Refl-Field-Restr)

lemma well-order-on-Restr :
assumes WELL: Well-order r and SUB : A ≤ Field r
shows well-order-on A (Restr r A)
using assms
using Well-order-Restr [of r A] Refl-Field-Restr2 [of r A]

order-on-defs[of Field r r] by auto

lemma Restr-incr1 :
A ≤ B =⇒ Restr r A ≤ Restr r B
by blast

100

7.2 Order filters versus restrictions and embeddings

lemma Field-Restr-ofilter :
[[Well-order r ; ofilter r A]] =⇒ Field(Restr r A) = A
by (auto simp add : wo-rel-def wo-rel .ofilter-def wo-rel .REFL Refl-Field-Restr2)

lemma ofilter-Restr-under :
assumes WELL: Well-order r and OF : ofilter r A and IN : a ∈ A
shows under (Restr r A) a = under r a
using assms wo-rel-def
proof(auto simp add : wo-rel .ofilter-def rel .under-def)

fix b assume ∗: a ∈ A and (b,a) ∈ r
hence b ∈ under r a ∧ a ∈ Field r
unfolding rel .under-def using Field-def by fastforce
thus b ∈ A using ∗ assms by (auto simp add : wo-rel-def wo-rel .ofilter-def)

qed

lemma ofilter-Restr :
assumes WELL: Well-order r and

OFA: ofilter r A and OFB : ofilter r B and SUB : A ≤ B
shows ofilter (Restr r B) A
proof−

let ?rB = Restr r B
have Well : wo-rel r unfolding wo-rel-def using WELL .
hence Refl : Refl r by (auto simp add : wo-rel .REFL)
hence Field : Field ?rB = Field r Int B
using Refl-Field-Restr by blast
have WellB : wo-rel ?rB ∧ Well-order ?rB using WELL
by (auto simp add : Well-order-Restr wo-rel-def)

show ?thesis
proof(auto simp add : WellB wo-rel .ofilter-def)

fix a assume a ∈ A
hence a ∈ Field r ∧ a ∈ B using assms Well
by (auto simp add : wo-rel .ofilter-def)
with Field show a ∈ Field(Restr r B) by auto

next
fix a b assume ∗: a ∈ A and b ∈ under (Restr r B) a
hence b ∈ under r a
using WELL OFB SUB ofilter-Restr-under [of r B a] by auto
thus b ∈ A using ∗ Well OFA by(auto simp add : wo-rel .ofilter-def)

qed
qed

lemma ofilter-embed :
assumes Well-order r
shows ofilter r A = (A ≤ Field r ∧ embed (Restr r A) r id)

101

proof
assume ∗: ofilter r A
show A ≤ Field r ∧ embed (Restr r A) r id
proof(unfold embed-def , auto)

fix a assume a ∈ A thus a ∈ Field r using assms ∗
by (auto simp add : wo-rel-def wo-rel .ofilter-def)

next
fix a assume a ∈ Field (Restr r A)
thus bij-betw id (under (Restr r A) a) (under r a) using assms ∗
by (auto simp add : ofilter-Restr-under Field-Restr-ofilter)

qed
next

assume ∗: A ≤ Field r ∧ embed (Restr r A) r id
hence Field(Restr r A) ≤ Field r
using assms embed-Field [of Restr r A r id] id-def

Well-order-Restr [of r] by auto
{fix a assume a ∈ A
hence a ∈ Field(Restr r A) using ∗ assms
by (auto simp add : order-on-defs Refl-Field-Restr2)
hence bij-betw id (under (Restr r A) a) (under r a)
using ∗ unfolding embed-def by auto
hence under r a ≤ under (Restr r A) a
unfolding bij-betw-def by auto
also have . . . ≤ Field(Restr r A)
by (auto simp add : rel .under-Field)
also have . . . ≤ A by (auto simp add : Field-Restr-subset)
finally have under r a ≤ A .
}
thus ofilter r A using assms ∗
by(auto simp add : wo-rel-def wo-rel .ofilter-def)

qed

lemma ofilter-Restr-Int :
assumes WELL: Well-order r and OFA: ofilter r A
shows ofilter (Restr r B) (A Int B)
proof−

let ?rB = Restr r B
have Well : wo-rel r unfolding wo-rel-def using WELL .
hence Refl : Refl r by (auto simp add : wo-rel .REFL)
hence Field : Field ?rB = Field r Int B
using Refl-Field-Restr by blast
have WellB : wo-rel ?rB ∧ Well-order ?rB using WELL
by (auto simp add : Well-order-Restr wo-rel-def)

show ?thesis using WellB assms
proof(auto simp add : wo-rel .ofilter-def rel .under-def)

fix a assume a ∈ A and ∗: a ∈ B
hence a ∈ Field r using OFA Well by (auto simp add : wo-rel .ofilter-def)

102

with ∗ show a ∈ Field ?rB using Field by auto
next

fix a b assume a ∈ A and (b,a) ∈ r
thus b ∈ A using Well OFA by (auto simp add : wo-rel .ofilter-def rel .under-def)

qed
qed

lemma ofilter-Restr-subset :
assumes WELL: Well-order r and OFA: ofilter r A and SUB : A ≤ B
shows ofilter (Restr r B) A
proof−

have A Int B = A using SUB by blast
thus ?thesis using assms ofilter-Restr-Int [of r A B] by auto

qed

lemma ofilter-subset-embed :
assumes WELL: Well-order r and

OFA: ofilter r A and OFB : ofilter r B
shows (A ≤ B) = (embed (Restr r A) (Restr r B) id)
proof−

let ?rA = Restr r A let ?rB = Restr r B
have Well : wo-rel r unfolding wo-rel-def using WELL .
hence Refl : Refl r by (auto simp add : wo-rel .REFL)
hence FieldA: Field ?rA = Field r Int A
using Refl-Field-Restr by blast
have FieldB : Field ?rB = Field r Int B
using Refl Refl-Field-Restr by blast
have WellA: wo-rel ?rA ∧ Well-order ?rA using WELL
by (auto simp add : Well-order-Restr wo-rel-def)
have WellB : wo-rel ?rB ∧ Well-order ?rB using WELL
by (auto simp add : Well-order-Restr wo-rel-def)

show ?thesis
proof

assume ∗: A ≤ B
hence ofilter (Restr r B) A using assms
by (auto simp add : ofilter-Restr-subset)
hence embed (Restr ?rB A) (Restr r B) id
using WellB ofilter-embed [of ?rB A] by auto
thus embed (Restr r A) (Restr r B) id
using ∗ by (auto simp add : Restr-subset)

next
assume ∗: embed (Restr r A) (Restr r B) id
{fix a assume ∗∗: a ∈ A
hence a ∈ Field r using Well OFA by (auto simp add : wo-rel .ofilter-def)
with ∗∗ FieldA have a ∈ Field ?rA by auto
hence a ∈ Field ?rB using ∗ WellA embed-Field [of ?rA ?rB id] by auto

103

hence a ∈ B using FieldB by auto
}
thus A ≤ B by blast

qed
qed

lemma ofilter-subset-embedS-iso:
assumes WELL: Well-order r and

OFA: ofilter r A and OFB : ofilter r B
shows ((A < B) = (embedS (Restr r A) (Restr r B) id)) ∧

((A = B) = (iso (Restr r A) (Restr r B) id))
proof−

let ?rA = Restr r A let ?rB = Restr r B
have Well : wo-rel r unfolding wo-rel-def using WELL .
hence Refl : Refl r by (auto simp add : wo-rel .REFL)
hence Field ?rA = Field r Int A
using Refl-Field-Restr by blast
hence FieldA: Field ?rA = A using OFA Well
by (auto simp add : wo-rel .ofilter-def)
have Field ?rB = Field r Int B
using Refl Refl-Field-Restr by blast
hence FieldB : Field ?rB = B using OFB Well
by (auto simp add : wo-rel .ofilter-def)

show ?thesis unfolding embedS-def iso-def
using assms ofilter-subset-embed [of r A B]

FieldA FieldB bij-betw-id-iff [of A B] by auto
qed

lemma ofilter-subset-embedS :
assumes WELL: Well-order r and

OFA: ofilter r A and OFB : ofilter r B
shows (A < B) = embedS (Restr r A) (Restr r B) id
using assms
by (auto simp add : ofilter-subset-embedS-iso)

lemma ofilter-subset-iso:
assumes WELL: Well-order r and

OFA: ofilter r A and OFB : ofilter r B
shows (A = B) = iso (Restr r A) (Restr r B) id
using assms
by (auto simp add : ofilter-subset-embedS-iso)

lemma embed-implies-iso-Restr :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and

104

EMB : embed r ′ r f
shows iso r ′ (Restr r (f ‘ (Field r ′))) f
proof−

let ?A ′ = Field r ′

let ?r ′′ = Restr r (f ‘ ?A ′)
have 0 : Well-order ?r ′′ using WELL Well-order-Restr by blast
have 1 : ofilter r (f ‘ ?A ′) using assms embed-Field-ofilter by blast
hence Field ?r ′′ = f ‘ (Field r ′) using WELL Field-Restr-ofilter by blast
hence bij-betw f ?A ′ (Field ?r ′′)
using EMB embed-inj-on WELL ′ unfolding bij-betw-def by blast
moreover
{have ∀ a b. (a,b) ∈ r ′ −→ a ∈ Field r ′ ∧ b ∈ Field r ′

unfolding Field-def by auto
hence compat r ′ ?r ′′ f
using assms embed-iff-compat-inj-on-ofilter
unfolding compat-def by blast
}
ultimately show ?thesis using WELL ′ 0 iso-iff3 by blast

qed

7.3 The strict inclusion on proper ofilters is well-founded

definition ofilterIncl :: ′a rel ⇒ ′a set rel
where
ofilterIncl r ≡ {(A,B). ofilter r A ∧ A 6= Field r ∧

ofilter r B ∧ B 6= Field r ∧ A < B}

lemma wf-ofilterIncl :
assumes WELL: Well-order r
shows wf (ofilterIncl r)
proof−

have Well : wo-rel r using WELL by (auto simp add : wo-rel-def)
hence Lo: Linear-order r
by (auto simp add : wo-rel .LIN)
let ?h = (λ A. suc r A)
let ?rS = r − Id
have wf ?rS using WELL by (auto simp add : order-on-defs)
moreover
have compat (ofilterIncl r) ?rS ?h
proof(unfold compat-def ofilterIncl-def ,

intro allI impI , simp, elim conjE)
fix A B
assume ∗: ofilter r A A 6= Field r and

∗∗: ofilter r B B 6= Field r and ∗∗∗: A < B
then obtain a and b where 0 : a ∈ Field r ∧ b ∈ Field r and

1 : A = underS r a ∧ B = underS r b
using Well by (auto simp add : wo-rel .ofilter-underS-Field)
hence a 6= b using ∗∗∗ by auto

105

moreover
have (a,b) ∈ r using 0 1 Lo ∗∗∗
by (auto simp add : rel .underS-incl-iff)
moreover
have a = suc r A ∧ b = suc r B
using Well 0 1 by (auto simp add : wo-rel .suc-underS)
ultimately
show (suc r A, suc r B) ∈ r ∧ suc r A 6= suc r B by simp

qed
ultimately show wf (ofilterIncl r) by (auto simp add : compat-wf)

qed

7.4 Ordering the well-orders by existence of embeddings

We define three relations between well-orders:

• ordLeq, of being embedded (abbreviated ≤o);

• ordLess, of being strictly embedded (abbreviated <o);

• ordIso, of being isomorphic (abbreviated =o).

The prefix ”ord” and the index ”o” in these names stand for ”ordinal-like”.
These relations shall be proved to be inter-connected in a similar fashion as
the trio ≤, <, = associated to a total order on a set.

definition ordLeq :: (′a rel ∗ ′a ′ rel) set
where
ordLeq = {(r ,r ′). Well-order r ∧ Well-order r ′ ∧ (∃ f . embed r r ′ f)}

abbreviation ordLeq2 :: ′a rel ⇒ ′a ′ rel ⇒ bool (infix <=o 50)
where r <=o r ′ ≡ (r ,r ′) ∈ ordLeq

abbreviation ordLeq3 :: ′a rel ⇒ ′a ′ rel ⇒ bool (infix ≤o 50)
where r ≤o r ′ ≡ r <=o r ′

definition ordLess :: (′a rel ∗ ′a ′ rel) set
where
ordLess = {(r ,r ′). Well-order r ∧ Well-order r ′ ∧ (∃ f . embedS r r ′ f)}

abbreviation ordLess2 :: ′a rel ⇒ ′a ′ rel ⇒ bool (infix <o 50)
where r <o r ′ ≡ (r ,r ′) ∈ ordLess

definition ordIso :: (′a rel ∗ ′a ′ rel) set
where
ordIso = {(r ,r ′). Well-order r ∧ Well-order r ′ ∧ (∃ f . iso r r ′ f)}

106

abbreviation ordIso2 :: ′a rel ⇒ ′a ′ rel ⇒ bool (infix =o 50)
where r =o r ′ ≡ (r ,r ′) ∈ ordIso

lemmas ordRels-def = ordLeq-def ordLess-def ordIso-def

lemma ordLeq-Well-order-simp[simp]:
assumes r ≤o r ′

shows Well-order r ∧ Well-order r ′

using assms unfolding ordLeq-def by simp

lemma ordLess-Well-order-simp[simp]:
assumes r <o r ′

shows Well-order r ∧ Well-order r ′

using assms unfolding ordLess-def by simp

lemma ordIso-Well-order-simp[simp]:
assumes r =o r ′

shows Well-order r ∧ Well-order r ′

using assms unfolding ordIso-def by simp

Notice that the relations ≤o, <o, =o connect well-orders on potentially
distinct types. However, some of the lemmas below, including the next one,
restrict implicitly the type of these relations to ((′a rel) ∗ (′a rel)) set , i.e.,
to ′a rel rel.

lemma ordLeq-reflexive:
Well-order r =⇒ r ≤o r
unfolding ordLeq-def using id-embed [of r] by blast

corollary ordLeq-refl-on: refl-on {r . Well-order r} ordLeq
using ordLeq-reflexive unfolding ordLeq-def refl-on-def
by blast

lemma ordLeq-transitive[trans]:
assumes ∗: r ≤o r ′ and ∗∗: r ′ ≤o r ′′

shows r ≤o r ′′

proof−
obtain f and f ′

where 1 : Well-order r ∧ Well-order r ′ ∧ Well-order r ′′ and
embed r r ′ f and embed r ′ r ′′ f ′

using ∗ ∗∗ unfolding ordLeq-def by blast
hence embed r r ′′ (f ′ o f)
using comp-embed [of r r ′ f r ′′ f ′] by auto
thus r ≤o r ′′ unfolding ordLeq-def using 1 by auto

107

qed

corollary ordLeq-trans: trans ordLeq
using trans-def [of ordLeq] ordLeq-transitive by blast

corollary ordLeq-preorder-on: preorder-on {r . Well-order r} ordLeq
by(auto simp add : preorder-on-def ordLeq-refl-on ordLeq-trans)

lemma ordLeq-total :
[[Well-order r ; Well-order r ′]] =⇒ r ≤o r ′ ∨ r ′ ≤o r
unfolding ordLeq-def using wellorders-totally-ordered by blast

lemma ordIso-reflexive:
Well-order r =⇒ r =o r
unfolding ordIso-def using id-iso[of r] by blast

corollary ordIso-refl-on: refl-on {r . Well-order r} ordIso
using ordIso-reflexive unfolding refl-on-def ordIso-def
by blast

lemma ordIso-transitive[trans]:
assumes ∗: r =o r ′ and ∗∗: r ′ =o r ′′

shows r =o r ′′

proof−
obtain f and f ′

where 1 : Well-order r ∧ Well-order r ′ ∧ Well-order r ′′ and
iso r r ′ f and 3 : iso r ′ r ′′ f ′

using ∗ ∗∗ unfolding ordIso-def by auto
hence iso r r ′′ (f ′ o f)
using comp-iso[of r r ′ f r ′′ f ′] by auto
thus r =o r ′′ unfolding ordIso-def using 1 by auto

qed

corollary ordIso-trans: trans ordIso
using trans-def [of ordIso] ordIso-transitive by blast

lemma ordIso-symmetric:
assumes ∗: r =o r ′

shows r ′ =o r
proof−

obtain f where 1 : Well-order r ∧ Well-order r ′ and

108

2 : embed r r ′ f ∧ bij-betw f (Field r) (Field r ′)
using ∗ unfolding ordIso-def by (auto simp add : iso-def)
let ?f ′ = inv-into (Field r) f
have embed r ′ r ?f ′ ∧ bij-betw ?f ′ (Field r ′) (Field r)
using 1 2 by (auto simp add : bij-betw-inv-into inv-into-Field-embed-bij-betw)
thus r ′ =o r unfolding ordIso-def using 1 by (auto simp add : iso-def)

qed

corollary ordIso-sym: sym ordIso
by (auto simp add : sym-def ordIso-symmetric)

corollary ordIso-equiv : equiv {r . Well-order r} ordIso
by (auto simp add : equiv-def ordIso-sym ordIso-refl-on ordIso-trans)

lemma ordLeq-ordLess-trans[trans]:
assumes r ≤o r ′ and r ′ <o r ′′

shows r <o r ′′

proof−
have Well-order r ∧ Well-order r ′′

using assms unfolding ordLeq-def ordLess-def by auto
thus ?thesis using assms unfolding ordLeq-def ordLess-def
using embed-comp-embedS by blast

qed

lemma ordLess-ordLeq-trans[trans]:
assumes r <o r ′ and r ′ ≤o r ′′

shows r <o r ′′

proof−
have Well-order r ∧ Well-order r ′′

using assms unfolding ordLeq-def ordLess-def by auto
thus ?thesis using assms unfolding ordLeq-def ordLess-def
using embedS-comp-embed by blast

qed

lemma ordLeq-ordIso-trans[trans]:
assumes r ≤o r ′ and r ′ =o r ′′

shows r ≤o r ′′

proof−
have Well-order r ∧ Well-order r ′′

using assms unfolding ordLeq-def ordIso-def by auto
thus ?thesis using assms unfolding ordLeq-def ordIso-def
using embed-comp-iso by blast

qed

109

lemma ordIso-ordLeq-trans[trans]:
assumes r =o r ′ and r ′ ≤o r ′′

shows r ≤o r ′′

proof−
have Well-order r ∧ Well-order r ′′

using assms unfolding ordLeq-def ordIso-def by auto
thus ?thesis using assms unfolding ordLeq-def ordIso-def
using iso-comp-embed by blast

qed

lemma ordLess-ordIso-trans[trans]:
assumes r <o r ′ and r ′ =o r ′′

shows r <o r ′′

proof−
have Well-order r ∧ Well-order r ′′

using assms unfolding ordLess-def ordIso-def by auto
thus ?thesis using assms unfolding ordLess-def ordIso-def
using embedS-comp-iso by blast

qed

lemma ordIso-ordLess-trans[trans]:
assumes r =o r ′ and r ′ <o r ′′

shows r <o r ′′

proof−
have Well-order r ∧ Well-order r ′′

using assms unfolding ordLess-def ordIso-def by auto
thus ?thesis using assms unfolding ordLess-def ordIso-def
using iso-comp-embedS by blast

qed

lemma ordLess-not-embed :
assumes r <o r ′

shows ¬(∃ f ′. embed r ′ r f ′)
proof−

obtain f where 1 : Well-order r ∧ Well-order r ′ and 2 : embed r r ′ f and
3 : ¬ bij-betw f (Field r) (Field r ′)

using assms unfolding ordLess-def by(auto simp add : embedS-def)
{fix f ′ assume ∗: embed r ′ r f ′

hence bij-betw f (Field r) (Field r ′) using 1 2
by (auto simp add : embed-bothWays-Field-bij-betw)
with 3 have False by contradiction
}
thus ?thesis by blast

qed

110

lemma ordLess-Field :
assumes OL: r1 <o r2 and EMB : embed r1 r2 f
shows ¬ (f‘ (Field r1) = Field r2)
proof−

let ?A1 = Field r1 let ?A2 = Field r2
obtain g where
0 : Well-order r1 ∧ Well-order r2 and
1 : embed r1 r2 g ∧ ¬(bij-betw g ?A1 ?A2)
using OL unfolding ordLess-def by (auto simp add : embedS-def)
hence ∀ a ∈ ?A1 . f a = g a
using 0 EMB embed-unique[of r1] by auto
hence ¬(bij-betw f ?A1 ?A2)
using 1 bij-betw-cong [of ?A1] by blast
moreover
have inj-on f ?A1 using EMB 0
by (auto simp add : embed-inj-on)
ultimately show ?thesis
by (auto simp add : bij-betw-def)

qed

lemma ordLess-iff :
r <o r ′ = (Well-order r ∧ Well-order r ′ ∧ ¬(∃ f ′. embed r ′ r f ′))
proof

assume ∗: r <o r ′

hence ¬(∃ f ′. embed r ′ r f ′) using ordLess-not-embed [of r r ′] by simp
with ∗ show Well-order r ∧ Well-order r ′ ∧ ¬ (∃ f ′. embed r ′ r f ′)
unfolding ordLess-def by auto

next
assume ∗: Well-order r ∧ Well-order r ′ ∧ ¬ (∃ f ′. embed r ′ r f ′)
then obtain f where 1 : embed r r ′ f
using wellorders-totally-ordered [of r r ′] by blast
moreover
{assume bij-betw f (Field r) (Field r ′)
with ∗ 1 have embed r ′ r (inv-into (Field r) f)
using inv-into-Field-embed-bij-betw [of r r ′ f] by auto
with ∗ have False by blast
}
ultimately show (r ,r ′) ∈ ordLess
unfolding ordLess-def using ∗ by (fastforce simp add : embedS-def)

qed

lemma ordLess-irreflexive: ¬ r <o r
proof

assume r <o r
hence Well-order r ∧ ¬(∃ f . embed r r f)
unfolding ordLess-iff ..

111

moreover have embed r r id using id-embed [of r] .
ultimately show False by blast

qed

lemma ordLess-irrefl : irrefl ordLess
by(unfold irrefl-def , auto simp add : ordLess-irreflexive)

lemma ordLess-or-ordIso:
assumes WELL: Well-order r and WELL ′: Well-order r ′

shows r <o r ′ ∨ r ′ <o r ∨ r =o r ′

unfolding ordLess-def ordIso-def
using assms embedS-or-iso[of r r ′] by auto

lemma ordLeq-iff-ordLess-or-ordIso:
r ≤o r ′ = (r <o r ′ ∨ r =o r ′)
unfolding ordRels-def embedS-defs iso-defs by blast

corollary ordLeq-ordLess-Un-ordIso:
ordLeq = ordLess ∪ ordIso
by (auto simp add : ordLeq-iff-ordLess-or-ordIso)

lemma ordIso-iff-ordLeq :
(r =o r ′) = (r ≤o r ′ ∧ r ′ ≤o r)
proof

assume r =o r ′

then obtain f where 1 : Well-order r ∧ Well-order r ′ ∧
embed r r ′ f ∧ bij-betw f (Field r) (Field r ′)

unfolding ordIso-def iso-defs by auto
hence embed r r ′ f ∧ embed r ′ r (inv-into (Field r) f)
by (auto simp add : inv-into-Field-embed-bij-betw)
thus r ≤o r ′ ∧ r ′ ≤o r
unfolding ordLeq-def using 1 by auto

next
assume r ≤o r ′ ∧ r ′ ≤o r
then obtain f and g where 1 : Well-order r ∧ Well-order r ′ ∧

embed r r ′ f ∧ embed r ′ r g
unfolding ordLeq-def by auto
hence iso r r ′ f by (auto simp add : embed-bothWays-iso)
thus r =o r ′ unfolding ordIso-def using 1 by auto

qed

lemma not-ordLess-ordLeq :
r <o r ′ =⇒ ¬ r ′ ≤o r

112

using ordLess-ordLeq-trans ordLess-irreflexive by blast

lemma not-ordLeq-ordLess:
r ≤o r ′ =⇒ ¬ r ′ <o r
using not-ordLess-ordLeq by blast

lemma ordLess-or-ordLeq :
assumes WELL: Well-order r and WELL ′: Well-order r ′

shows r <o r ′ ∨ r ′ ≤o r
proof−

have r ≤o r ′ ∨ r ′ ≤o r
using assms by (auto simp add : ordLeq-total)
moreover
{assume ¬ r <o r ′ ∧ r ≤o r ′

hence r =o r ′ using ordLeq-iff-ordLess-or-ordIso by blast
hence r ′ ≤o r using ordIso-symmetric ordIso-iff-ordLeq by blast
}
ultimately show ?thesis by blast

qed

lemma ordIso-or-ordLess:
assumes WELL: Well-order r and WELL ′: Well-order r ′

shows r =o r ′ ∨ r <o r ′ ∨ r ′ <o r
using assms ordLess-or-ordLeq ordLeq-iff-ordLess-or-ordIso by blast

lemma not-ordLess-ordIso:
r <o r ′ =⇒ ¬ r =o r ′

using assms ordLess-ordIso-trans ordIso-symmetric ordLess-irreflexive by blast

lemma not-ordLeq-iff-ordLess[simp]:
assumes WELL: Well-order r and WELL ′: Well-order r ′

shows (¬ r ′ ≤o r) = (r <o r ′)
using assms not-ordLess-ordLeq ordLess-or-ordLeq by blast

lemma not-ordLess-iff-ordLeq [simp]:
assumes WELL: Well-order r and WELL ′: Well-order r ′

shows (¬ r ′ <o r) = (r ≤o r ′)
using assms not-ordLess-ordLeq ordLess-or-ordLeq by blast

lemma ordLess-transitive[trans]:
[[r <o r ′; r ′ <o r ′′]] =⇒ r <o r ′′

using assms ordLess-ordLeq-trans ordLeq-iff-ordLess-or-ordIso by blast

113

corollary ordLess-trans: trans ordLess
unfolding trans-def using ordLess-transitive by blast

lemmas ordIso-equivalence = ordIso-transitive ordIso-reflexive ordIso-symmetric

lemmas ord-trans = ordIso-transitive ordLeq-transitive ordLess-transitive
ordIso-ordLeq-trans ordLeq-ordIso-trans
ordIso-ordLess-trans ordLess-ordIso-trans
ordLess-ordLeq-trans ordLeq-ordLess-trans

lemma ordIso-imp-ordLeq :
r =o r ′ =⇒ r ≤o r ′

using ordIso-iff-ordLeq by blast

lemma ordLess-imp-ordLeq :
r <o r ′ =⇒ r ≤o r ′

using ordLeq-iff-ordLess-or-ordIso by blast

lemma ofilter-subset-ordLeq :
assumes WELL: Well-order r and

OFA: ofilter r A and OFB : ofilter r B
shows (A ≤ B) = (Restr r A ≤o Restr r B)
proof

assume A ≤ B
thus Restr r A ≤o Restr r B
unfolding ordLeq-def using assms
Well-order-Restr Well-order-Restr ofilter-subset-embed by blast

next
assume ∗: Restr r A ≤o Restr r B
then obtain f where embed (Restr r A) (Restr r B) f
unfolding ordLeq-def by blast
{assume B < A
hence Restr r B <o Restr r A
unfolding ordLess-def using assms
Well-order-Restr Well-order-Restr ofilter-subset-embedS by blast
hence False using ∗ not-ordLess-ordLeq by blast
}
thus A ≤ B using OFA OFB WELL
wo-rel-def [of r] wo-rel .ofilter-linord [of r A B] by blast

qed

lemma ofilter-subset-ordLess:

114

assumes WELL: Well-order r and
OFA: ofilter r A and OFB : ofilter r B

shows (A < B) = (Restr r A <o Restr r B)
proof−

let ?rA = Restr r A let ?rB = Restr r B
have 1 : Well-order ?rA ∧ Well-order ?rB
using WELL Well-order-Restr by blast
have (A < B) = (¬ B ≤ A) using assms
wo-rel-def wo-rel .ofilter-linord [of r A B] by blast
also have . . . = (¬ Restr r B ≤o Restr r A)
using assms ofilter-subset-ordLeq by blast
also have . . . = (Restr r A <o Restr r B)
using 1 not-ordLeq-iff-ordLess by blast
finally show ?thesis .

qed

lemma ofilter-ordLeq :
assumes Well-order r and ofilter r A
shows Restr r A ≤o r
proof−

have A ≤ Field r using assms by (auto simp add : wo-rel-def wo-rel .ofilter-def)
thus ?thesis using assms
by (auto simp add : ofilter-subset-ordLeq wo-rel .Field-ofilter

wo-rel-def Restr-Field)
qed

corollary under-Restr-ordLeq :
Well-order r =⇒ Restr r (under r a) ≤o r
by (auto simp add : ofilter-ordLeq wo-rel .under-ofilter wo-rel-def)

lemma ofilter-ordLess:
[[Well-order r ; ofilter r A]] =⇒ (A < Field r) = (Restr r A <o r)
by (auto simp add : ofilter-subset-ordLess wo-rel .Field-ofilter

wo-rel-def Restr-Field)

corollary underS-Restr-ordLess:
assumes Well-order r and Field r 6= {}
shows Restr r (underS r a) <o r
proof−

have underS r a < Field r using assms
by (auto simp add : rel .underS-Field3)
thus ?thesis using assms
by (auto simp add : ofilter-ordLess wo-rel .underS-ofilter wo-rel-def)

qed

115

lemma embed-ordLess-ofilterIncl :
assumes

OL12 : r1 <o r2 and OL23 : r2 <o r3 and
EMB13 : embed r1 r3 f13 and EMB23 : embed r2 r3 f23

shows (f13‘ (Field r1), f23‘ (Field r2)) ∈ (ofilterIncl r3)
proof−

have OL13 : r1 <o r3
using OL12 OL23 using ordLess-transitive by auto
let ?A1 = Field r1 let ?A2 =Field r2 let ?A3 =Field r3
obtain f12 g23 where
0 : Well-order r1 ∧ Well-order r2 ∧ Well-order r3 and
1 : embed r1 r2 f12 ∧ ¬(bij-betw f12 ?A1 ?A2) and
2 : embed r2 r3 g23 ∧ ¬(bij-betw g23 ?A2 ?A3)
using OL12 OL23 unfolding ordLess-def by (auto simp add : embedS-def)
hence ∀ a ∈ ?A2 . f23 a = g23 a
using EMB23 embed-unique[of r2 r3] by blast
hence 3 : ¬(bij-betw f23 ?A2 ?A3)
using 2 bij-betw-cong [of ?A2 f23 g23] by blast

have 4 : ofilter r2 (f12 ‘ ?A1) ∧ f12 ‘ ?A1 6= ?A2
using 0 1 OL12 by (auto simp add : embed-Field-ofilter ordLess-Field)
have 5 : ofilter r3 (f23 ‘ ?A2) ∧ f23 ‘ ?A2 6= ?A3
using 0 EMB23 OL23 by (auto simp add : embed-Field-ofilter ordLess-Field)
have 6 : ofilter r3 (f13 ‘ ?A1) ∧ f13 ‘ ?A1 6= ?A3
using 0 EMB13 OL13 by (auto simp add : embed-Field-ofilter ordLess-Field)

have f12 ‘ ?A1 < ?A2
using 0 4 by (auto simp add : wo-rel-def wo-rel .ofilter-def)
moreover have inj-on f23 ?A2
using EMB23 0 by (auto simp add : wo-rel-def embed-inj-on)
ultimately
have f23 ‘ (f12 ‘ ?A1) < f23 ‘ ?A2
by (auto simp add : inj-on-strict-subset)
moreover
{have embed r1 r3 (f23 o f12)
using 1 EMB23 0 by (auto simp add : comp-embed)
hence ∀ a ∈ ?A1 . f23 (f12 a) = f13 a
using EMB13 0 embed-unique[of r1 r3 f23 o f12 f13] by auto
hence f23 ‘ (f12 ‘ ?A1) = f13 ‘ ?A1 by force
}
ultimately
have f13 ‘ ?A1 < f23 ‘ ?A2 by simp

with 5 6 show ?thesis
unfolding ofilterIncl-def by auto

qed

116

lemma ordLess-iff-ordIso-Restr :
assumes WELL: Well-order r and WELL ′: Well-order r ′

shows (r ′ <o r) = (∃ a ∈ Field r . r ′ =o Restr r (underS r a))
proof(auto)

fix a assume ∗: a ∈ Field r and ∗∗: r ′ =o Restr r (underS r a)
hence Restr r (underS r a) <o r using WELL underS-Restr-ordLess[of r] by

blast
thus r ′ <o r using ∗∗ ordIso-ordLess-trans by blast

next
assume r ′ <o r
then obtain f where 1 : Well-order r ∧ Well-order r ′ and

2 : embed r ′ r f ∧ f ‘ (Field r ′) 6= Field r
unfolding ordLess-def embedS-def-raw bij-betw-def using embed-inj-on by blast
hence ofilter r (f ‘ (Field r ′)) using embed-Field-ofilter by blast
then obtain a where 3 : a ∈ Field r and 4 : underS r a = f ‘ (Field r ′)
using 1 2 by (auto simp add : wo-rel .ofilter-underS-Field wo-rel-def)
have iso r ′ (Restr r (f ‘ (Field r ′))) f
using embed-implies-iso-Restr 2 assms by blast
moreover have Well-order (Restr r (f ‘ (Field r ′)))
using WELL Well-order-Restr by blast
ultimately have r ′ =o Restr r (f ‘ (Field r ′))
using WELL ′ unfolding ordIso-def by auto
hence r ′ =o Restr r (underS r a) using 4 by auto
thus ∃ a ∈ Field r . r ′ =o Restr r (underS r a) using 3 by auto

qed

lemma internalize-ordLess:
(r ′ <o r) = (∃ p. Field p < Field r ∧ r ′ =o p ∧ p <o r)
proof

assume ∗: r ′ <o r
hence 0 : Well-order r ∧ Well-order r ′ unfolding ordLess-def by auto
with ∗ obtain a where 1 : a ∈ Field r and 2 : r ′ =o Restr r (underS r a)
using ordLess-iff-ordIso-Restr by blast
let ?p = Restr r (underS r a)
have ofilter r (underS r a) using 0
by (auto simp add : wo-rel-def wo-rel .underS-ofilter)
hence Field ?p = underS r a using 0 Field-Restr-ofilter by blast
hence Field ?p < Field r using rel .underS-Field2 1 by fastforce
moreover have ?p <o r using underS-Restr-ordLess[of r a] 0 1 by blast
ultimately
show ∃ p. Field p < Field r ∧ r ′ =o p ∧ p <o r using 2 by blast

next
assume ∃ p. Field p < Field r ∧ r ′ =o p ∧ p <o r
thus r ′ <o r using ordIso-ordLess-trans by blast

qed

lemma internalize-ordLeq :

117

(r ′ ≤o r) = (∃ p. Field p ≤ Field r ∧ r ′ =o p ∧ p ≤o r)
proof

assume ∗: r ′ ≤o r
moreover
{assume r ′ <o r
then obtain p where Field p < Field r ∧ r ′ =o p ∧ p <o r
using internalize-ordLess[of r ′ r] by blast
hence ∃ p. Field p ≤ Field r ∧ r ′ =o p ∧ p ≤o r
using ordLeq-iff-ordLess-or-ordIso by blast
}
moreover
have r ≤o r using ∗ ordLeq-def ordLeq-reflexive by blast
ultimately show ∃ p. Field p ≤ Field r ∧ r ′ =o p ∧ p ≤o r
using ordLeq-iff-ordLess-or-ordIso by blast

next
assume ∃ p. Field p ≤ Field r ∧ r ′ =o p ∧ p ≤o r
thus r ′ ≤o r using ordIso-ordLeq-trans by blast

qed

lemma ordLeq-iff-ordLess-Restr :
assumes WELL: Well-order r and WELL ′: Well-order r ′

shows (r ≤o r ′) = (∀ a ∈ Field r . Restr r (underS r a) <o r ′)
proof(auto)

assume ∗: r ≤o r ′

fix a assume a ∈ Field r
hence Restr r (underS r a) <o r
using WELL underS-Restr-ordLess[of r] by blast
thus Restr r (underS r a) <o r ′

using ∗ ordLess-ordLeq-trans by blast
next

assume ∗: ∀ a ∈ Field r . Restr r (underS r a) <o r ′

{assume r ′ <o r
then obtain a where a ∈ Field r ∧ r ′ =o Restr r (underS r a)
using assms ordLess-iff-ordIso-Restr by blast
hence False using ∗ not-ordLess-ordIso ordIso-symmetric by blast
}
thus r ≤o r ′ using ordLess-or-ordLeq assms by blast

qed

lemma finite-ordLess-infinite:
assumes WELL: Well-order r and WELL ′: Well-order r ′ and

FIN : finite(Field r) and INF : infinite(Field r ′)
shows r <o r ′

proof−
{assume r ′ ≤o r
then obtain h where inj-on h (Field r ′) ∧ h ‘ (Field r ′) ≤ Field r
unfolding ordLeq-def using assms embed-inj-on embed-Field by blast

118

hence False using finite-imageD finite-subset FIN INF by blast
}
thus ?thesis using WELL WELL ′ ordLess-or-ordLeq by blast

qed

lemma finite-well-order-on-ordIso:
assumes FIN : finite A and

WELL: well-order-on A r and WELL ′: well-order-on A r ′

shows r =o r ′

proof−
have 0 : Well-order r ∧ Well-order r ′ ∧ Field r = A ∧ Field r ′ = A
using assms rel .well-order-on-Well-order by blast
moreover
have ∀ r r ′. well-order-on A r ∧ well-order-on A r ′ ∧ r ≤o r ′

−→ r =o r ′

proof(clarify)
fix r r ′ assume ∗: well-order-on A r and ∗∗: well-order-on A r ′

have 2 : Well-order r ∧ Well-order r ′ ∧ Field r = A ∧ Field r ′ = A
using ∗ ∗∗ rel .well-order-on-Well-order by blast
assume r ≤o r ′

then obtain f where 1 : embed r r ′ f and
inj-on f A ∧ f ‘ A ≤ A

unfolding ordLeq-def using 2 embed-inj-on embed-Field by blast
hence bij-betw f A A unfolding bij-betw-def using FIN endo-inj-surj by blast
thus r =o r ′ unfolding ordIso-def iso-def-raw using 1 2 by auto

qed
ultimately show ?thesis using assms ordLeq-total ordIso-symmetric by blast

qed

7.5 <o is well-founded

Of course, it only makes sense to state that the <o is well-founded on the
restricted type ′a rel rel. We prove this by first showing that, for any set of
well-orders all embedded in a fixed well-order, the function mapping each
well-order in the set to an order filter of the fixed well-order is compatible
w.r.t. to<o versus strict inclusion; and we already know that strict inclusion
of order filters is well-founded.

definition ord-to-filter :: ′a rel ⇒ ′a rel ⇒ ′a set
where ord-to-filter r0 r ≡ (SOME f . embed r r0 f) ‘ (Field r)

lemma ord-to-filter-compat :
compat (ordLess Int (ordLessˆ−1‘‘{r0} × ordLessˆ−1‘‘{r0}))

(ofilterIncl r0)
(ord-to-filter r0)

proof(unfold compat-def ord-to-filter-def , clarify)
fix r1 :: ′a rel and r2 :: ′a rel

119

let ?A1 = Field r1 let ?A2 =Field r2 let ?A0 =Field r0
let ?phi10 = λ f10 . embed r1 r0 f10 let ?f10 = SOME f . ?phi10 f
let ?phi20 = λ f20 . embed r2 r0 f20 let ?f20 = SOME f . ?phi20 f
assume ∗: r1 <o r0 r2 <o r0 and ∗∗: r1 <o r2
hence (∃ f . ?phi10 f) ∧ (∃ f . ?phi20 f)
unfolding ordLess-def by (auto simp add : embedS-def)
hence ?phi10 ?f10 ∧ ?phi20 ?f20 by (auto simp add : someI-ex)
thus (?f10 ‘ ?A1 , ?f20 ‘ ?A2) ∈ ofilterIncl r0
using ∗ ∗∗ by (auto simp add : embed-ordLess-ofilterIncl)

qed

theorem wf-ordLess: wf ordLess
proof−
{fix r0

let ?ordLess = ordLess::(′d rel ∗ ′d rel) set
let ?R = ?ordLess Int (?ordLessˆ−1‘‘{r0} × ?ordLessˆ−1‘‘{r0})
{assume Case1 : Well-order r0
hence wf ?R
using wf-ofilterIncl [of r0]

compat-wf [of ?R ofilterIncl r0 ord-to-filter r0]
ord-to-filter-compat [of r0] by auto

}
moreover
{assume Case2 : ¬ Well-order r0
hence ?R = {} unfolding ordLess-def by auto
hence wf ?R using wf-empty by simp
}
ultimately have wf ?R by blast
}
thus ?thesis by (auto simp add : trans-wf-iff ordLess-trans)

qed

corollary exists-minim-Well-order :
assumes NE : R 6= {} and WELL: ∀ r ∈ R. Well-order r
shows ∃ r ∈ R. ∀ r ′ ∈ R. r ≤o r ′

proof−
obtain r where r ∈ R ∧ (∀ r ′ ∈ R. ¬ r ′ <o r)
using assms wf-ordLess unfolding wf-eq-minimal [of ordLess] by force

with not-ordLeq-iff-ordLess assms show ?thesis by blast
qed

7.6 Copy via direct images

The direct image operator is the dual of the inverse image operator inv-image
from Relation.thy. It is useful for transporting a well-order between different

120

types.

definition dir-image :: ′a rel ⇒ (′a ⇒ ′a ′) ⇒ ′a ′ rel
where
dir-image r f = {(f a, f b)| a b. (a,b) ∈ r}

lemma dir-image-Field :
Field(dir-image r f) ≤ f ‘ (Field r)
unfolding dir-image-def Field-def by auto

lemma Id-dir-image: dir-image Id f ≤ Id
unfolding dir-image-def by auto

lemma Un-dir-image:
dir-image (r1 ∪ r2) f = (dir-image r1 f) ∪ (dir-image r2 f)
unfolding dir-image-def by auto

lemma Int-dir-image:
assumes inj-on f (Field r1 ∪ Field r2)
shows dir-image (r1 Int r2) f = (dir-image r1 f) Int (dir-image r2 f)
proof

show dir-image (r1 Int r2) f ≤ (dir-image r1 f) Int (dir-image r2 f)
using assms unfolding dir-image-def inj-on-def by auto

next
show (dir-image r1 f) Int (dir-image r2 f) ≤ dir-image (r1 Int r2) f
proof(clarify)

fix a ′ b ′

assume (a ′,b ′) ∈ dir-image r1 f (a ′,b ′) ∈ dir-image r2 f
then obtain a1 b1 a2 b2
where 1 : a ′ = f a1 ∧ b ′ = f b1 ∧ a ′ = f a2 ∧ b ′ = f b2 and

2 : (a1 ,b1) ∈ r1 ∧ (a2 ,b2) ∈ r2 and
3 : {a1 ,b1} ≤ Field r1 ∧ {a2 ,b2} ≤ Field r2

unfolding dir-image-def Field-def by blast
hence a1 = a2 ∧ b1 = b2 using assms unfolding inj-on-def by auto
hence a ′ = f a1 ∧ b ′ = f b1 ∧ (a1 ,b1) ∈ r1 Int r2 ∧ (a2 ,b2) ∈ r1 Int r2
using 1 2 by auto
thus (a ′,b ′) ∈ dir-image (r1 ∩ r2) f
unfolding dir-image-def by blast

qed
qed

lemma dir-image-minus-Id :
inj-on f (Field r) =⇒ (dir-image r f) − Id = dir-image (r − Id) f
unfolding inj-on-def Field-def dir-image-def by auto

121

lemma Refl-dir-image:
assumes Refl r
shows Refl(dir-image r f)
proof−
{fix a ′ b ′

assume (a ′,b ′) ∈ dir-image r f
then obtain a b where 1 : a ′ = f a ∧ b ′ = f b ∧ (a,b) ∈ r
unfolding dir-image-def by blast
hence a ∈ Field r ∧ b ∈ Field r using Field-def by fastforce
hence (a,a) ∈ r ∧ (b,b) ∈ r using assms by (auto simp add : refl-on-def)
with 1 have (a ′,a ′) ∈ dir-image r f ∧ (b ′,b ′) ∈ dir-image r f
unfolding dir-image-def by auto
}
thus ?thesis
by(unfold refl-on-def Field-def Domain-def Range-def , auto)

qed

lemma trans-dir-image:
assumes TRANS : trans r and INJ : inj-on f (Field r)
shows trans(dir-image r f)
proof(unfold trans-def , auto)

fix a ′ b ′ c ′

assume (a ′,b ′) ∈ dir-image r f (b ′,c ′) ∈ dir-image r f
then obtain a b1 b2 c where 1 : a ′ = f a ∧ b ′ = f b1 ∧ b ′ = f b2 ∧ c ′ = f c

and
2 : (a,b1) ∈ r ∧ (b2 ,c) ∈ r

unfolding dir-image-def by blast
hence b1 ∈ Field r ∧ b2 ∈ Field r
unfolding Field-def by auto
hence b1 = b2 using 1 INJ unfolding inj-on-def by auto
hence (a,c): r using 2 TRANS unfolding trans-def by blast
thus (a ′,c ′) ∈ dir-image r f
unfolding dir-image-def using 1 by auto

qed

lemma Preorder-dir-image:
[[Preorder r ; inj-on f (Field r)]] =⇒ Preorder (dir-image r f)
by(unfold preorder-on-def , auto simp add : Refl-dir-image trans-dir-image)

lemma antisym-dir-image:
assumes AN : antisym r and INJ : inj-on f (Field r)
shows antisym(dir-image r f)
proof(unfold antisym-def , auto)

fix a ′ b ′

assume (a ′,b ′) ∈ dir-image r f (b ′,a ′) ∈ dir-image r f

122

then obtain a1 b1 a2 b2 where 1 : a ′ = f a1 ∧ a ′ = f a2 ∧ b ′ = f b1 ∧ b ′ = f
b2 and

2 : (a1 ,b1) ∈ r ∧ (b2 ,a2) ∈ r and
3 : {a1 ,a2 ,b1 ,b2} ≤ Field r

unfolding dir-image-def Field-def by blast
hence a1 = a2 ∧ b1 = b2 using INJ unfolding inj-on-def by auto
hence a1 = b2 using 2 AN unfolding antisym-def by auto
thus a ′ = b ′ using 1 by auto

qed

lemma Partial-order-dir-image:
[[Partial-order r ; inj-on f (Field r)]] =⇒ Partial-order (dir-image r f)
by(unfold partial-order-on-def , auto simp add : Preorder-dir-image antisym-dir-image)

lemma Total-dir-image:
assumes TOT : Total r and INJ : inj-on f (Field r)
shows Total(dir-image r f)
proof(unfold total-on-def , intro ballI impI)

fix a ′ b ′

assume a ′ ∈ Field (dir-image r f) b ′ ∈ Field (dir-image r f)
then obtain a and b where 1 : a ∈ Field r ∧ b ∈ Field r ∧ f a = a ′ ∧ f b = b ′

using dir-image-Field [of r f] by blast
moreover assume a ′ 6= b ′

ultimately have a 6= b using INJ unfolding inj-on-def by auto
hence (a,b) ∈ r ∨ (b,a) ∈ r using 1 TOT unfolding total-on-def by auto
thus (a ′,b ′) ∈ dir-image r f ∨ (b ′,a ′) ∈ dir-image r f
using 1 unfolding dir-image-def by auto

qed

lemma Linear-order-dir-image:
[[Linear-order r ; inj-on f (Field r)]] =⇒ Linear-order (dir-image r f)
by(unfold linear-order-on-def , auto simp add : Partial-order-dir-image Total-dir-image)

lemma wf-dir-image:
assumes WF : wf r and INJ : inj-on f (Field r)
shows wf (dir-image r f)
proof(unfold wf-eq-minimal2 , intro allI impI , elim conjE)

fix A ′:: ′b set
assume SUB : A ′ ≤ Field(dir-image r f) and NE : A ′ 6= {}
obtain A where A-def : A = {a ∈ Field r . f a ∈ A ′} by blast
have A 6= {} ∧ A ≤ Field r
using A-def dir-image-Field [of r f] SUB NE by blast
then obtain a where 1 : a ∈ A ∧ (∀ b ∈ A. (b,a) /∈ r)
using WF unfolding wf-eq-minimal2 by blast
have ∀ b ′ ∈ A ′. (b ′,f a) /∈ dir-image r f

123

proof(clarify)
fix b ′ assume ∗: b ′ ∈ A ′ and ∗∗: (b ′,f a) ∈ dir-image r f
obtain b1 a1 where 2 : b ′ = f b1 ∧ f a = f a1 and

3 : (b1 ,a1) ∈ r ∧ {a1 ,b1} ≤ Field r
using ∗∗ unfolding dir-image-def Field-def by blast
hence a = a1 using 1 A-def INJ unfolding inj-on-def by auto
hence b1 ∈ A ∧ (b1 ,a) ∈ r using 2 3 A-def ∗ by auto
with 1 show False by auto

qed
thus ∃ a ′∈A ′. ∀ b ′∈A ′. (b ′, a ′) /∈ dir-image r f
using A-def 1 by blast

qed

lemma Well-order-dir-image:
[[Well-order r ; inj-on f (Field r)]] =⇒ Well-order (dir-image r f)
using assms unfolding well-order-on-def
using Linear-order-dir-image[of r f] wf-dir-image[of r − Id f]

dir-image-minus-Id [of f r]
subset-inj-on[of f Field r Field(r − Id)]
mono-Field [of r − Id r] by auto

lemma dir-image-Field2 :
Refl r =⇒ Field(dir-image r f) = f ‘ (Field r)
unfolding Field-def dir-image-def refl-on-def Domain-def Range-def by blast

lemma dir-image-bij-betw :
[[Well-order r ; inj-on f (Field r)]] =⇒ bij-betw f (Field r) (Field (dir-image r f))
unfolding bij-betw-def
by (auto simp add : dir-image-Field2 order-on-defs)

lemma dir-image-compat :
compat r (dir-image r f) f
unfolding compat-def dir-image-def by auto

lemma dir-image-iso:
[[Well-order r ; inj-on f (Field r)]] =⇒ iso r (dir-image r f) f
using iso-iff3 dir-image-compat dir-image-bij-betw Well-order-dir-image by blast

lemma dir-image-ordIso:
[[Well-order r ; inj-on f (Field r)]] =⇒ r =o dir-image r f
unfolding ordIso-def using dir-image-iso Well-order-dir-image by blast

124

lemma Well-order-iso-copy :
assumes WELL: well-order-on A r and BIJ : bij-betw f A A ′

shows ∃ r ′. well-order-on A ′ r ′ ∧ r =o r ′

proof−
let ?r ′ = dir-image r f
have 1 : A = Field r ∧ Well-order r
using WELL rel .well-order-on-Well-order by blast
hence 2 : iso r ?r ′ f
using dir-image-iso using BIJ unfolding bij-betw-def by auto
hence f ‘ (Field r) = Field ?r ′ using 1 iso-iff [of r ?r ′] by blast
hence Field ?r ′ = A ′

using 1 BIJ unfolding bij-betw-def by auto
moreover have Well-order ?r ′

using 1 Well-order-dir-image BIJ unfolding bij-betw-def by blast
ultimately show ?thesis unfolding ordIso-def using 1 2 by blast

qed

7.7 Ordinal-like sum of two (disjoint) well-orders

This is roughly obtained by “concatenating” the two well-orders – thus, all
elements of the first will be smaller than all elements of the second. This
construction only makes sense if the fields of the two well-order relations are
disjoint.

definition Osum :: ′a rel ⇒ ′a rel ⇒ ′a rel (infix Osum 60)
where
r Osum r ′ = r ∪ r ′ ∪ {(a,a ′). a ∈ Field r ∧ a ′ ∈ Field r ′}

abbreviation Osum2 :: ′a rel ⇒ ′a rel ⇒ ′a rel (infix ∪o 60)
where r ∪o r ′ ≡ r Osum r ′

lemma Field-Osum: Field(r Osum r ′) = Field r ∪ Field r ′

unfolding Osum-def Field-def by blast

lemma Osum-Refl :
assumes FLD : Field r Int Field r ′ = {} and

REFL: Refl r and REFL ′: Refl r ′

shows Refl (r Osum r ′)
using assms
unfolding refl-on-def Field-Osum unfolding Osum-def by blast

lemma Osum-trans:
assumes FLD : Field r Int Field r ′ = {} and

TRANS : trans r and TRANS ′: trans r ′

shows trans (r Osum r ′)
proof(unfold trans-def , auto)

125

fix x y z assume ∗: (x , y) ∈ r ∪o r ′ and ∗∗: (y , z) ∈ r ∪o r ′

show (x , z) ∈ r ∪o r ′

proof−
{assume Case1 : (x ,y) ∈ r
hence 1 : x ∈ Field r ∧ y ∈ Field r unfolding Field-def by auto
have ?thesis
proof−
{assume Case11 : (y ,z) ∈ r
hence (x ,z) ∈ r using Case1 TRANS trans-def [of r] by blast
hence ?thesis unfolding Osum-def by auto
}
moreover
{assume Case12 : (y ,z) ∈ r ′

hence y ∈ Field r ′ unfolding Field-def by auto
hence False using FLD 1 by auto
}
moreover
{assume Case13 : z ∈ Field r ′

hence ?thesis using 1 unfolding Osum-def by auto
}
ultimately show ?thesis using ∗∗ unfolding Osum-def by blast

qed
}
moreover
{assume Case2 : (x ,y) ∈ r ′

hence 2 : x ∈ Field r ′ ∧ y ∈ Field r ′ unfolding Field-def by auto
have ?thesis
proof−
{assume Case21 : (y ,z) ∈ r
hence y ∈ Field r unfolding Field-def by auto
hence False using FLD 2 by auto
}
moreover
{assume Case22 : (y ,z) ∈ r ′

hence (x ,z) ∈ r ′ using Case2 TRANS ′ trans-def [of r ′] by blast
hence ?thesis unfolding Osum-def by auto
}
moreover
{assume Case23 : y ∈ Field r
hence False using FLD 2 by auto
}
ultimately show ?thesis using ∗∗ unfolding Osum-def by blast

qed
}
moreover
{assume Case3 : x ∈ Field r ∧ y ∈ Field r ′

have ?thesis
proof−
{assume Case31 : (y ,z) ∈ r

126

hence y ∈ Field r unfolding Field-def by auto
hence False using FLD Case3 by auto
}
moreover
{assume Case32 : (y ,z) ∈ r ′

hence z ∈ Field r ′ unfolding Field-def by blast
hence ?thesis unfolding Osum-def using Case3 by auto
}
moreover
{assume Case33 : y ∈ Field r
hence False using FLD Case3 by auto
}
ultimately show ?thesis using ∗∗ unfolding Osum-def by blast

qed
}
ultimately show ?thesis using ∗ unfolding Osum-def by blast

qed
qed

lemma Osum-Preorder :
[[Field r Int Field r ′ = {}; Preorder r ; Preorder r ′]] =⇒ Preorder (r Osum r ′)
unfolding preorder-on-def using Osum-Refl Osum-trans by blast

lemma Osum-antisym:
assumes FLD : Field r Int Field r ′ = {} and

AN : antisym r and AN ′: antisym r ′

shows antisym (r Osum r ′)
proof(unfold antisym-def , auto)

fix x y assume ∗: (x , y) ∈ r ∪o r ′ and ∗∗: (y , x) ∈ r ∪o r ′

show x = y
proof−
{assume Case1 : (x ,y) ∈ r
hence 1 : x ∈ Field r ∧ y ∈ Field r unfolding Field-def by auto
have ?thesis
proof−

have (y ,x) ∈ r =⇒ ?thesis
using Case1 AN antisym-def [of r] by blast
moreover
{assume (y ,x) ∈ r ′

hence y ∈ Field r ′ unfolding Field-def by auto
hence False using FLD 1 by auto
}
moreover
have x ∈ Field r ′ =⇒ False using FLD 1 by auto
ultimately show ?thesis using ∗∗ unfolding Osum-def by blast

qed
}

127

moreover
{assume Case2 : (x ,y) ∈ r ′

hence 2 : x ∈ Field r ′ ∧ y ∈ Field r ′ unfolding Field-def by auto
have ?thesis
proof−
{assume (y ,x) ∈ r
hence y ∈ Field r unfolding Field-def by auto
hence False using FLD 2 by auto
}
moreover
have (y ,x) ∈ r ′ =⇒ ?thesis
using Case2 AN ′ antisym-def [of r ′] by blast
moreover
{assume y ∈ Field r
hence False using FLD 2 by auto
}
ultimately show ?thesis using ∗∗ unfolding Osum-def by blast

qed
}
moreover
{assume Case3 : x ∈ Field r ∧ y ∈ Field r ′

have ?thesis
proof−
{assume (y ,x) ∈ r
hence y ∈ Field r unfolding Field-def by auto
hence False using FLD Case3 by auto
}
moreover
{assume Case32 : (y ,x) ∈ r ′

hence x ∈ Field r ′ unfolding Field-def by blast
hence False using FLD Case3 by auto
}
moreover
have ¬ y ∈ Field r using FLD Case3 by auto
ultimately show ?thesis using ∗∗ unfolding Osum-def by blast

qed
}
ultimately show ?thesis using ∗ unfolding Osum-def by blast

qed
qed

lemma Osum-Partial-order :
[[Field r Int Field r ′ = {}; Partial-order r ; Partial-order r ′]] =⇒
Partial-order (r Osum r ′)

unfolding partial-order-on-def using Osum-Preorder Osum-antisym by blast

lemma Osum-Total :

128

assumes FLD : Field r Int Field r ′ = {} and
TOT : Total r and TOT ′: Total r ′

shows Total (r Osum r ′)
using assms
unfolding total-on-def Field-Osum unfolding Osum-def by blast

lemma Osum-Linear-order :
[[Field r Int Field r ′ = {}; Linear-order r ; Linear-order r ′]] =⇒
Linear-order (r Osum r ′)

unfolding linear-order-on-def using Osum-Partial-order Osum-Total by blast

lemma Osum-wf :
assumes FLD : Field r Int Field r ′ = {} and

WF : wf r and WF ′: wf r ′

shows wf (r Osum r ′)
unfolding wf-eq-minimal2 unfolding Field-Osum
proof(intro allI impI , elim conjE)

fix A assume ∗: A ⊆ Field r ∪ Field r ′ and ∗∗: A 6= {}
obtain B where B-def : B = A Int Field r by blast
show ∃ a∈A. ∀ a ′∈A. (a ′, a) /∈ r ∪o r ′

proof(cases B = {})
assume Case1 : B 6= {}
hence B 6= {} ∧ B ≤ Field r using B-def by auto
then obtain a where 1 : a ∈ B and 2 : ∀ a1 ∈ B . (a1 ,a) /∈ r
using WF unfolding wf-eq-minimal2 by blast
hence 3 : a ∈ Field r ∧ a /∈ Field r ′ using B-def FLD by auto

have ∀ a1 ∈ A. (a1 ,a) /∈ r Osum r ′

proof(intro ballI)
fix a1 assume ∗∗: a1 ∈ A
{assume Case11 : a1 ∈ Field r
hence (a1 ,a) /∈ r using B-def ∗∗ 2 by auto
moreover
have (a1 ,a) /∈ r ′ using 3 by (auto simp add : Field-def)
ultimately have (a1 ,a) /∈ r Osum r ′

using 3 unfolding Osum-def by auto
}
moreover
{assume Case12 : a1 /∈ Field r
hence (a1 ,a) /∈ r unfolding Field-def by auto
moreover
have (a1 ,a) /∈ r ′ using 3 unfolding Field-def by auto
ultimately have (a1 ,a) /∈ r Osum r ′

using 3 unfolding Osum-def by auto
}
ultimately show (a1 ,a) /∈ r Osum r ′ by blast

qed

129

thus ?thesis using 1 B-def by auto
next

assume Case2 : B = {}
hence 1 : A 6= {} ∧ A ≤ Field r ′ using ∗ ∗∗ B-def by auto
then obtain a ′ where 2 : a ′ ∈ A and 3 : ∀ a1 ′ ∈ A. (a1 ′,a ′) /∈ r ′

using WF ′ unfolding wf-eq-minimal2 by blast
hence 4 : a ′ ∈ Field r ′ ∧ a ′ /∈ Field r using 1 FLD by blast

have ∀ a1 ′ ∈ A. (a1 ′,a ′) /∈ r Osum r ′

proof(unfold Osum-def , auto simp add : 3)
fix a1 ′ assume (a1 ′, a ′) ∈ r
thus False using 4 unfolding Field-def by blast

next
fix a1 ′ assume a1 ′ ∈ A and a1 ′ ∈ Field r
thus False using Case2 B-def by auto

qed
thus ?thesis using 2 by blast

qed
qed

lemma Osum-minus-Id :
assumes TOT : Total r and TOT ′: Total r ′ and

NID : ¬ (r ≤ Id) and NID ′: ¬ (r ′ ≤ Id)
shows (r Osum r ′) − Id ≤ (r − Id) Osum (r ′ − Id)
proof−
{fix a a ′ assume ∗: (a,a ′) ∈ (r Osum r ′) and ∗∗: a 6= a ′

have (a,a ′) ∈ (r − Id) Osum (r ′ − Id)
proof−
{assume (a,a ′) ∈ r ∨ (a,a ′) ∈ r ′

with ∗∗ have ?thesis unfolding Osum-def by auto
}
moreover
{assume a ∈ Field r ∧ a ′ ∈ Field r ′

hence a ∈ Field(r − Id) ∧ a ′ ∈ Field (r ′ − Id)
using assms rel .Total-Id-Field by blast
hence ?thesis unfolding Osum-def by auto
}
ultimately show ?thesis using ∗ unfolding Osum-def by blast

qed
}
thus ?thesis by(auto simp add : Osum-def)

qed

lemma wf-Int-Times:
assumes A Int B = {}
shows wf (A × B)
proof(unfold wf-def , auto)

130

fix P x
assume ∗: ∀ x . (∀ y . y ∈ A ∧ x ∈ B −→ P y) −→ P x
moreover have ∀ y ∈ A. P y using assms ∗ by blast
ultimately show P x using ∗ by (case-tac x ∈ B , auto)

qed

lemma Osum-minus-Id1 :
assumes r ≤ Id
shows (r Osum r ′) − Id ≤ (r ′ − Id) ∪ (Field r × Field r ′)
proof−

let ?Left = (r Osum r ′) − Id
let ?Right = (r ′ − Id) ∪ (Field r × Field r ′)
{fix a:: ′a and b assume ∗: (a,b) /∈ Id
{assume (a,b) ∈ r
with ∗ have False using assms by auto
}
moreover
{assume (a,b) ∈ r ′

with ∗ have (a,b) ∈ r ′ − Id by auto
}
ultimately
have (a,b) ∈ ?Left =⇒ (a,b) ∈ ?Right
unfolding Osum-def by auto
}
thus ?thesis by auto

qed

lemma Osum-minus-Id2 :
assumes r ′ ≤ Id
shows (r Osum r ′) − Id ≤ (r − Id) ∪ (Field r × Field r ′)
proof−

let ?Left = (r Osum r ′) − Id
let ?Right = (r − Id) ∪ (Field r × Field r ′)
{fix a:: ′a and b assume ∗: (a,b) /∈ Id
{assume (a,b) ∈ r ′

with ∗ have False using assms by auto
}
moreover
{assume (a,b) ∈ r
with ∗ have (a,b) ∈ r − Id by auto
}
ultimately
have (a,b) ∈ ?Left =⇒ (a,b) ∈ ?Right
unfolding Osum-def by auto
}
thus ?thesis by auto

qed

131

lemma Osum-wf-Id :
assumes TOT : Total r and TOT ′: Total r ′ and

FLD : Field r Int Field r ′ = {} and
WF : wf (r − Id) and WF ′: wf (r ′ − Id)

shows wf ((r Osum r ′) − Id)
proof(cases r ≤ Id ∨ r ′ ≤ Id)

assume Case1 : ¬(r ≤ Id ∨ r ′ ≤ Id)
have Field(r − Id) Int Field(r ′ − Id) = {}
using FLD mono-Field [of r − Id r] mono-Field [of r ′ − Id r ′]

Diff-subset [of r Id] Diff-subset [of r ′ Id] by blast
thus ?thesis
using Case1 Osum-minus-Id [of r r ′] assms Osum-wf [of r − Id r ′ − Id]

wf-subset [of (r − Id) ∪o (r ′ − Id) (r Osum r ′) − Id] by auto
next

have 1 : wf (Field r × Field r ′)
using FLD by (auto simp add : wf-Int-Times)
assume Case2 : r ≤ Id ∨ r ′ ≤ Id
moreover
{assume Case21 : r ≤ Id
hence (r Osum r ′) − Id ≤ (r ′ − Id) ∪ (Field r × Field r ′)
using Osum-minus-Id1 [of r r ′] by simp
moreover
{have Domain(Field r × Field r ′) Int Range(r ′ − Id) = {}
using FLD unfolding Field-def by blast
hence wf ((r ′ − Id) ∪ (Field r × Field r ′))
using 1 WF ′ wf-Un[of Field r × Field r ′ r ′ − Id]
by (auto simp add : Un-commute)
}
ultimately have ?thesis by (auto simp add : wf-subset)
}
moreover
{assume Case22 : r ′ ≤ Id
hence (r Osum r ′) − Id ≤ (r − Id) ∪ (Field r × Field r ′)
using Osum-minus-Id2 [of r ′ r] by simp
moreover
{have Range(Field r × Field r ′) Int Domain(r − Id) = {}
using FLD unfolding Field-def by blast
hence wf ((r − Id) ∪ (Field r × Field r ′))
using 1 WF wf-Un[of r − Id Field r × Field r ′]
by (auto simp add : Un-commute)
}
ultimately have ?thesis by (auto simp add : wf-subset)
}
ultimately show ?thesis by blast

qed

132

lemma Osum-Well-order :
assumes FLD : Field r Int Field r ′ = {} and

WELL: Well-order r and WELL ′: Well-order r ′

shows Well-order (r Osum r ′)
proof−

have Total r ∧ Total r ′ using WELL WELL ′

by (auto simp add : order-on-defs)
thus ?thesis using assms unfolding well-order-on-def
using Osum-Linear-order Osum-wf-Id by blast

qed

lemma Osum-embed :
assumes FLD : Field r Int Field r ′ = {} and

WELL: Well-order r and WELL ′: Well-order r ′

shows embed r (r Osum r ′) id
proof−

have 1 : Well-order (r Osum r ′)
using assms by (auto simp add : Osum-Well-order)
moreover
have compat r (r Osum r ′) id
unfolding compat-def Osum-def by auto
moreover
have inj-on id (Field r) by simp
moreover
have ofilter (r Osum r ′) (Field r)
using 1 proof(auto simp add : wo-rel-def wo-rel .ofilter-def

Field-Osum rel .under-def)
fix a b assume 2 : a ∈ Field r and 3 : (b,a) ∈ r Osum r ′

moreover
{assume (b,a) ∈ r ′

hence a ∈ Field r ′ using Field-def [of r ′] by blast
hence False using 2 FLD by blast
}
moreover
{assume a ∈ Field r ′

hence False using 2 FLD by blast
}
ultimately
show b ∈ Field r by (auto simp add : Osum-def Field-def)

qed
ultimately show ?thesis
using assms by (auto simp add : embed-iff-compat-inj-on-ofilter)

qed

corollary Osum-ordLeq :
assumes FLD : Field r Int Field r ′ = {} and

133

WELL: Well-order r and WELL ′: Well-order r ′

shows r ≤o r Osum r ′

using assms Osum-embed Osum-Well-order
unfolding ordLeq-def by blast

lemma Well-order-embed-copy :
assumes WELL: well-order-on A r and

INJ : inj-on f A and SUB : f ‘ A ≤ B
shows ∃ r ′. well-order-on B r ′ ∧ r ≤o r ′

proof−
have bij-betw f A (f ‘ A)
using INJ inj-on-imp-bij-betw by blast
then obtain r ′′ where well-order-on (f ‘ A) r ′′ and 1 : r =o r ′′

using WELL Well-order-iso-copy by blast
hence 2 : Well-order r ′′ ∧ Field r ′′ = (f ‘ A)
using rel .well-order-on-Well-order by blast

let ?C = B − (f ‘ A)
obtain r ′′′ where well-order-on ?C r ′′′

using well-order-on by blast
hence 3 : Well-order r ′′′ ∧ Field r ′′′ = ?C
using rel .well-order-on-Well-order by blast

let ?r ′ = r ′′ Osum r ′′′

have Field r ′′ Int Field r ′′′ = {}
using 2 3 by auto
hence r ′′ ≤o ?r ′ using Osum-ordLeq [of r ′′ r ′′′] 2 3 by blast
hence 4 : r ≤o ?r ′ using 1 ordIso-ordLeq-trans by blast

hence Well-order ?r ′ unfolding ordLeq-def by auto
moreover
have Field ?r ′ = B using 2 3 SUB by (auto simp add : Field-Osum)
ultimately show ?thesis using 4 by blast

qed

7.8 Bounded square

This construction essentially defines, for an order relation r, a lexicographic
order bsqr r on (Field r) × (Field r), applying the following criteria (in this
order):

• compare the maximums;

• compare the first components;

• compare the second components.

The only application of this construction that we are aware of is at proving
that the square of an infinite set has the same cardinal as that set. The

134

essential property required there (and which is ensured by this construction)
is that any proper order filter of the product order is included in a rectangle,
i.e., in a product of proper filters on the original relation (assumed to be a
well-order).

definition bsqr :: ′a rel => (′a ∗ ′a)rel
where
bsqr r = {((a1 ,a2),(b1 ,b2)).

{a1 ,a2 ,b1 ,b2} ≤ Field r ∧
(a1 = b1 ∧ a2 = b2 ∨
(max2 r a1 a2 , max2 r b1 b2) ∈ r − Id ∨
max2 r a1 a2 = max2 r b1 b2 ∧ (a1 ,b1) ∈ r − Id ∨
max2 r a1 a2 = max2 r b1 b2 ∧ a1 = b1 ∧ (a2 ,b2) ∈ r − Id

)}

lemma Field-bsqr :
Field (bsqr r) = Field r × Field r
proof

show Field (bsqr r) ≤ Field r × Field r
proof−
{fix a1 a2 assume (a1 ,a2) ∈ Field (bsqr r)
moreover
have

∧
b1 b2 . ((a1 ,a2),(b1 ,b2)) ∈ bsqr r ∨ ((b1 ,b2),(a1 ,a2)) ∈ bsqr r =⇒

a1 ∈ Field r ∧ a2 ∈ Field r unfolding bsqr-def by auto
ultimately have a1 ∈ Field r ∧ a2 ∈ Field r unfolding Field-def by auto
}
thus ?thesis unfolding Field-def by force

qed
next

show Field r × Field r ≤ Field (bsqr r)
proof(auto)

fix a1 a2 assume a1 ∈ Field r and a2 ∈ Field r
hence ((a1 ,a2),(a1 ,a2)) ∈ bsqr r unfolding bsqr-def by blast
thus (a1 ,a2) ∈ Field (bsqr r) unfolding Field-def by auto

qed
qed

lemma bsqr-Refl : Refl(bsqr r)
by(unfold refl-on-def Field-bsqr , auto simp add : bsqr-def)

lemma bsqr-Trans:
assumes Well-order r
shows trans (bsqr r)
proof(unfold trans-def , auto)

have Well : wo-rel r using assms wo-rel-def by auto
hence Trans: trans r using wo-rel .TRANS by auto

135

have Anti : antisym r using wo-rel .ANTISYM Well by auto
hence TransS : trans(r − Id) using Trans by (auto simp add : trans-diff-Id)

fix a1 a2 b1 b2 c1 c2
assume ∗: ((a1 ,a2),(b1 ,b2)) ∈ bsqr r and ∗∗: ((b1 ,b2),(c1 ,c2)) ∈ bsqr r
hence 0 : {a1 ,a2 ,b1 ,b2 ,c1 ,c2} ≤ Field r unfolding bsqr-def by auto
have 1 : a1 = b1 ∧ a2 = b2 ∨ (max2 r a1 a2 , max2 r b1 b2) ∈ r − Id ∨

max2 r a1 a2 = max2 r b1 b2 ∧ (a1 ,b1) ∈ r − Id ∨
max2 r a1 a2 = max2 r b1 b2 ∧ a1 = b1 ∧ (a2 ,b2) ∈ r − Id

using ∗ unfolding bsqr-def by auto
have 2 : b1 = c1 ∧ b2 = c2 ∨ (max2 r b1 b2 , max2 r c1 c2) ∈ r − Id ∨

max2 r b1 b2 = max2 r c1 c2 ∧ (b1 ,c1) ∈ r − Id ∨
max2 r b1 b2 = max2 r c1 c2 ∧ b1 = c1 ∧ (b2 ,c2) ∈ r − Id

using ∗∗ unfolding bsqr-def by auto
show ((a1 ,a2),(c1 ,c2)) ∈ bsqr r
proof−
{assume Case1 : a1 = b1 ∧ a2 = b2
hence ?thesis using ∗∗ by simp
}
moreover
{assume Case2 : (max2 r a1 a2 , max2 r b1 b2) ∈ r − Id
{assume Case21 : b1 = c1 ∧ b2 = c2
hence ?thesis using ∗ by simp
}
moreover
{assume Case22 : (max2 r b1 b2 , max2 r c1 c2) ∈ r − Id
hence (max2 r a1 a2 , max2 r c1 c2) ∈ r − Id
using Case2 TransS trans-def [of r − Id] by blast
hence ?thesis using 0 unfolding bsqr-def by auto
}
moreover
{assume Case23-4 : max2 r b1 b2 = max2 r c1 c2
hence ?thesis using Case2 0 unfolding bsqr-def by auto
}
ultimately have ?thesis using 0 2 by auto
}
moreover
{assume Case3 : max2 r a1 a2 = max2 r b1 b2 ∧ (a1 ,b1) ∈ r − Id
{assume Case31 : b1 = c1 ∧ b2 = c2
hence ?thesis using ∗ by simp
}
moreover
{assume Case32 : (max2 r b1 b2 , max2 r c1 c2) ∈ r − Id
hence ?thesis using Case3 0 unfolding bsqr-def by auto
}
moreover
{assume Case33 : max2 r b1 b2 = max2 r c1 c2 ∧ (b1 ,c1) ∈ r − Id
hence (a1 ,c1) ∈ r − Id
using Case3 TransS trans-def [of r − Id] by blast

136

hence ?thesis using Case3 Case33 0 unfolding bsqr-def by auto
}
moreover
{assume Case33 : max2 r b1 b2 = max2 r c1 c2 ∧ b1 = c1
hence ?thesis using Case3 0 unfolding bsqr-def by auto
}
ultimately have ?thesis using 0 2 by auto
}
moreover
{assume Case4 : max2 r a1 a2 = max2 r b1 b2 ∧ a1 = b1 ∧ (a2 ,b2) ∈ r − Id
{assume Case41 : b1 = c1 ∧ b2 = c2
hence ?thesis using ∗ by simp
}
moreover
{assume Case42 : (max2 r b1 b2 , max2 r c1 c2) ∈ r − Id
hence ?thesis using Case4 0 unfolding bsqr-def by auto
}
moreover
{assume Case43 : max2 r b1 b2 = max2 r c1 c2 ∧ (b1 ,c1) ∈ r − Id
hence ?thesis using Case4 0 unfolding bsqr-def by auto
}
moreover
{assume Case44 : max2 r b1 b2 = max2 r c1 c2 ∧ b1 = c1 ∧ (b2 ,c2) ∈ r −

Id
hence (a2 ,c2) ∈ r − Id
using Case4 TransS trans-def [of r − Id] by blast
hence ?thesis using Case4 Case44 0 unfolding bsqr-def by auto
}
ultimately have ?thesis using 0 2 by auto
}
ultimately show ?thesis using 0 1 by auto

qed
qed

lemma bsqr-antisym:
assumes Well-order r
shows antisym (bsqr r)
proof(unfold antisym-def , clarify)

have Well : wo-rel r using assms wo-rel-def by auto
hence Trans: trans r using wo-rel .TRANS by auto
have Anti : antisym r using wo-rel .ANTISYM Well by auto
hence TransS : trans(r − Id) using Trans by (auto simp add : trans-diff-Id)
hence IrrS : ∀ a b. ¬((a,b) ∈ r − Id ∧ (b,a) ∈ r − Id)
using Anti trans-def [of r − Id] antisym-def [of r − Id] by blast

fix a1 a2 b1 b2
assume ∗: ((a1 ,a2),(b1 ,b2)) ∈ bsqr r and ∗∗: ((b1 ,b2),(a1 ,a2)) ∈ bsqr r

137

hence 0 : {a1 ,a2 ,b1 ,b2} ≤ Field r unfolding bsqr-def by auto
have 1 : a1 = b1 ∧ a2 = b2 ∨ (max2 r a1 a2 , max2 r b1 b2) ∈ r − Id ∨

max2 r a1 a2 = max2 r b1 b2 ∧ (a1 ,b1) ∈ r − Id ∨
max2 r a1 a2 = max2 r b1 b2 ∧ a1 = b1 ∧ (a2 ,b2) ∈ r − Id

using ∗ unfolding bsqr-def by auto
have 2 : b1 = a1 ∧ b2 = a2 ∨ (max2 r b1 b2 , max2 r a1 a2) ∈ r − Id ∨

max2 r b1 b2 = max2 r a1 a2 ∧ (b1 ,a1) ∈ r − Id ∨
max2 r b1 b2 = max2 r a1 a2 ∧ b1 = a1 ∧ (b2 ,a2) ∈ r − Id

using ∗∗ unfolding bsqr-def by auto
show a1 = b1 ∧ a2 = b2
proof−
{assume Case1 : (max2 r a1 a2 , max2 r b1 b2) ∈ r − Id
{assume Case11 : (max2 r b1 b2 , max2 r a1 a2) ∈ r − Id
hence False using Case1 IrrS by blast
}
moreover
{assume Case12-3 : max2 r b1 b2 = max2 r a1 a2
hence False using Case1 by auto
}
ultimately have ?thesis using 0 2 by auto
}
moreover
{assume Case2 : max2 r a1 a2 = max2 r b1 b2 ∧ (a1 ,b1) ∈ r − Id
{assume Case21 : (max2 r b1 b2 , max2 r a1 a2) ∈ r − Id

hence False using Case2 by auto
}
moreover
{assume Case22 : (b1 ,a1) ∈ r − Id
hence False using Case2 IrrS by blast
}
moreover
{assume Case23 : b1 = a1
hence False using Case2 by auto
}
ultimately have ?thesis using 0 2 by auto
}
moreover
{assume Case3 : max2 r a1 a2 = max2 r b1 b2 ∧ a1 = b1 ∧ (a2 ,b2) ∈ r − Id
moreover
{assume Case31 : (max2 r b1 b2 , max2 r a1 a2) ∈ r − Id
hence False using Case3 by auto
}
moreover
{assume Case32 : (b1 ,a1) ∈ r − Id
hence False using Case3 by auto
}
moreover
{assume Case33 : (b2 ,a2) ∈ r − Id
hence False using Case3 IrrS by blast

138

}
ultimately have ?thesis using 0 2 by auto
}
ultimately show ?thesis using 0 1 by blast

qed
qed

lemma bsqr-Total :
assumes Well-order r
shows Total(bsqr r)
proof−

have Well : wo-rel r using assms wo-rel-def by auto
hence Total : ∀ a ∈ Field r . ∀ b ∈ Field r . (a,b) ∈ r ∨ (b,a) ∈ r
using wo-rel .TOTALS by auto

{fix a1 a2 b1 b2 assume {(a1 ,a2), (b1 ,b2)} ≤ Field(bsqr r)
hence 0 : a1 ∈ Field r ∧ a2 ∈ Field r ∧ b1 ∈ Field r ∧ b2 ∈ Field r
using Field-bsqr by blast
have ((a1 ,a2) = (b1 ,b2) ∨ ((a1 ,a2),(b1 ,b2)) ∈ bsqr r ∨ ((b1 ,b2),(a1 ,a2)) ∈

bsqr r)
proof(rule wo-rel .cases-Total [of r a1 a2], clarsimp simp add : Well , simp add :

0)

assume Case1 : (a1 ,a2) ∈ r
hence 1 : max2 r a1 a2 = a2
using Well 0 by (auto simp add : wo-rel .max2-equals2)
show ?thesis
proof(rule wo-rel .cases-Total [of r b1 b2], clarsimp simp add : Well , simp add :

0)
assume Case11 : (b1 ,b2) ∈ r
hence 2 : max2 r b1 b2 = b2
using Well 0 by (auto simp add : wo-rel .max2-equals2)
show ?thesis
proof(rule wo-rel .cases-Total3 [of r a2 b2], clarsimp simp add : Well , simp

add : 0)
assume Case111 : (a2 ,b2) ∈ r − Id ∨ (b2 ,a2) ∈ r − Id
thus ?thesis using 0 1 2 unfolding bsqr-def by auto

next
assume Case112 : a2 = b2
show ?thesis
proof(rule wo-rel .cases-Total3 [of r a1 b1], clarsimp simp add : Well , simp

add : 0)
assume Case1121 : (a1 ,b1) ∈ r − Id ∨ (b1 ,a1) ∈ r − Id
thus ?thesis using 0 1 2 Case112 unfolding bsqr-def by auto

next
assume Case1122 : a1 = b1
thus ?thesis using Case112 by auto

139

qed
qed

next
assume Case12 : (b2 ,b1) ∈ r

hence 3 : max2 r b1 b2 = b1 using Well 0 by (auto simp add : wo-rel .max2-equals1)
show ?thesis
proof(rule wo-rel .cases-Total3 [of r a2 b1], clarsimp simp add : Well , simp

add : 0)
assume Case121 : (a2 ,b1) ∈ r − Id ∨ (b1 ,a2) ∈ r − Id
thus ?thesis using 0 1 3 unfolding bsqr-def by auto

next
assume Case122 : a2 = b1
show ?thesis
proof(rule wo-rel .cases-Total3 [of r a1 b1], clarsimp simp add : Well , simp

add : 0)
assume Case1221 : (a1 ,b1) ∈ r − Id ∨ (b1 ,a1) ∈ r − Id
thus ?thesis using 0 1 3 Case122 unfolding bsqr-def by auto

next
assume Case1222 : a1 = b1
show ?thesis

proof(rule wo-rel .cases-Total3 [of r a2 b2], clarsimp simp add : Well , simp
add : 0)

assume Case12221 : (a2 ,b2) ∈ r − Id ∨ (b2 ,a2) ∈ r − Id
thus ?thesis using 0 1 3 Case122 Case1222 unfolding bsqr-def by

auto
next

assume Case12222 : a2 = b2
thus ?thesis using Case122 Case1222 by auto

qed
qed

qed
qed

next
assume Case2 : (a2 ,a1) ∈ r

hence 1 : max2 r a1 a2 = a1 using Well 0 by (auto simp add : wo-rel .max2-equals1)
show ?thesis
proof(rule wo-rel .cases-Total [of r b1 b2], clarsimp simp add : Well , simp add :

0)
assume Case21 : (b1 ,b2) ∈ r

hence 2 : max2 r b1 b2 = b2 using Well 0 by (auto simp add : wo-rel .max2-equals2)
show ?thesis
proof(rule wo-rel .cases-Total3 [of r a1 b2], clarsimp simp add : Well , simp

add : 0)
assume Case211 : (a1 ,b2) ∈ r − Id ∨ (b2 ,a1) ∈ r − Id
thus ?thesis using 0 1 2 unfolding bsqr-def by auto

next
assume Case212 : a1 = b2
show ?thesis
proof(rule wo-rel .cases-Total3 [of r a1 b1], clarsimp simp add : Well , simp

140

add : 0)
assume Case2121 : (a1 ,b1) ∈ r − Id ∨ (b1 ,a1) ∈ r − Id
thus ?thesis using 0 1 2 Case212 unfolding bsqr-def by auto

next
assume Case2122 : a1 = b1
show ?thesis

proof(rule wo-rel .cases-Total3 [of r a2 b2], clarsimp simp add : Well , simp
add : 0)

assume Case21221 : (a2 ,b2) ∈ r − Id ∨ (b2 ,a2) ∈ r − Id
thus ?thesis using 0 1 2 Case212 Case2122 unfolding bsqr-def by

auto
next

assume Case21222 : a2 = b2
thus ?thesis using Case2122 Case212 by auto

qed
qed

qed
next

assume Case22 : (b2 ,b1) ∈ r
hence 3 : max2 r b1 b2 = b1 using Well 0 by (auto simp add : wo-rel .max2-equals1)

show ?thesis
proof(rule wo-rel .cases-Total3 [of r a1 b1], clarsimp simp add : Well , simp

add : 0)
assume Case221 : (a1 ,b1) ∈ r − Id ∨ (b1 ,a1) ∈ r − Id
thus ?thesis using 0 1 3 unfolding bsqr-def by auto

next
assume Case222 : a1 = b1
show ?thesis
proof(rule wo-rel .cases-Total3 [of r a2 b2], clarsimp simp add : Well , simp

add : 0)
assume Case2221 : (a2 ,b2) ∈ r − Id ∨ (b2 ,a2) ∈ r − Id
thus ?thesis using 0 1 3 Case222 unfolding bsqr-def by auto

next
assume Case2222 : a2 = b2
thus ?thesis using Case222 by auto

qed
qed

qed
qed
}
thus ?thesis unfolding total-on-def by fast

qed

lemma bsqr-Linear-order :
assumes Well-order r
shows Linear-order(bsqr r)
unfolding order-on-defs
using assms bsqr-Refl bsqr-Trans bsqr-antisym bsqr-Total by blast

141

lemma bsqr-Well-order :
assumes Well-order r
shows Well-order(bsqr r)
using assms
proof(simp add : bsqr-Linear-order Linear-order-Well-order-iff , intro allI impI)

have 0 : ∀A ≤ Field r . A 6= {} −→ (∃ a ∈ A. ∀ a ′ ∈ A. (a,a ′) ∈ r)
using assms well-order-on-def Linear-order-Well-order-iff by blast
fix D assume ∗: D ≤ Field (bsqr r) and ∗∗: D 6= {}
hence 1 : D ≤ Field r × Field r unfolding Field-bsqr by simp

obtain M where M-def : M = {max2 r a1 a2 | a1 a2 . (a1 ,a2) ∈ D} by blast
have M 6= {} using 1 M-def ∗∗ by auto
moreover
have M ≤ Field r unfolding M-def
using 1 assms wo-rel-def [of r] wo-rel .max2-among [of r] by fastforce
ultimately obtain m where m-min: m ∈ M ∧ (∀ a ∈ M . (m,a) ∈ r)
using 0 by blast

obtain A1 where A1-def : A1 = {a1 . ∃ a2 . (a1 ,a2) ∈ D ∧ max2 r a1 a2 = m}
by blast

have A1 ≤ Field r unfolding A1-def using 1 by auto
moreover have A1 6= {} unfolding A1-def using m-min unfolding M-def

by blast
ultimately obtain a1 where a1-min: a1 ∈ A1 ∧ (∀ a ∈ A1 . (a1 ,a) ∈ r)
using 0 by blast

obtain A2 where A2-def : A2 = {a2 . (a1 ,a2) ∈ D ∧ max2 r a1 a2 = m} by
blast

have A2 ≤ Field r unfolding A2-def using 1 by auto
moreover have A2 6= {} unfolding A2-def
using m-min a1-min unfolding A1-def M-def by blast
ultimately obtain a2 where a2-min: a2 ∈ A2 ∧ (∀ a ∈ A2 . (a2 ,a) ∈ r)
using 0 by blast

have 2 : max2 r a1 a2 = m
using a1-min a2-min unfolding A1-def A2-def by auto
have 3 : (a1 ,a2) ∈ D using a2-min unfolding A2-def by auto

moreover
{fix b1 b2 assume ∗∗∗: (b1 ,b2) ∈ D
hence 4 : {a1 ,a2 ,b1 ,b2} ≤ Field r using 1 3 by blast
have 5 : (max2 r a1 a2 , max2 r b1 b2) ∈ r
using ∗∗∗ a1-min a2-min m-min unfolding A1-def A2-def M-def by auto
have ((a1 ,a2),(b1 ,b2)) ∈ bsqr r
proof(cases max2 r a1 a2 = max2 r b1 b2)

assume Case1 : max2 r a1 a2 6= max2 r b1 b2
thus ?thesis unfolding bsqr-def using 4 5 by auto

142

next
assume Case2 : max2 r a1 a2 = max2 r b1 b2
hence b1 ∈ A1 unfolding A1-def using 2 ∗∗∗ by auto
hence 6 : (a1 ,b1) ∈ r using a1-min by auto
show ?thesis
proof(cases a1 = b1)

assume Case21 : a1 6= b1
thus ?thesis unfolding bsqr-def using 4 Case2 6 by auto

next
assume Case22 : a1 = b1
hence b2 ∈ A2 unfolding A2-def using 2 ∗∗∗ Case2 by auto
hence 7 : (a2 ,b2) ∈ r using a2-min by auto
thus ?thesis unfolding bsqr-def using 4 7 Case2 Case22 by auto

qed
qed
}

ultimately show ∃ d ∈ D . ∀ d ′ ∈ D . (d ,d ′) ∈ bsqr r by fastforce
qed

lemma bsqr-max2 :
assumes WELL: Well-order r and LEQ : ((a1 ,a2),(b1 ,b2)) ∈ bsqr r
shows (max2 r a1 a2 , max2 r b1 b2) ∈ r
proof−

have {(a1 ,a2),(b1 ,b2)} ≤ Field(bsqr r)
using LEQ unfolding Field-def by auto
hence {a1 ,a2 ,b1 ,b2} ≤ Field r unfolding Field-bsqr by auto
hence {max2 r a1 a2 , max2 r b1 b2} ≤ Field r
using WELL wo-rel-def [of r] wo-rel .max2-among [of r] by fastforce
moreover have (max2 r a1 a2 , max2 r b1 b2) ∈ r ∨ max2 r a1 a2 = max2 r

b1 b2
using LEQ unfolding bsqr-def by auto
ultimately show ?thesis using WELL unfolding order-on-defs refl-on-def by

auto
qed

lemma bsqr-ofilter :
assumes WELL: Well-order r and

OF : ofilter (bsqr r) D and SUB : D < Field r × Field r and
NE : ¬ (∃ a. Field r = under r a)

shows ∃A. ofilter r A ∧ A < Field r ∧ D ≤ A × A
proof−

let ?r ′ = bsqr r
have Well : wo-rel r using WELL wo-rel-def by blast
hence Trans: trans r using wo-rel .TRANS by blast
have Well ′: Well-order ?r ′ ∧ wo-rel ?r ′

using WELL bsqr-Well-order wo-rel-def by blast

143

have D < Field ?r ′ unfolding Field-bsqr using SUB .
with OF obtain a1 and a2 where
(a1 ,a2) ∈ Field ?r ′ and 1 : D = underS ?r ′ (a1 ,a2)
using Well ′ wo-rel .ofilter-underS-Field [of ?r ′ D] by auto
hence 2 : {a1 ,a2} ≤ Field r unfolding Field-bsqr by auto
let ?m = max2 r a1 a2
have D ≤ (under r ?m) × (under r ?m)
proof(unfold 1)
{fix b1 b2
let ?n = max2 r b1 b2
assume (b1 ,b2) ∈ underS ?r ′ (a1 ,a2)
hence 3 : ((b1 ,b2),(a1 ,a2)) ∈ ?r ′

unfolding rel .underS-def by blast
hence (?n,?m) ∈ r using WELL by (auto simp add : bsqr-max2)
moreover
{have (b1 ,b2) ∈ Field ?r ′ using 3 unfolding Field-def by auto
hence {b1 ,b2} ≤ Field r unfolding Field-bsqr by auto
hence (b1 ,?n) ∈ r ∧ (b2 ,?n) ∈ r
using Well by (auto simp add : wo-rel .max2-greater)
}
ultimately have (b1 ,?m) ∈ r ∧ (b2 ,?m) ∈ r
using Trans trans-def [of r] by blast
hence (b1 ,b2) ∈ (under r ?m) × (under r ?m) unfolding rel .under-def by

simp}
thus underS ?r ′ (a1 ,a2) ≤ (under r ?m) × (under r ?m) by auto

qed
moreover have ofilter r (under r ?m)
using Well by (auto simp add : wo-rel .under-ofilter)
moreover have under r ?m < Field r
using NE rel .under-Field [of r ?m] by blast
ultimately show ?thesis by blast

qed

7.9 The maxim among a finite set of ordinals

The correct phrazing would be “a maxim of ...”, as ≤o is only a preorder.

definition isOmax :: ′a rel set ⇒ ′a rel ⇒ bool
where
isOmax R r == r ∈ R ∧ (ALL r ′ : R. r ′ ≤o r)

definition omax :: ′a rel set ⇒ ′a rel
where
omax R == SOME r . isOmax R r

lemma exists-isOmax :
assumes finite R and R 6= {} and ∀ r ∈ R. Well-order r

144

shows ∃ r . isOmax R r
proof−

have finite R =⇒ R 6= {} −→ (∀ r ∈ R. Well-order r) −→ (∃ r . isOmax R r)
apply(erule finite-induct) apply(simp add : isOmax-def)
proof(clarsimp)

fix r R assume ∗: finite R and ∗∗: r /∈ R
and ∗∗∗: Well-order r and ∗∗∗∗: ∀ r∈R. Well-order r
and IH : R 6= {} −→ (∃ p. isOmax R p)
let ?R ′ = insert r R
show ∃ p ′. (isOmax ?R ′ p ′)
proof(cases R = {})

assume Case1 : R = {}
thus ?thesis unfolding isOmax-def using ∗∗∗
by (simp add : ordLeq-reflexive)

next
assume Case2 : R 6= {}
then obtain p where p: isOmax R p using IH by auto
hence 1 : Well-order p using ∗∗∗∗ unfolding isOmax-def by simp
{assume Case21 : r ≤o p
hence isOmax ?R ′ p using p unfolding isOmax-def by simp
hence ?thesis by auto
}
moreover
{assume Case22 : p ≤o r
{fix r ′ assume r ′ ∈ ?R ′

moreover
{assume r ′ ∈ R
hence r ′ ≤o p using p unfolding isOmax-def by simp
hence r ′ ≤o r using Case22 by(rule ordLeq-transitive)
}
moreover have r ≤o r using ∗∗∗ by(rule ordLeq-reflexive)
ultimately have r ′ ≤o r by auto
}
hence isOmax ?R ′ r unfolding isOmax-def by simp
hence ?thesis by auto
}
moreover have r ≤o p ∨ p ≤o r
using 1 ∗∗∗ ordLeq-total by auto
ultimately show ?thesis by blast

qed
qed
thus ?thesis using assms by auto

qed

lemma omax-isOmax :
assumes finite R and R 6= {} and ∀ r ∈ R. Well-order r
shows isOmax R (omax R)
unfolding omax-def using assms

145

by(simp add : exists-isOmax someI-ex)

lemma omax-in:
assumes finite R and R 6= {} and ∀ r ∈ R. Well-order r
shows omax R ∈ R
using assms omax-isOmax unfolding isOmax-def by blast

lemma Well-order-omax :
assumes finite R and R 6= {} and ∀ r∈R. Well-order r
shows Well-order (omax R)
using assms apply − apply(drule omax-in) by auto

lemma omax-maxim:
assumes finite R and ∀ r ∈ R. Well-order r and r ∈ R
shows r ≤o omax R
using assms omax-isOmax unfolding isOmax-def by blast

lemma omax-ordLeq :
assumes finite R and R 6= {} and ∗: ∀ r ∈ R. r ≤o p
shows omax R ≤o p
proof−

have ∀ r ∈ R. Well-order r using ∗ unfolding ordLeq-def by simp
thus ?thesis using assms omax-in by auto

qed

lemma omax-ordLess:
assumes finite R and R 6= {} and ∗: ∀ r ∈ R. r <o p
shows omax R <o p
proof−

have ∀ r ∈ R. Well-order r using ∗ unfolding ordLess-def by simp
thus ?thesis using assms omax-in by auto

qed

lemma omax-ordLeq-elim:
assumes finite R and ∀ r ∈ R. Well-order r
and omax R ≤o p and r ∈ R
shows r ≤o p
using assms omax-maxim[of R r] apply simp
using ordLeq-transitive by blast

lemma omax-ordLess-elim:
assumes finite R and ∀ r ∈ R. Well-order r

146

and omax R <o p and r ∈ R
shows r <o p
using assms omax-maxim[of R r] apply simp
using ordLeq-ordLess-trans by blast

lemma ordLeq-omax :
assumes finite R and ∀ r ∈ R. Well-order r
and r ∈ R and p ≤o r
shows p ≤o omax R
using assms omax-maxim[of R r] apply simp
using ordLeq-transitive by blast

lemma ordLess-omax :
assumes finite R and ∀ r ∈ R. Well-order r
and r ∈ R and p <o r
shows p <o omax R
using assms omax-maxim[of R r] apply simp
using ordLess-ordLeq-trans by blast

lemma omax-ordLeq-mono:
assumes P : finite P and R: finite R
and NE-P : P 6= {} and Well-R: ∀ r ∈ R. Well-order r
and LEQ : ∀ p ∈ P . ∃ r ∈ R. p ≤o r
shows omax P ≤o omax R
proof−

let ?mp = omax P let ?mr = omax R
{fix p assume p : P
then obtain r where r : r : R and p ≤o r
using LEQ by blast
moreover have r <=o ?mr
using r R Well-R omax-maxim by blast
ultimately have p <=o ?mr
using ordLeq-transitive by blast
}
thus ?mp <=o ?mr
using NE-P P using omax-ordLeq by blast

qed

lemma omax-ordLess-mono:
assumes P : finite P and R: finite R
and NE-P : P 6= {} and Well-R: ∀ r ∈ R. Well-order r
and LEQ : ∀ p ∈ P . ∃ r ∈ R. p <o r
shows omax P <o omax R
proof−

let ?mp = omax P let ?mr = omax R

147

{fix p assume p : P
then obtain r where r : r : R and p <o r
using LEQ by blast
moreover have r <=o ?mr
using r R Well-R omax-maxim by blast
ultimately have p <o ?mr
using ordLess-ordLeq-trans by blast
}
thus ?mp <o ?mr
using NE-P P omax-ordLess by blast

qed

end

8 Cardinal-order relations

theory Cardinal-Order-Relation imports Constructions-on-Wellorders
begin

In this section, we define cardinal-order relations to be minim well-orders on
their field. Then we define the cardinal of a set to be some cardinal-order
relation on that set, which will be unique up to order isomorphism. Then
we study the connection between cardinals and:

• standard set-theoretic constructions: products, sums, unions, lists, pow-
ersets, set-of finite sets operator;

• finiteness and infiniteness (in particular, with the numeric cardinal
operator for finite sets, card, from the theory Finite-Sets.thy).

On the way, we define the canonical ω cardinal and finite cardinals. We
also define (again, up to order isomorphism) the successor of a cardinal, and
show that any cardinal admits a successor.

Main results of this section are the existence of cardinal relations and the
facts that, in the presence of infiniteness, most of the standard set-theoretic
constructions (except for the powerset) do not increase cardinality. In partic-
ular, e.g., the set of words/lists over any infinite set has the same cardinality
(hence, is in bijection) with that set.

8.1 Cardinal orders

A cardinal order in our setting shall be a well-order minim w.r.t. the order-
embedding relation, ≤o (which is the same as being minimal w.r.t. the strict
order-embedding relation, <o), among all the well-orders on its field.

148

definition card-order-on :: ′a set ⇒ ′a rel ⇒ bool
where
card-order-on A r ≡ well-order-on A r ∧ (∀ r ′. well-order-on A r ′ −→ r ≤o r ′)

abbreviation Card-order r ≡ card-order-on (Field r) r
abbreviation card-order r ≡ card-order-on UNIV r

lemma card-order-on-well-order-on[simp]:
assumes card-order-on A r
shows well-order-on A r
using assms unfolding card-order-on-def by simp

lemma card-order-on-Card-order :
card-order-on A r =⇒ A = Field r ∧ Card-order r
unfolding card-order-on-def using rel .well-order-on-Field by blast

The existence of a cardinal relation on any given set (which will mean that
any set has a cardinal) follows from two facts:

• Zermelo’s theorem (proved in Zorn.thy as theorem well-order-on),
which states that on any given set there exists a well-order;

• The well-founded-ness of <o, ensuring that then there exists a minimal
such well-order, i.e., a cardinal order.

theorem card-order-on: ∃ r . card-order-on A r
proof−

obtain R where R-def : R = {r . well-order-on A r} by blast
have 1 : R 6= {} ∧ (∀ r ∈ R. Well-order r)
using well-order-on[of A] R-def rel .well-order-on-Well-order by blast
hence ∃ r ∈ R. ∀ r ′ ∈ R. r ≤o r ′

using exists-minim-Well-order [of R] by auto
thus ?thesis using R-def unfolding card-order-on-def by auto

qed

lemma card-order-on-ordIso:
assumes CO : card-order-on A r and CO ′: card-order-on A r ′

shows r =o r ′

using assms unfolding card-order-on-def
using ordIso-iff-ordLeq by blast

lemma Card-order-ordIso:
assumes CO : Card-order r and ISO : r ′ =o r
shows Card-order r ′

149

using ISO unfolding ordIso-def
proof(unfold card-order-on-def , auto)

fix p ′ assume well-order-on (Field r ′) p ′

hence 0 : Well-order p ′ ∧ Field p ′ = Field r ′

using rel .well-order-on-Well-order by blast
obtain f where 1 : iso r ′ r f and 2 : Well-order r ∧ Well-order r ′

using ISO unfolding ordIso-def by auto
hence 3 : inj-on f (Field r ′) ∧ f ‘ (Field r ′) = Field r
by (auto simp add : iso-iff embed-inj-on)
let ?p = dir-image p ′ f
have 4 : p ′ =o ?p ∧ Well-order ?p
using 0 2 3 by (auto simp add : dir-image-ordIso Well-order-dir-image)
moreover have Field ?p = Field r
using 0 3 by (auto simp add : dir-image-Field2 order-on-defs)
ultimately have well-order-on (Field r) ?p by auto
hence r ≤o ?p using CO unfolding card-order-on-def by auto
thus r ′ ≤o p ′

using ISO 4 ordLeq-ordIso-trans ordIso-ordLeq-trans ordIso-symmetric by blast
qed

lemma Card-order-ordIso2 :
assumes CO : Card-order r and ISO : r =o r ′

shows Card-order r ′

using assms Card-order-ordIso ordIso-symmetric by blast

8.2 Cardinal of a set

We define the cardinal of set to be some cardinal order on that set. We
shall prove that this notion is unique up to order isomorphism, meaning
that order isomorphism shall be the true identity of cardinals.

definition card-of :: ′a set ⇒ ′a rel (|-|)
where card-of A = (SOME r . card-order-on A r)

lemma card-of-card-order-on[simp]: card-order-on A |A|
unfolding card-of-def by (auto simp add : card-order-on someI-ex)

lemma card-of-well-order-on[simp]: well-order-on A |A|
using card-of-card-order-on card-order-on-def by blast

lemma Field-card-of [simp]: Field |A| = A
using card-of-card-order-on[of A] unfolding card-order-on-def
using rel .well-order-on-Field by blast

lemma card-of-Card-order [simp]: Card-order |A|

150

by auto

corollary ordIso-card-of-imp-Card-order :
r =o |A| =⇒ Card-order r
using card-of-Card-order Card-order-ordIso by blast

lemma card-of-Well-order [simp]: Well-order |A|
using card-of-Card-order unfolding card-order-on-def by auto

lemma card-of-refl : |A| =o |A|
using card-of-Well-order ordIso-reflexive by blast

lemma card-of-least [simp]: well-order-on A r =⇒ |A| ≤o r
using card-of-card-order-on unfolding card-order-on-def by blast

lemma card-of-ordIso:
(∃ f . bij-betw f A B) = (|A| =o |B |)
proof(auto)

fix f assume ∗: bij-betw f A B
then obtain r where well-order-on B r ∧ |A| =o r
using Well-order-iso-copy card-of-well-order-on by blast
hence |B | ≤o |A| using card-of-least
ordLeq-ordIso-trans ordIso-symmetric by blast
moreover
{let ?g = inv-into A f
have bij-betw ?g B A using ∗ bij-betw-inv-into by blast
then obtain r where well-order-on A r ∧ |B | =o r
using Well-order-iso-copy card-of-well-order-on by blast
hence |A| ≤o |B | using card-of-least
ordLeq-ordIso-trans ordIso-symmetric by blast
}
ultimately show |A| =o |B | using ordIso-iff-ordLeq by blast

next
assume |A| =o |B |
then obtain f where iso (|A|) (|B |) f
unfolding ordIso-def by auto
hence bij-betw f A B unfolding iso-def Field-card-of by simp
thus ∃ f . bij-betw f A B by auto

qed

lemma card-of-ordLeq :
(∃ f . inj-on f A ∧ f ‘ A ≤ B) = (|A| ≤o |B |)
proof(auto)

151

fix f assume ∗: inj-on f A and ∗∗: f ‘ A ≤ B
{assume |B | <o |A|
hence |B | ≤o |A| using ordLeq-iff-ordLess-or-ordIso by blast
then obtain g where embed (|B |) (|A|) g
unfolding ordLeq-def by auto
hence 1 : inj-on g B ∧ g ‘ B ≤ A using embed-inj-on[of |B | |A| g]
card-of-Well-order [of B] Field-card-of [of B] Field-card-of [of A]
embed-Field [of |B | |A| g] by auto
obtain h where bij-betw h A B
using ∗ ∗∗ 1 Cantor-Bernstein[of f] by fastforce
hence |A| =o |B | using card-of-ordIso by blast
hence |A| ≤o |B | using ordIso-iff-ordLeq by auto
}
thus |A| ≤o |B | using ordLess-or-ordLeq [of |B | |A|] by auto

next
assume ∗: |A| ≤o |B |
obtain f where embed (|A|) (|B |) f
using ∗ unfolding ordLeq-def by auto
hence inj-on f A ∧ f ‘ A ≤ B using embed-inj-on[of |A| |B | f]
card-of-Well-order [of A] Field-card-of [of A] Field-card-of [of B]
embed-Field [of |A| |B | f] by auto
thus ∃ f . inj-on f A ∧ f ‘ A ≤ B by auto

qed

lemma card-of-ordLeq2 :
A 6= {} =⇒ (∃ g . g ‘ B = A) = (|A| ≤o |B |)
using card-of-ordLeq [of A B] inj-on-iff-surjective[of A B] by auto

lemma card-of-inj-rel : assumes INJ : !! x y y ′. [[(x ,y) : R; (x ,y ′) : R]] =⇒ y = y ′

shows |{y . EX x . (x ,y) : R}| <=o |{x . EX y . (x ,y) : R}|
proof−

let ?Y = {y . EX x . (x ,y) : R} let ?X = {x . EX y . (x ,y) : R}
let ?f = % y . SOME x . (x ,y) : R
have ?f ‘ ?Y <= ?X using someI by force
moreover have inj-on ?f ?Y
unfolding inj-on-def proof(auto)

fix y1 x1 y2 x2
assume ∗: (x1 , y1) ∈ R (x2 , y2) ∈ R and ∗∗: ?f y1 = ?f y2
hence (?f y1 ,y1) : R using someI [of % x . (x ,y1) : R] by auto
moreover have (?f y2 ,y2) : R using ∗ someI [of % x . (x ,y2) : R] by auto
ultimately show y1 = y2 using ∗∗ INJ by auto

qed
ultimately show |?Y | <=o |?X | using card-of-ordLeq by blast

qed

lemma card-of-ordLess:

152

(¬(∃ f . inj-on f A ∧ f ‘ A ≤ B)) = (|B | <o |A|)
proof−

have (¬(∃ f . inj-on f A ∧ f ‘ A ≤ B)) = (¬ |A| ≤o |B |)
using card-of-ordLeq by blast
also have . . . = (|B | <o |A|)
using card-of-Well-order [of A] card-of-Well-order [of B]

not-ordLeq-iff-ordLess by blast
finally show ?thesis .

qed

lemma card-of-ordLess2 :
B 6= {} =⇒ (¬(∃ f . f ‘ A = B)) = (|A| <o |B |)
using card-of-ordLess[of B A] inj-on-iff-surjective[of B A] by auto

lemma card-of-unique[simp]:
card-order-on A r =⇒ r =o |A|
by (auto simp add : card-order-on-ordIso)

lemma card-of-unique2 : [[card-order-on B r ; bij-betw f A B]] =⇒ r =o |A|
using card-of-ordIso card-of-unique ordIso-equivalence by blast

lemma card-of-mono1 [simp]:
A ≤ B =⇒ |A| ≤o |B |
using inj-on-id [of A] card-of-ordLeq [of A B] by fastforce

lemma card-of-mono2 [simp]:
assumes r ≤o r ′

shows |Field r | ≤o |Field r ′|
proof−

obtain f where
1 : well-order-on (Field r) r ∧ well-order-on (Field r) r ∧ embed r r ′ f
using assms unfolding ordLeq-def
by (auto simp add : rel .well-order-on-Well-order)
hence inj-on f (Field r) ∧ f ‘ (Field r) ≤ Field r ′

by (auto simp add : embed-inj-on embed-Field)
thus |Field r | ≤o |Field r ′| using card-of-ordLeq by blast

qed

lemma card-of-cong [simp]: r =o r ′ =⇒ |Field r | =o |Field r ′|
by (auto simp add : ordIso-iff-ordLeq)

lemma card-of-Field-ordLess[simp]: Well-order r =⇒ |Field r | ≤o r

153

using card-of-least card-of-well-order-on rel .well-order-on-Well-order by blast

lemma card-of-Field-ordIso[simp]:
assumes Card-order r
shows |Field r | =o r
proof−

have card-order-on (Field r) r
using assms card-order-on-Card-order by blast
moreover have card-order-on (Field r) |Field r |
using card-of-card-order-on by blast
ultimately show ?thesis using card-order-on-ordIso by blast

qed

lemma Card-order-iff-ordIso-card-of :
Card-order r = (r =o |Field r |)
using ordIso-card-of-imp-Card-order card-of-Field-ordIso ordIso-symmetric by blast

lemma Card-order-iff-ordLeq-card-of :
Card-order r = (r ≤o |Field r |)
proof−

have Card-order r = (r =o |Field r |)
unfolding Card-order-iff-ordIso-card-of by simp
also have ... = (r ≤o |Field r | ∧ |Field r | ≤o r)
unfolding ordIso-iff-ordLeq by simp
also have ... = (r ≤o |Field r |)
using card-of-Field-ordLess by auto
finally show ?thesis .

qed

lemma Card-order-iff-Restr-underS :
assumes Well-order r
shows Card-order r = (∀ a ∈ Field r . Restr r (underS r a) <o |Field r |)
using assms unfolding Card-order-iff-ordLeq-card-of
using ordLeq-iff-ordLess-Restr card-of-Well-order by blast

lemma card-of-underS [simp]:
assumes r : Card-order r and a: a : Field r
shows |underS r a| <o r
proof−

let ?A = underS r a let ?r ′ = Restr r ?A
have 1 : Well-order r
using r unfolding card-order-on-def by simp
have Well-order ?r ′ using 1 Well-order-Restr by auto
moreover have card-order-on (Field ?r ′) |Field ?r ′|

154

using card-of-card-order-on .
ultimately have |Field ?r ′| ≤o ?r ′

unfolding card-order-on-def by simp
moreover have Field ?r ′ = ?A
using 1 wo-rel .underS-ofilter Field-Restr-ofilter
unfolding wo-rel-def by fastforce
ultimately have |?A| ≤o ?r ′ by simp
also have ?r ′ <o |Field r |
using 1 a r Card-order-iff-Restr-underS by blast
also have |Field r | =o r
using r ordIso-symmetric unfolding Card-order-iff-ordIso-card-of by auto
finally show ?thesis .

qed

lemma ordLess-Field [simp]:
assumes r <o r ′

shows |Field r | <o r ′

proof−
have well-order-on (Field r) r using assms unfolding ordLess-def
by (auto simp add : rel .well-order-on-Well-order)
hence |Field r | ≤o r using card-of-least by blast
thus ?thesis using assms ordLeq-ordLess-trans by blast

qed

lemma internalize-card-of-ordLess:
(|A| <o r) = (∃B < Field r . |A| =o |B | ∧ |B | <o r)
proof

assume |A| <o r
then obtain p where 1 : Field p < Field r ∧ |A| =o p ∧ p <o r
using internalize-ordLess[of |A| r] by blast
hence Card-order p using card-of-Card-order Card-order-ordIso2 by blast
hence |Field p| =o p using card-of-Field-ordIso by blast
hence |A| =o |Field p| ∧ |Field p| <o r
using 1 ordIso-equivalence ordIso-ordLess-trans by blast
thus ∃B < Field r . |A| =o |B | ∧ |B | <o r using 1 by blast

next
assume ∃B < Field r . |A| =o |B | ∧ |B | <o r
thus |A| <o r using ordIso-ordLess-trans by blast

qed

lemma internalize-card-of-ordLess2 :
(|A| <o |C |) = (∃B < C . |A| =o |B | ∧ |B | <o |C |)
using internalize-card-of-ordLess[of A |C |] Field-card-of [of C] by auto

lemma internalize-card-of-ordLeq :

155

(|A| ≤o r) = (∃B ≤ Field r . |A| =o |B | ∧ |B | ≤o r)
proof

assume |A| ≤o r
then obtain p where 1 : Field p ≤ Field r ∧ |A| =o p ∧ p ≤o r
using internalize-ordLeq [of |A| r] by blast
hence Card-order p using card-of-Card-order Card-order-ordIso2 by blast
hence |Field p| =o p using card-of-Field-ordIso by blast
hence |A| =o |Field p| ∧ |Field p| ≤o r
using 1 ordIso-equivalence ordIso-ordLeq-trans by blast
thus ∃B ≤ Field r . |A| =o |B | ∧ |B | ≤o r using 1 by blast

next
assume ∃B ≤ Field r . |A| =o |B | ∧ |B | ≤o r
thus |A| ≤o r using ordIso-ordLeq-trans by blast

qed

lemma internalize-card-of-ordLeq2 :
(|A| ≤o |C |) = (∃B ≤ C . |A| =o |B | ∧ |B | ≤o |C |)
using internalize-card-of-ordLeq [of A |C |] Field-card-of [of C] by auto

lemma Card-order-omax :
assumes finite R and R 6= {} and ∀ r∈R. Card-order r
shows Card-order (omax R)
proof−

have ∀ r∈R. Well-order r
using assms unfolding card-order-on-def by simp
thus ?thesis using assms apply − apply(drule omax-in) by auto

qed

lemma Card-order-omax2 :
assumes finite I and I 6= {}
shows Card-order (omax {|A i | | i . i ∈ I })
proof−

let ?R = {|A i | | i . i ∈ I }
have finite ?R and ?R 6= {} using assms by auto
moreover have ∀ r∈?R. Card-order r
using card-of-Card-order by auto
ultimately show ?thesis by(rule Card-order-omax)

qed

8.3 Cardinals versus set operations on arbitrary sets

Here we embark in a long journey of simple results showing that the standard
set-theoretic operations are well-behaved w.r.t. the notion of cardinal –
essentially, this means that they preserve the “cardinal identity” =o and
are monotonic w.r.t. ≤o.

156

lemma subset-ordLeq-strict :
assumes A ≤ B and |A| <o |B |
shows A < B
proof−
{assume ¬(A < B)
hence A = B using assms(1) by blast
hence False using assms(2) not-ordLess-ordIso card-of-refl by blast
}
thus ?thesis by blast

qed

corollary subset-ordLeq-diff :
assumes A ≤ B and |A| <o |B |
shows B − A 6= {}
using assms subset-ordLeq-strict by blast

lemma card-of-empty [simp]: |{}| ≤o |A|
using card-of-ordLeq inj-on-id by blast

lemma card-of-empty1 [simp]:
assumes Well-order r ∨ Card-order r
shows |{}| ≤o r
proof−

have Well-order r using assms unfolding card-order-on-def by auto
hence |Field r | <=o r
using assms card-of-Field-ordLess by blast
moreover have |{}| ≤o |Field r | by simp
ultimately show ?thesis using ordLeq-transitive by blast

qed

corollary Card-order-empty :
Card-order r =⇒ |{}| ≤o r by simp

lemma card-of-empty2 :
assumes LEQ : |A| =o |{}|
shows A = {}
using assms card-of-ordIso[of A] bij-betw-empty2 by blast

lemma card-of-empty3 :
assumes LEQ : |A| ≤o |{}|
shows A = {}
using assms by (auto simp add : ordIso-iff-ordLeq card-of-empty2)

157

lemma card-of-empty4 :
|{}:: ′b set | <o |A:: ′a set | = (A 6= {})
proof(intro iffI notI)

assume ∗: |{}:: ′b set | <o |A| and A = {}
hence |A| =o |{}:: ′b set |
using card-of-ordIso unfolding bij-betw-def inj-on-def by blast
hence |{}:: ′b set | =o |A| using ordIso-symmetric by blast
with ∗ show False using not-ordLess-ordIso[of |{}:: ′b set | |A|] by blast

next
assume A 6= {}
hence (¬ (∃ f . inj-on f A ∧ f ‘ A ⊆ {}))
unfolding inj-on-def by blast
thus | {} | <o | A |
using card-of-ordLess by blast

qed

lemma card-of-empty5 :
|A| <o |B | =⇒ B 6= {}
using card-of-empty not-ordLess-ordLeq by blast

lemma Well-order-card-of-empty :
Well-order r =⇒ |{}| ≤o r by simp

lemma card-of-empty-ordIso:
|{}:: ′a set | =o |{}:: ′b set |
using card-of-ordIso unfolding bij-betw-def inj-on-def by blast

lemma card-of-image[simp]:
|f ‘ A| <=o |A|
proof(cases A = {}, simp)

assume A ∼= {}
hence f ‘ A ∼= {} by auto
thus |f ‘ A| ≤o |A|
using card-of-ordLeq2 [of f ‘ A A] by auto

qed

lemma surj-imp-ordLeq :
assumes B <= f ‘ A
shows |B | <=o |A|
proof−

have |B | <=o |f ‘ A| using assms card-of-mono1 by auto
thus ?thesis using card-of-image ordLeq-transitive by blast

158

qed

lemma card-of-UNIV [simp]:
|A :: ′a set | ≤o |UNIV :: ′a set |
using card-of-mono1 [of A] by simp

lemma card-of-UNIV2 [simp]:
Card-order r =⇒ (r :: ′a rel) ≤o |UNIV :: ′a set |
using card-of-UNIV [of Field r] card-of-Field-ordIso

ordIso-symmetric ordIso-ordLeq-trans by blast

lemma card-of-singl-ordLeq [simp]:
assumes A 6= {}
shows |{b}| ≤o |A|
proof−

obtain a where ∗: a ∈ A using assms by auto
let ?h = λ b ′:: ′b. if b ′ = b then a else undefined
have inj-on ?h {b} ∧ ?h ‘ {b} ≤ A
using ∗ unfolding inj-on-def by auto
thus ?thesis using card-of-ordLeq by blast

qed

corollary Card-order-singl-ordLeq [simp]:
[[Card-order r ; Field r 6= {}]] =⇒ |{b}| ≤o r
using card-of-singl-ordLeq [of Field r b]

card-of-Field-ordIso[of r] ordLeq-ordIso-trans by blast

lemma card-of-Pow [simp]: |A| <o |Pow A|
using card-of-ordLess2 [of Pow A A] Cantors-paradox [of A]

Pow-not-empty [of A] by auto

lemma infinite-Pow :
assumes infinite A
shows infinite (Pow A)
proof−

have |A| ≤o |Pow A| by (metis card-of-Pow ordLess-imp-ordLeq)
thus ?thesis by (metis assms finite-Pow-iff)

qed

corollary Card-order-Pow [simp]:
Card-order r =⇒ r <o |Pow(Field r)|
using card-of-Pow card-of-Field-ordIso ordIso-ordLess-trans ordIso-symmetric by

159

blast

corollary card-of-set-type[simp]: |UNIV :: ′a set | <o |UNIV :: ′a set set |
using card-of-Pow [of UNIV :: ′a set] by simp

lemma card-of-Pow-mono[simp]:
assumes |A| ≤o |B |
shows |Pow A| ≤o |Pow B |
proof−

obtain f where inj-on f A ∧ f ‘ A ≤ B
using assms card-of-ordLeq [of A B] by auto
hence inj-on (image f) (Pow A) ∧ (image f) ‘ (Pow A) ≤ (Pow B)
by (auto simp add : inj-on-image-Pow image-Pow-mono)
thus ?thesis using card-of-ordLeq [of Pow A] by auto

qed

lemma ordIso-Pow-mono[simp]:
assumes r ≤o r ′

shows |Pow(Field r)| ≤o |Pow(Field r ′)|
using assms card-of-mono2 card-of-Pow-mono by blast

lemma card-of-Pow-cong [simp]:
assumes |A| =o |B |
shows |Pow A| =o |Pow B |
proof−

obtain f where bij-betw f A B
using assms card-of-ordIso[of A B] by auto
hence bij-betw (image f) (Pow A) (Pow B)
by (auto simp add : bij-betw-image-Pow)
thus ?thesis using card-of-ordIso[of Pow A] by auto

qed

lemma ordIso-Pow-cong [simp]:
assumes r =o r ′

shows |Pow(Field r)| =o |Pow(Field r ′)|
using assms card-of-cong card-of-Pow-cong by blast

lemma card-of-Plus1 [simp]: |A| ≤o |A <+> B |
proof−

have Inl ‘ A ≤ A <+> B by auto
thus ?thesis using inj-Inl [of A] card-of-ordLeq by blast

qed

160

corollary Card-order-Plus1 [simp]:
Card-order r =⇒ r ≤o |(Field r) <+> B |
using card-of-Plus1 card-of-Field-ordIso ordIso-ordLeq-trans ordIso-symmetric by
blast

lemma card-of-Plus2 [simp]: |B | ≤o |A <+> B |
proof−

have Inr ‘ B ≤ A <+> B by auto
thus ?thesis using inj-Inr [of B] card-of-ordLeq by blast

qed

corollary Card-order-Plus2 [simp]:
Card-order r =⇒ r ≤o |A <+> (Field r)|
using card-of-Plus2 card-of-Field-ordIso ordIso-ordLeq-trans ordIso-symmetric by
blast

lemma card-of-Plus-empty1 : |A| =o |A <+> {}|
proof−

have bij-betw Inl A (A <+> {}) unfolding bij-betw-def inj-on-def by auto
thus ?thesis using card-of-ordIso by auto

qed

corollary Card-order-Plus-empty1 :
Card-order r =⇒ r =o |(Field r) <+> {}|
using card-of-Plus-empty1 card-of-Field-ordIso ordIso-equivalence by blast

lemma card-of-Plus-empty2 : |A| =o |{} <+> A|
proof−

have bij-betw Inr A ({} <+> A) unfolding bij-betw-def inj-on-def by auto
thus ?thesis using card-of-ordIso by auto

qed

corollary Card-order-Plus-empty2 :
Card-order r =⇒ r =o |{} <+> (Field r)|
using card-of-Plus-empty2 card-of-Field-ordIso ordIso-equivalence by blast

lemma card-of-Plus-commute: |A <+> B | =o |B <+> A|
proof−

let ?f = λ(c:: ′a + ′b). case c of Inl a ⇒ Inr a
| Inr b ⇒ Inl b

have bij-betw ?f (A <+> B) (B <+> A)

161

unfolding bij-betw-def inj-on-def by force
thus ?thesis using card-of-ordIso by blast

qed

lemma card-of-Plus-assoc:
fixes A :: ′a set and B :: ′b set and C :: ′c set
shows |(A <+> B) <+> C | =o |A <+> B <+> C |
proof −

def f ≡ λ(k ::(′a + ′b) + ′c).
case k of Inl ab ⇒ (case ab of Inl a ⇒ Inl a

|Inr b ⇒ Inr (Inl b))
|Inr c ⇒ Inr (Inr c)

have A <+> B <+> C ⊆ f ‘ ((A <+> B) <+> C)
proof

fix x assume x : x ∈ A <+> B <+> C
show x ∈ f ‘ ((A <+> B) <+> C)
proof(cases x)

case (Inl a)
hence a ∈ A x = f (Inl (Inl a))
using x unfolding f-def by auto
thus ?thesis by auto

next
case (Inr bc) note 1 = Inr show ?thesis
proof(cases bc)

case (Inl b)
hence b ∈ B x = f (Inl (Inr b))
using x 1 unfolding f-def by auto
thus ?thesis by auto

next
case (Inr c)
hence c ∈ C x = f (Inr c)
using x 1 unfolding f-def by auto
thus ?thesis by auto

qed
qed

qed
hence bij-betw f ((A <+> B) <+> C) (A <+> B <+> C)
unfolding bij-betw-def inj-on-def f-def by auto
thus ?thesis using card-of-ordIso by blast

qed

lemma card-of-Plus-mono1 [simp]:
assumes |A| ≤o |B |
shows |A <+> C | ≤o |B <+> C |
proof−

obtain f where 1 : inj-on f A ∧ f ‘ A ≤ B
using assms card-of-ordLeq [of A] by fastforce

162

obtain g where g-def :
g = (λd . case d of Inl a ⇒ Inl(f a) | Inr (c:: ′c) ⇒ Inr c) by blast
have inj-on g (A <+> C) ∧ g ‘ (A <+> C) ≤ (B <+> C)
proof−
{fix d1 and d2 assume d1 ∈ A <+> C ∧ d2 ∈ A <+> C and

g d1 = g d2
hence d1 = d2 using 1 unfolding inj-on-def
by(case-tac d1 , case-tac d2 , auto simp add : g-def)
}
moreover
{fix d assume d ∈ A <+> C
hence g d ∈ B <+> C using 1
by(case-tac d , auto simp add : g-def)
}
ultimately show ?thesis unfolding inj-on-def by auto

qed
thus ?thesis using card-of-ordLeq by auto

qed

corollary ordLeq-Plus-mono1 :
assumes r ≤o r ′

shows |(Field r) <+> C | ≤o |(Field r ′) <+> C |
using assms card-of-mono2 card-of-Plus-mono1 by blast

lemma card-of-Plus-mono2 [simp]:
assumes |A| ≤o |B |
shows |C <+> A| ≤o |C <+> B |
using assms card-of-Plus-mono1 [of A B C]

card-of-Plus-commute[of C A] card-of-Plus-commute[of B C]
ordIso-ordLeq-trans[of |C <+> A|] ordLeq-ordIso-trans[of |C <+> A|]

by blast

corollary ordLeq-Plus-mono2 :
assumes r ≤o r ′

shows |A <+> (Field r)| ≤o |A <+> (Field r ′)|
using assms card-of-mono2 card-of-Plus-mono2 by blast

lemma card-of-Plus-mono[simp]:
assumes |A| ≤o |B | and |C | ≤o |D |
shows |A <+> C | ≤o |B <+> D |
using assms card-of-Plus-mono1 [of A B C] card-of-Plus-mono2 [of C D B]

ordLeq-transitive[of |A <+> C |] by blast

corollary ordLeq-Plus-mono:

163

assumes r ≤o r ′ and p ≤o p ′

shows |(Field r) <+> (Field p)| ≤o |(Field r ′) <+> (Field p ′)|
using assms card-of-mono2 [of r r ′] card-of-mono2 [of p p ′] card-of-Plus-mono by
blast

lemma card-of-Plus-cong1 :
assumes |A| =o |B |
shows |A <+> C | =o |B <+> C |
using assms
by (auto simp add : ordIso-iff-ordLeq)

corollary ordIso-Plus-cong1 :
assumes r =o r ′

shows |(Field r) <+> C | =o |(Field r ′) <+> C |
using assms card-of-cong card-of-Plus-cong1 by blast

lemma card-of-Plus-cong2 [simp]:
assumes |A| =o |B |
shows |C <+> A| =o |C <+> B |
using assms
by (auto simp add : ordIso-iff-ordLeq)

corollary ordIso-Plus-cong2 :
assumes r =o r ′

shows |A <+> (Field r)| =o |A <+> (Field r ′)|
using assms card-of-cong card-of-Plus-cong2 by blast

lemma card-of-Plus-cong [simp]:
assumes |A| =o |B | and |C | =o |D |
shows |A <+> C | =o |B <+> D |
using assms
by (auto simp add : ordIso-iff-ordLeq)

corollary ordIso-Plus-cong :
assumes r =o r ′ and p =o p ′

shows |(Field r) <+> (Field p)| =o |(Field r ′) <+> (Field p ′)|
using assms card-of-cong [of r r ′] card-of-cong [of p p ′] card-of-Plus-cong by blast

lemma card-of-Un1 [simp]:
shows |A| ≤o |A ∪ B |
using inj-on-id [of A] card-of-ordLeq [of A -] by fastforce

164

lemma Card-order-Un1 :
shows Card-order r =⇒ |Field r | ≤o |(Field r) ∪ B |
using card-of-Un1 card-of-Field-ordIso ordIso-symmetric ordIso-ordLeq-trans by
auto

lemma card-of-Un2 [simp]:
shows |A| ≤o |B ∪ A|
using inj-on-id [of A] card-of-ordLeq [of A -] by fastforce

lemma Card-order-Un2 :
shows Card-order r =⇒ |Field r | ≤o |A ∪ (Field r)|
using card-of-Un2 card-of-Field-ordIso ordIso-symmetric ordIso-ordLeq-trans by
auto

lemma card-of-diff [simp]:
shows |A − B | ≤o |A|
using inj-on-id [of A − B] card-of-ordLeq [of A − B -] by fastforce

lemma Un-Plus-bij-betw :
assumes A Int B = {}
shows ∃ f . bij-betw f (A ∪ B) (A <+> B)
proof−

let ?f = λ c. if c ∈ A then Inl c else Inr c
have bij-betw ?f (A ∪ B) (A <+> B)
using assms by(unfold bij-betw-def inj-on-def , auto)
thus ?thesis by blast

qed

lemma card-of-Un-Plus-ordIso:
assumes A Int B = {}
shows |A ∪ B | =o |A <+> B |
using assms card-of-ordIso[of A ∪ B] Un-Plus-bij-betw [of A B] by auto

lemma card-of-Un-Plus-ordIso1 :
|A ∪ B | =o |A <+> (B − A)|
using card-of-Un-Plus-ordIso[of A B − A] by auto

lemma card-of-Un-Plus-ordIso2 :
|A ∪ B | =o |(A − B) <+> B |
using card-of-Un-Plus-ordIso[of A − B B] by auto

165

lemma card-of-Un-Plus-ordLeq [simp]:
|A ∪ B | ≤o |A <+> B |
proof−

let ?f = λ c. if c ∈ A then Inl c else Inr c
have inj-on ?f (A ∪ B) ∧ ?f ‘ (A ∪ B) ≤ A <+> B
unfolding inj-on-def by auto
thus ?thesis using card-of-ordLeq by blast

qed

lemma card-of-Times1 [simp]:
assumes A 6= {}
shows |B | ≤o |B × A|
proof(cases B = {}, simp)

assume ∗: B 6= {}
have fst ‘ (B × A) = B unfolding image-def using assms by auto
thus ?thesis using inj-on-iff-surjective[of B B × A]

card-of-ordLeq [of B B × A] ∗ by blast
qed

corollary Card-order-Times1 :
[[Card-order r ; B 6= {}]] =⇒ r ≤o |(Field r) × B |
using card-of-Times1 [of B] card-of-Field-ordIso

ordIso-ordLeq-trans ordIso-symmetric by blast

lemma card-of-Times-singl1 : |A| =o |A × {b}|
proof−

have bij-betw fst (A × {b}) A unfolding bij-betw-def inj-on-def by force
thus ?thesis using card-of-ordIso ordIso-symmetric by blast

qed

corollary Card-order-Times-singl1 :
Card-order r =⇒ r =o |(Field r) × {b}|
using card-of-Times-singl1 [of - b] card-of-Field-ordIso ordIso-equivalence by blast

lemma card-of-Times-singl2 : |A| =o |{b} × A|
proof−

have bij-betw snd ({b} × A) A unfolding bij-betw-def inj-on-def by force
thus ?thesis using card-of-ordIso ordIso-symmetric by blast

qed

corollary Card-order-Times-singl2 :

166

Card-order r =⇒ r =o |{a} × (Field r)|
using card-of-Times-singl2 [of - a] card-of-Field-ordIso ordIso-equivalence by blast

lemma card-of-Times-commute: |A × B | =o |B × A|
proof−

let ?f = λ(a:: ′a,b:: ′b). (b,a)
have bij-betw ?f (A × B) (B × A)
unfolding bij-betw-def inj-on-def by auto
thus ?thesis using card-of-ordIso by blast

qed

lemma card-of-Times-assoc: |(A × B) × C | =o |A × B × C |
proof −

let ?f = λ((a,b),c). (a,(b,c))
have A × B × C ⊆ ?f ‘ ((A × B) × C)
proof

fix x assume x ∈ A × B × C
then obtain a b c where ∗: a ∈ A b ∈ B c ∈ C x = (a, b, c) by blast
let ?x = ((a, b), c)
from ∗ have ?x ∈ (A × B) × C x = ?f ?x by auto
thus x ∈ ?f ‘ ((A × B) × C) by blast

qed
hence bij-betw ?f ((A × B) × C) (A × B × C)
unfolding bij-betw-def inj-on-def by auto
thus ?thesis using card-of-ordIso by blast

qed

lemma card-of-Times2 [simp]:
assumes A 6= {} shows |B | ≤o |A × B |
using assms card-of-Times1 [of A B] card-of-Times-commute[of B A]

ordLeq-ordIso-trans by blast

corollary Card-order-Times2 :
[[Card-order r ; A 6= {}]] =⇒ r ≤o |A × (Field r)|
using card-of-Times2 [of A] card-of-Field-ordIso

ordIso-ordLeq-trans ordIso-symmetric by blast

lemma card-of-Times3 [simp]: |A| ≤o |A × A|
using card-of-Times1 [of A]
by(cases A = {}, simp, blast)

corollary Card-order-Times3 :
[[Card-order r]] =⇒ |Field r | ≤o |(Field r) × (Field r)|

167

using card-of-Times3 card-of-Field-ordIso
ordIso-ordLeq-trans ordIso-symmetric by blast

lemma card-of-Plus-Times-bool : |A <+> A| =o |A × (UNIV ::bool set)|
proof−

let ?f = λc:: ′a + ′a. case c of Inl a ⇒ (a,True)
|Inr a ⇒ (a,False)

have bij-betw ?f (A <+> A) (A × (UNIV ::bool set))
proof−
{fix c1 and c2 assume ?f c1 = ?f c2
hence c1 = c2
by(case-tac c1 , case-tac c2 , auto, case-tac c2 , auto)
}
moreover
{fix c assume c ∈ A <+> A
hence ?f c ∈ A × (UNIV ::bool set)
by(case-tac c, auto)
}
moreover
{fix a bl assume ∗: (a,bl) ∈ A × (UNIV ::bool set)
have (a,bl) ∈ ?f ‘ (A <+> A)
proof(cases bl)

assume bl hence ?f (Inl a) = (a,bl) by auto
thus ?thesis using ∗ by force

next
assume ¬ bl hence ?f (Inr a) = (a,bl) by auto
thus ?thesis using ∗ by force

qed
}
ultimately show ?thesis unfolding bij-betw-def inj-on-def by auto

qed
thus ?thesis using card-of-ordIso by blast

qed

lemma card-of-Times-mono1 [simp]:
assumes |A| ≤o |B |
shows |A × C | ≤o |B × C |
proof−

obtain f where 1 : inj-on f A ∧ f ‘ A ≤ B
using assms card-of-ordLeq [of A] by fastforce
obtain g where g-def :
g = (λ(a,c:: ′c). (f a,c)) by blast
have inj-on g (A × C) ∧ g ‘ (A × C) ≤ (B × C)
using 1 unfolding inj-on-def using g-def by auto
thus ?thesis using card-of-ordLeq by auto

qed

168

corollary ordLeq-Times-mono1 :
assumes r ≤o r ′

shows |(Field r) × C | ≤o |(Field r ′) × C |
using assms card-of-mono2 card-of-Times-mono1 by blast

lemma card-of-Times-mono2 [simp]:
assumes |A| ≤o |B |
shows |C × A| ≤o |C × B |
using assms card-of-Times-mono1 [of A B C]

card-of-Times-commute[of C A] card-of-Times-commute[of B C]
ordIso-ordLeq-trans[of |C × A|] ordLeq-ordIso-trans[of |C × A|]

by blast

corollary ordLeq-Times-mono2 :
assumes r ≤o r ′

shows |A × (Field r)| ≤o |A × (Field r ′)|
using assms card-of-mono2 card-of-Times-mono2 by blast

lemma card-of-Times-mono[simp]:
assumes |A| ≤o |B | and |C | ≤o |D |
shows |A × C | ≤o |B × D |
using assms card-of-Times-mono1 [of A B C] card-of-Times-mono2 [of C D B]

ordLeq-transitive[of |A × C |] by blast

corollary ordLeq-Times-mono:
assumes r ≤o r ′ and p ≤o p ′

shows |(Field r) × (Field p)| ≤o |(Field r ′) × (Field p ′)|
using assms card-of-mono2 [of r r ′] card-of-mono2 [of p p ′] card-of-Times-mono by
blast

lemma card-of-Times-cong1 [simp]:
assumes |A| =o |B |
shows |A × C | =o |B × C |
using assms
by (auto simp add : ordIso-iff-ordLeq)

corollary ordIso-Times-cong1 :
assumes r =o r ′

shows |(Field r) × C | =o |(Field r ′) × C |
using assms card-of-cong card-of-Times-cong1 by blast

169

lemma card-of-Times-cong2 [simp]:
assumes |A| =o |B |
shows |C × A| =o |C × B |
using assms
by (auto simp add : ordIso-iff-ordLeq)

corollary ordIso-Times-cong2 :
assumes r =o r ′

shows |A × (Field r)| =o |A × (Field r ′)|
using assms card-of-cong card-of-Times-cong2 by blast

lemma card-of-Times-cong [simp]:
assumes |A| =o |B | and |C | =o |D |
shows |A × C | =o |B × D |
using assms
by (auto simp add : ordIso-iff-ordLeq)

corollary ordIso-Times-cong :
assumes r =o r ′ and p =o p ′

shows |(Field r) × (Field p)| =o |(Field r ′) × (Field p ′)|
using assms card-of-cong [of r r ′] card-of-cong [of p p ′] card-of-Times-cong by blast

lemma card-of-Sigma-mono1 :
assumes ∀ i ∈ I . |A i | ≤o |B i |
shows |SIGMA i : I . A i | ≤o |SIGMA i : I . B i |
proof−

have ∀ i . i ∈ I −→ (∃ f . inj-on f (A i) ∧ f ‘ (A i) ≤ B i)
using assms by (auto simp add : card-of-ordLeq)
with choice[of λ i f . i ∈ I −→ inj-on f (A i) ∧ f ‘ (A i) ≤ B i]
obtain F where 1 : ∀ i ∈ I . inj-on (F i) (A i) ∧ (F i) ‘ (A i) ≤ B i by fastforce
obtain g where g-def : g = (λ(i ,a:: ′b). (i ,F i a)) by blast
have inj-on g (Sigma I A) ∧ g ‘ (Sigma I A) ≤ (Sigma I B)
using 1 unfolding inj-on-def using g-def by force
thus ?thesis using card-of-ordLeq by auto

qed

lemma card-of-Sigma-mono2 :
assumes inj-on f (I :: ′i set) and f ‘ I ≤ (J :: ′j set)
shows |SIGMA i : I . (A:: ′j ⇒ ′a set) (f i)| ≤o |SIGMA j : J . A j |
proof−

let ?LEFT = SIGMA i : I . A (f i)
let ?RIGHT = SIGMA j : J . A j
obtain u where u-def : u = (λ(i :: ′i ,a:: ′a). (f i ,a)) by blast
have inj-on u ?LEFT ∧ u ‘?LEFT ≤ ?RIGHT

170

using assms unfolding u-def inj-on-def by auto
thus ?thesis using card-of-ordLeq by blast

qed

lemma card-of-Sigma-mono:
assumes INJ : inj-on f I and IM : f ‘ I ≤ J and

LEQ : ∀ j ∈ J . |A j | ≤o |B j |
shows |SIGMA i : I . A (f i)| ≤o |SIGMA j : J . B j |
proof−

have ∀ i ∈ I . |A(f i)| ≤o |B(f i)|
using IM LEQ by blast
hence |SIGMA i : I . A (f i)| ≤o |SIGMA i : I . B (f i)|
using card-of-Sigma-mono1 [of I] by fastforce
moreover have |SIGMA i : I . B (f i)| ≤o |SIGMA j : J . B j |
using INJ IM card-of-Sigma-mono2 by blast
ultimately show ?thesis using ordLeq-transitive by blast

qed

lemma ordLeq-Sigma-mono1 :
assumes ∀ i ∈ I . p i ≤o r i
shows |SIGMA i : I . Field(p i)| ≤o |SIGMA i : I . Field(r i)|
using assms by (auto simp add : card-of-Sigma-mono1)

lemma ordLeq-Sigma-mono:
assumes inj-on f I and f ‘ I ≤ J and

∀ j ∈ J . p j ≤o r j
shows |SIGMA i : I . Field(p(f i))| ≤o |SIGMA j : J . Field(r j)|
using assms card-of-mono2 card-of-Sigma-mono

[of f I J λ i . Field(p i) λ j . Field(r j)] by blast

lemma card-of-Sigma-cong1 :
assumes ∀ i ∈ I . |A i | =o |B i |
shows |SIGMA i : I . A i | =o |SIGMA i : I . B i |
using assms by (auto simp add : card-of-Sigma-mono1 ordIso-iff-ordLeq)

lemma card-of-Sigma-cong2 :
assumes bij-betw f (I :: ′i set) (J :: ′j set)
shows |SIGMA i : I . (A:: ′j ⇒ ′a set) (f i)| =o |SIGMA j : J . A j |
proof−

let ?LEFT = SIGMA i : I . A (f i)
let ?RIGHT = SIGMA j : J . A j
obtain u where u-def : u = (λ(i :: ′i ,a:: ′a). (f i ,a)) by blast
have bij-betw u ?LEFT ?RIGHT
using assms unfolding u-def bij-betw-def inj-on-def by auto

171

thus ?thesis using card-of-ordIso by blast
qed

lemma card-of-Sigma-cong :
assumes BIJ : bij-betw f I J and

ISO : ∀ j ∈ J . |A j | =o |B j |
shows |SIGMA i : I . A (f i)| =o |SIGMA j : J . B j |
proof−

have ∀ i ∈ I . |A(f i)| =o |B(f i)|
using ISO BIJ unfolding bij-betw-def by blast
hence |SIGMA i : I . A (f i)| =o |SIGMA i : I . B (f i)|
using card-of-Sigma-cong1 by fastforce
moreover have |SIGMA i : I . B (f i)| =o |SIGMA j : J . B j |
using BIJ card-of-Sigma-cong2 by blast
ultimately show ?thesis using ordIso-transitive by blast

qed

lemma ordIso-Sigma-cong1 :
assumes ∀ i ∈ I . p i =o r i
shows |SIGMA i : I . Field(p i)| =o |SIGMA i : I . Field(r i)|
using assms by (auto simp add : card-of-Sigma-cong1)

lemma ordLeq-Sigma-cong :
assumes bij-betw f I J and

∀ j ∈ J . p j =o r j
shows |SIGMA i : I . Field(p(f i))| =o |SIGMA j : J . Field(r j)|
using assms card-of-cong card-of-Sigma-cong

[of f I J λ j . Field(p j) λ j . Field(r j)] by blast

corollary card-of-Sigma-Times:
∀ i ∈ I . |A i | ≤o |B | =⇒ |SIGMA i : I . A i | ≤o |I × B |
using card-of-Sigma-mono1 [of I A λi . B] .

corollary ordLeq-Sigma-Times:
∀ i ∈ I . p i ≤o r =⇒ |SIGMA i : I . Field (p i)| ≤o |I × (Field r)|
by (auto simp add : card-of-Sigma-Times)

lemma card-of-UNION-Sigma:
|
⋃

i ∈ I . A i | ≤o |SIGMA i : I . A i |
using UNION-inj-on-Sigma[of I A] card-of-ordLeq by blast

lemma card-of-UNION-Sigma2 :

172

assumes
!! i j . [[{i ,j} <= I ; i ∼= j]] =⇒ A i Int A j = {}
shows
|
⋃

i∈I . A i | =o |Sigma I A|
proof−

let ?L =
⋃

i∈I . A i let ?R = Sigma I A
have |?L| <=o |?R| using card-of-UNION-Sigma .
moreover have |?R| <=o |?L|
proof−

have inj-on snd ?R
unfolding inj-on-def using assms by auto
moreover have snd ‘ ?R <= ?L by auto
ultimately show ?thesis using card-of-ordLeq by blast

qed
ultimately show ?thesis by(simp add : ordIso-iff-ordLeq)

qed

lemma card-of-bool :
assumes a1 6= a2
shows |UNIV ::bool set | =o |{a1 ,a2}|
proof−

let ?f = λ bl . case bl of True ⇒ a1 | False ⇒ a2
have bij-betw ?f UNIV {a1 ,a2}
proof−
{fix bl1 and bl2 assume ?f bl1 = ?f bl2
hence bl1 = bl2 using assms by (case-tac bl1 , case-tac bl2 , auto)
}
moreover
{fix bl have ?f bl ∈ {a1 ,a2} by (case-tac bl , auto)
}
moreover
{fix a assume ∗: a ∈ {a1 ,a2}
have a ∈ ?f ‘ UNIV
proof(cases a = a1)

assume a = a1
hence ?f True = a by auto thus ?thesis by blast

next
assume a 6= a1 hence a = a2 using ∗ by auto
hence ?f False = a by auto thus ?thesis by blast

qed
}
ultimately show ?thesis unfolding bij-betw-def inj-on-def by auto

qed
thus ?thesis using card-of-ordIso by blast

qed

lemma card-of-Plus-Times-aux :

173

assumes A2 : a1 6= a2 ∧ {a1 ,a2} ≤ A and
LEQ : |A| ≤o |B |

shows |A <+> B | ≤o |A × B |
proof−

have 1 : |UNIV ::bool set | ≤o |A|
using A2 card-of-mono1 [of {a1 ,a2}] card-of-bool [of a1 a2]

ordIso-ordLeq-trans[of |UNIV ::bool set |] by blast

have |A <+> B | ≤o |B <+> B |
using LEQ card-of-Plus-mono1 by blast
moreover have |B <+> B | =o |B × (UNIV ::bool set)|
using card-of-Plus-Times-bool by blast
moreover have |B × (UNIV ::bool set)| ≤o |B × A|
using 1 by simp
moreover have |B × A| =o |A × B |
using card-of-Times-commute by blast
ultimately show |A <+> B | ≤o |A × B |
using ordLeq-ordIso-trans[of |A <+> B | |B <+> B | |B × (UNIV ::bool set)|]

ordLeq-transitive[of |A <+> B | |B × (UNIV ::bool set)| |B × A|]
ordLeq-ordIso-trans[of |A <+> B | |B × A| |A × B |]

by blast
qed

lemma card-of-Plus-Times:
assumes A2 : a1 6= a2 ∧ {a1 ,a2} ≤ A and

B2 : b1 6= b2 ∧ {b1 ,b2} ≤ B
shows |A <+> B | ≤o |A × B |
proof−
{assume |A| ≤o |B |
hence ?thesis using assms by (auto simp add : card-of-Plus-Times-aux)
}
moreover
{assume |B | ≤o |A|
hence |B <+> A| ≤o |B × A|
using assms by (auto simp add : card-of-Plus-Times-aux)
hence ?thesis
using card-of-Plus-commute card-of-Times-commute

ordIso-ordLeq-trans ordLeq-ordIso-trans by blast
}
ultimately show ?thesis
using card-of-Well-order [of A] card-of-Well-order [of B]

ordLeq-total [of |A|] by blast
qed

corollary Plus-into-Times:
assumes A2 : a1 6= a2 ∧ {a1 ,a2} ≤ A and

B2 : b1 6= b2 ∧ {b1 ,b2} ≤ B

174

shows ∃ f . inj-on f (A <+> B) ∧ f ‘ (A <+> B) ≤ A × B
using assms by (auto simp add : card-of-Plus-Times card-of-ordLeq)

corollary Plus-into-Times-types:
assumes A2 : (a1 :: ′a) 6= a2 and B2 : (b1 :: ′b) 6= b2
shows ∃ (f :: ′a + ′b ⇒ ′a ∗ ′b). inj f
using assms Plus-into-Times[of a1 a2 UNIV b1 b2 UNIV]
by auto

lemma card-of-ordLeq-finite:
assumes |A| ≤o |B | and finite B
shows finite A
using assms unfolding ordLeq-def
using embed-inj-on[of |A| |B |] embed-Field [of |A| |B |]

Field-card-of [of A] Field-card-of [of B] inj-on-finite[of - A B] by fastforce

lemma card-of-ordLeq-infinite:
assumes |A| ≤o |B | and infinite A
shows infinite B
using assms card-of-ordLeq-finite by auto

lemma card-of-ordIso-finite[simp]:
assumes |A| =o |B |
shows finite A = finite B
using assms unfolding ordIso-def iso-def-raw
by (auto simp add : bij-betw-finite)

lemma card-of-ordIso-finite-Field :
assumes Card-order r and r =o |A|
shows finite(Field r) = finite A
using assms card-of-Field-ordIso card-of-ordIso-finite ordIso-equivalence by blast

8.4 Cardinals versus set operations involving infinite sets

Here we show that, for infinite sets, most set-theoretic constructions do not
increase the cardinality. The cornerstone for this is theorem Card-order-Times-same-infinite,
which states that self-product does not increase cardinality – the proof of
this fact adapts a standard set-theoretic argument, as presented, e.g., in the
proof of theorem 1.5.11 at page 47 in [1]. Then everything else follows fairly
easily.

lemma infinite-iff-card-of-nat :
infinite A = (|UNIV ::nat set | ≤o |A|)
by (auto simp add : infinite-iff-countable-subset card-of-ordLeq)

175

lemma finite-iff-cardOf-nat :
finite A = (|A| <o |UNIV :: nat set |)
using infinite-iff-card-of-nat [of A]
not-ordLeq-iff-ordLess[of |A| |UNIV :: nat set |] by fastforce

lemma finite-ordLess-infinite2 [simp]:
assumes finite A and infinite B
shows |A| <o |B |
using assms
finite-ordLess-infinite[of |A| |B |]
card-of-Well-order [of A] card-of-Well-order [of B]
Field-card-of [of A] Field-card-of [of B] by auto

The next two results correspond to the ZF fact that all infinite cardinals are
limit ordinals:

lemma Card-order-infinite-not-under :
assumes CARD : Card-order r and INF : infinite (Field r)
shows ¬ (∃ a. Field r = under r a)
proof(auto)

have 0 : Well-order r ∧ wo-rel r ∧ Refl r
using CARD unfolding wo-rel-def card-order-on-def order-on-defs by auto
fix a assume ∗: Field r = under r a
show False
proof(cases a ∈ Field r)

assume Case1 : a /∈ Field r
hence under r a = {} unfolding Field-def rel .under-def by auto
thus False using INF ∗ by auto

next
let ?r ′ = Restr r (underS r a)
assume Case2 : a ∈ Field r
hence 1 : under r a = underS r a ∪ {a} ∧ a /∈ underS r a
using 0 rel .Refl-under-underS rel .underS-notIn by fastforce
have 2 : ofilter r (underS r a) ∧ underS r a < Field r
using 0 wo-rel .underS-ofilter ∗ 1 Case2 by auto
hence ?r ′ <o r using 0 using ofilter-ordLess by blast
moreover
have Field ?r ′ = underS r a ∧ Well-order ?r ′

using 2 0 Field-Restr-ofilter [of r] Well-order-Restr [of r] by blast
ultimately have |underS r a| <o r using ordLess-Field [of ?r ′] by auto
moreover have |under r a| =o r using ∗ CARD card-of-Field-ordIso[of r] by

auto
ultimately have |underS r a| <o |under r a|
using ordIso-symmetric ordLess-ordIso-trans by blast
moreover
{have ∃ f . bij-betw f (under r a) (underS r a)
using infinite-imp-bij-betw [of Field r a] INF ∗ 1 by auto

176

hence |under r a| =o |underS r a| using card-of-ordIso by blast
}
ultimately show False using not-ordLess-ordIso ordIso-symmetric by blast

qed
qed

lemma infinite-Card-order-limit :
assumes r : Card-order r and infinite (Field r)
and a: a : Field r
shows EX b : Field r . a 6= b ∧ (a,b) : r
proof−

have Field r 6= under r a
using assms Card-order-infinite-not-under by blast
moreover have under r a ≤ Field r
using rel .under-Field .
ultimately have under r a < Field r by blast
then obtain b where 1 : b : Field r ∧ ∼ (b,a) : r
unfolding rel .under-def by blast
moreover have ba: b 6= a
using 1 r unfolding card-order-on-def well-order-on-def
linear-order-on-def partial-order-on-def preorder-on-def refl-on-def by auto
ultimately have (a,b) : r
using a r unfolding card-order-on-def well-order-on-def linear-order-on-def
total-on-def by blast
thus ?thesis using 1 ba by auto

qed

theorem Card-order-Times-same-infinite:
assumes CO : Card-order r and INF : infinite(Field r)
shows |Field r × Field r | ≤o r
proof−

obtain phi where phi-def :
phi = (λr :: ′a rel . Card-order r ∧ infinite(Field r) ∧

¬ |Field r × Field r | ≤o r) by blast
have temp1 : ∀ r . phi r −→ Well-order r
unfolding phi-def card-order-on-def by auto
have Ft : ¬(∃ r . phi r)
proof

assume ∃ r . phi r
hence {r . phi r} 6= {} ∧ {r . phi r} ≤ {r . Well-order r}
using temp1 by auto
then obtain r where 1 : phi r and 2 : ∀ r ′. phi r ′ −→ r ≤o r ′ and

3 : Card-order r ∧ Well-order r
using exists-minim-Well-order [of {r . phi r}] temp1 phi-def by blast
let ?A = Field r let ?r ′ = bsqr r
have 4 : Well-order ?r ′ ∧ Field ?r ′ = ?A × ?A ∧ |?A| =o r
using 3 bsqr-Well-order Field-bsqr card-of-Field-ordIso by blast

177

have 5 : Card-order |?A × ?A| ∧ Well-order |?A × ?A|
using card-of-Card-order card-of-Well-order by blast

have r <o |?A × ?A|
using 1 3 5 ordLess-or-ordLeq unfolding phi-def by blast
moreover have |?A × ?A| ≤o ?r ′

using card-of-least [of ?A × ?A] 4 by auto
ultimately have r <o ?r ′ using ordLess-ordLeq-trans by auto
then obtain f where 6 : embed r ?r ′ f and 7 : ¬ bij-betw f ?A (?A × ?A)
unfolding ordLess-def embedS-def-raw
by (auto simp add : Field-bsqr)
let ?B = f ‘ ?A
have |?A| =o |?B |
using 3 6 embed-inj-on inj-on-imp-bij-betw card-of-ordIso by blast
hence 8 : r =o |?B | using 4 ordIso-transitive ordIso-symmetric by blast

have ofilter ?r ′ ?B
using 6 embed-Field-ofilter 3 4 by blast
hence ofilter ?r ′ ?B ∧ ?B 6= ?A × ?A ∧ ?B 6= Field ?r ′

using 7 unfolding bij-betw-def using 6 3 embed-inj-on 4 by auto
hence temp2 : ofilter ?r ′ ?B ∧ ?B < ?A × ?A
using 4 wo-rel-def [of ?r ′] wo-rel .ofilter-def [of ?r ′ ?B] by blast
have ¬ (∃ a. Field r = under r a)
using 1 unfolding phi-def using Card-order-infinite-not-under [of r] by auto
then obtain A1 where temp3 : ofilter r A1 ∧ A1 < ?A and 9 : ?B ≤ A1 ×

A1
using temp2 3 bsqr-ofilter [of r ?B] by blast
hence |?B | ≤o |A1 × A1 | using card-of-mono1 by blast
hence 10 : r ≤o |A1 × A1 | using 8 ordIso-ordLeq-trans by blast
let ?r1 = Restr r A1
have ?r1 <o r using temp3 ofilter-ordLess 3 by blast
moreover
{have well-order-on A1 ?r1 using 3 temp3 well-order-on-Restr by blast
hence |A1 | ≤o ?r1 using 3 Well-order-Restr card-of-least by blast
}
ultimately have 11 : |A1 | <o r using ordLeq-ordLess-trans by blast

have infinite (Field r) using 1 unfolding phi-def by simp
hence infinite ?B using 8 3 card-of-ordIso-finite-Field [of r ?B] by blast
hence infinite A1 using 9 infinite-super finite-cartesian-product by blast
moreover have temp4 : Field |A1 | = A1 ∧ Well-order |A1 | ∧ Card-order |A1 |
using card-of-Card-order [of A1] card-of-Well-order [of A1] by auto
moreover have ¬ r ≤o | A1 |
using temp4 11 3 using not-ordLeq-iff-ordLess by blast
ultimately have infinite(Field |A1 |) ∧ Card-order |A1 | ∧ ¬ r ≤o | A1 | by

simp
hence |Field |A1 | × Field |A1 | | ≤o |A1 |
using 2 unfolding phi-def by blast
hence |A1 × A1 | ≤o |A1 | using temp4 by auto

178

hence r ≤o |A1 | using 10 ordLeq-transitive by blast
thus False using 11 not-ordLess-ordLeq by auto

qed
thus ?thesis using assms unfolding phi-def by blast

qed

corollary card-of-Times-same-infinite[simp]:
assumes infinite A
shows |A × A| =o |A|
proof−

let ?r = |A|
have Field ?r = A ∧ Card-order ?r
using Field-card-of card-of-Card-order [of A] by fastforce
hence |A × A| ≤o |A|
using Card-order-Times-same-infinite[of ?r] assms by auto
thus ?thesis using card-of-Times3 ordIso-iff-ordLeq by blast

qed

corollary Times-same-infinite-bij-betw :
assumes infinite A
shows ∃ f . bij-betw f (A × A) A
using assms by (auto simp add : card-of-ordIso)

corollary Times-same-infinite-bij-betw-types:
assumes INF : infinite(UNIV :: ′a set)
shows ∃ (f ::(′a ∗ ′a) => ′a). bij f
using assms Times-same-infinite-bij-betw [of UNIV :: ′a set]
using bij-bij-betw by auto

lemma card-of-Times-infinite:
assumes INF : infinite A and NE : B 6= {} and LEQ : |B | ≤o |A|
shows |A × B | =o |A| ∧ |B × A| =o |A|
proof−

have |A| ≤o |A × B | ∧ |A| ≤o |B × A|
using assms by auto
moreover
{have |A × B | ≤o |A × A| ∧ |B × A| ≤o |A × A|
using LEQ card-of-Times-mono1 card-of-Times-mono2 by blast
moreover have |A × A| =o |A| using INF card-of-Times-same-infinite by

blast
ultimately have |A × B | ≤o |A| ∧ |B × A| ≤o |A|
using ordLeq-ordIso-trans[of |A × B |] ordLeq-ordIso-trans[of |B × A|] by auto
}
ultimately show ?thesis by (auto simp add : ordIso-iff-ordLeq)

qed

179

corollary card-of-Times-infinite-simps[simp]:
[[infinite A; B 6= {}; |B | ≤o |A|]] =⇒ |A × B | =o |A|
[[infinite A; B 6= {}; |B | ≤o |A|]] =⇒ |A| =o |A × B |
[[infinite A; B 6= {}; |B | ≤o |A|]] =⇒ |B × A| =o |A|
[[infinite A; B 6= {}; |B | ≤o |A|]] =⇒ |A| =o |B × A|
by(auto simp add : card-of-Times-infinite ordIso-symmetric)

corollary Card-order-Times-infinite:
assumes INF : infinite(Field r) and CARD : Card-order r and

NE : Field p 6= {} and LEQ : p ≤o r
shows | (Field r) × (Field p) | =o r ∧ | (Field p) × (Field r) | =o r
proof−

have |Field r × Field p| =o |Field r | ∧ |Field p × Field r | =o |Field r |
using assms by (auto simp add : card-of-Times-infinite)
thus ?thesis
using assms card-of-Field-ordIso[of r]

ordIso-transitive[of |Field r × Field p|]
ordIso-transitive[of - |Field r |] by blast

qed

corollary Times-infinite-bij-betw :
assumes INF : infinite A and NE : B 6= {} and INJ : inj-on g B ∧ g ‘ B ≤ A
shows (∃ f . bij-betw f (A × B) A) ∧ (∃ h. bij-betw h (B × A) A)
proof−

have |B | ≤o |A| using INJ card-of-ordLeq by blast
thus ?thesis using INF NE
by (auto simp add : card-of-ordIso card-of-Times-infinite)

qed

corollary Times-infinite-bij-betw-types:
assumes INF : infinite(UNIV :: ′a set) and

BIJ : inj (g :: ′b ⇒ ′a)
shows (∃ (f ::(′b ∗ ′a) => ′a). bij f) ∧ (∃ (h::(′a ∗ ′b) => ′a). bij h)
using assms Times-infinite-bij-betw [of UNIV :: ′a set UNIV :: ′b set g]
using bij-bij-betw by auto

lemma card-of-Sigma-ordLeq-infinite:
assumes INF : infinite B and

LEQ-I : |I | ≤o |B | and LEQ : ∀ i ∈ I . |A i | ≤o |B |
shows |SIGMA i : I . A i | ≤o |B |
proof(cases I = {}, simp)

assume ∗: I 6= {}
have |SIGMA i : I . A i | ≤o |I × B |
using LEQ card-of-Sigma-Times by blast

180

moreover have |I × B | =o |B |
using INF ∗ LEQ-I by (auto simp add : card-of-Times-infinite)
ultimately show ?thesis using ordLeq-ordIso-trans by blast

qed

lemma card-of-Sigma-ordLeq-infinite-Field :
assumes INF : infinite (Field r) and r : Card-order r and

LEQ-I : |I | ≤o r and LEQ : ∀ i ∈ I . |A i | ≤o r
shows |SIGMA i : I . A i | ≤o r
proof−

let ?B = Field r
have 1 : r =o |?B | ∧ |?B | =o r using r card-of-Field-ordIso
ordIso-symmetric by blast
hence |I | ≤o |?B | ∀ i ∈ I . |A i | ≤o |?B |
using LEQ-I LEQ ordLeq-ordIso-trans by blast+
hence |SIGMA i : I . A i | ≤o |?B | using INF LEQ
card-of-Sigma-ordLeq-infinite by blast
thus ?thesis using 1 ordLeq-ordIso-trans by blast

qed

lemma card-of-Times-ordLeq-infinite:
[[infinite C ; |A| ≤o |C |; |B | ≤o |C |]]
=⇒ |A <∗> B | ≤o |C |

by(simp add : card-of-Sigma-ordLeq-infinite)

lemma card-of-Times-ordLeq-infinite-Field :
[[infinite (Field r); |A| ≤o r ; |B | ≤o r ; Card-order r]]
=⇒ |A <∗> B | ≤o r

by(simp add : card-of-Sigma-ordLeq-infinite-Field)

lemma card-of-UNION-ordLeq-infinite:
assumes INF : infinite B and

LEQ-I : |I | ≤o |B | and LEQ : ∀ i ∈ I . |A i | ≤o |B |
shows |

⋃
i ∈ I . A i | ≤o |B |

proof(cases I = {}, simp)
assume ∗: I 6= {}
have |

⋃
i ∈ I . A i | ≤o |SIGMA i : I . A i |

using card-of-UNION-Sigma by blast
moreover have |SIGMA i : I . A i | ≤o |B |
using assms card-of-Sigma-ordLeq-infinite by blast
ultimately show ?thesis using ordLeq-transitive by blast

qed

corollary card-of-UNION-ordLeq-infinite-Field :

181

assumes INF : infinite (Field r) and r : Card-order r and
LEQ-I : |I | ≤o r and LEQ : ∀ i ∈ I . |A i | ≤o r

shows |
⋃

i ∈ I . A i | ≤o r
proof−

let ?B = Field r
have 1 : r =o |?B | ∧ |?B | =o r using r card-of-Field-ordIso
ordIso-symmetric by blast
hence |I | ≤o |?B | ∀ i ∈ I . |A i | ≤o |?B |
using LEQ-I LEQ ordLeq-ordIso-trans by blast+
hence |

⋃
i ∈ I . A i | ≤o |?B | using INF LEQ

card-of-UNION-ordLeq-infinite by blast
thus ?thesis using 1 ordLeq-ordIso-trans by blast

qed

lemma card-of-Plus-infinite1 [simp]:
assumes INF : infinite A and LEQ : |B | ≤o |A|
shows |A <+> B | =o |A|
proof(cases B = {}, simp add : card-of-Plus-empty1 card-of-Plus-empty2 ordIso-symmetric)

let ?Inl = Inl :: ′a ⇒ ′a + ′b let ?Inr = Inr :: ′b ⇒ ′a + ′b
assume ∗: B 6= {}
then obtain b1 where 1 : b1 ∈ B by blast
show ?thesis
proof(cases B = {b1})

assume Case1 : B = {b1}
have 2 : bij-betw ?Inl A ((?Inl ‘ A))
unfolding bij-betw-def inj-on-def by auto
hence 3 : infinite (?Inl ‘ A)
using INF bij-betw-finite[of ?Inl A] by blast
let ?A ′ = ?Inl ‘ A ∪ {?Inr b1}
obtain g where bij-betw g (?Inl ‘ A) ?A ′

using 3 infinite-imp-bij-betw2 [of ?Inl ‘ A] by auto
moreover have ?A ′ = A <+> B using Case1 by blast
ultimately have bij-betw g (?Inl ‘ A) (A <+> B) by simp
hence bij-betw (g o ?Inl) A (A <+> B)
using 2 by (auto simp add : bij-betw-comp)
thus ?thesis using card-of-ordIso ordIso-symmetric by blast

next
assume Case2 : B 6= {b1}
with ∗ 1 obtain b2 where 3 : b1 6= b2 ∧ {b1 ,b2} ≤ B by fastforce
obtain f where inj-on f B ∧ f ‘ B ≤ A
using LEQ card-of-ordLeq [of B] by fastforce
with 3 have f b1 6= f b2 ∧ {f b1 , f b2} ≤ A
unfolding inj-on-def by auto
with 3 have |A <+> B | ≤o |A × B |
by (auto simp add : card-of-Plus-Times)
moreover have |A × B | =o |A|
using assms ∗ by simp
ultimately have |A <+> B | ≤o |A| using ordLeq-ordIso-trans by auto

182

thus ?thesis using card-of-Plus1 ordIso-iff-ordLeq by blast
qed

qed

lemma card-of-Plus-infinite2 [simp]:
assumes INF : infinite A and LEQ : |B | ≤o |A|
shows |B <+> A| =o |A|
using assms card-of-Plus-commute card-of-Plus-infinite1
ordIso-equivalence by blast

lemma card-of-Plus-infinite:
assumes INF : infinite A and LEQ : |B | ≤o |A|
shows |A <+> B | =o |A| ∧ |B <+> A| =o |A|
using assms by auto

corollary Card-order-Plus-infinite:
assumes INF : infinite(Field r) and CARD : Card-order r and

LEQ : p ≤o r
shows | (Field r) <+> (Field p) | =o r ∧ | (Field p) <+> (Field r) | =o r
proof−

have | Field r <+> Field p | =o | Field r | ∧
| Field p <+> Field r | =o | Field r |

using assms by (auto simp add : card-of-Plus-infinite)
thus ?thesis
using assms card-of-Field-ordIso[of r]

ordIso-transitive[of |Field r <+> Field p|]
ordIso-transitive[of - |Field r |] by blast

qed

corollary Plus-infinite-bij-betw :
assumes INF : infinite A and INJ : inj-on g B ∧ g ‘ B ≤ A
shows (∃ f . bij-betw f (A <+> B) A) ∧ (∃ h. bij-betw h (B <+> A) A)
proof−

have |B | ≤o |A| using INJ card-of-ordLeq by blast
thus ?thesis using INF
by (auto simp add : card-of-ordIso)

qed

corollary Plus-infinite-bij-betw-types:
assumes INF : infinite(UNIV :: ′a set) and

BIJ : inj (g :: ′b ⇒ ′a)
shows (∃ (f ::(′b + ′a) => ′a). bij f) ∧ (∃ (h::(′a + ′b) => ′a). bij h)
using assms Plus-infinite-bij-betw [of UNIV :: ′a set g UNIV :: ′b set]
using bij-bij-betw by auto

183

lemma card-of-Un-infinite:
assumes INF : infinite A and LEQ : |B | ≤o |A|
shows |A ∪ B | =o |A| ∧ |B ∪ A| =o |A|
proof−

have |A ∪ B | ≤o |A <+> B | by simp
moreover have |A <+> B | =o |A|
using assms by simp
ultimately have |A ∪ B | ≤o |A| using ordLeq-ordIso-trans by blast
hence |A ∪ B | =o |A| using card-of-Un1 ordIso-iff-ordLeq by blast
thus ?thesis using Un-commute[of B A] by auto

qed

lemma card-of-Un-infinite-simps[simp]:
[[infinite A; |B | ≤o |A|]] =⇒ |A ∪ B | =o |A|
[[infinite A; |B | ≤o |A|]] =⇒ |B ∪ A| =o |A|
using card-of-Un-infinite by auto

corollary Card-order-Un-infinite:
assumes INF : infinite(Field r) and CARD : Card-order r and

LEQ : p ≤o r
shows | (Field r) ∪ (Field p) | =o r ∧ | (Field p) ∪ (Field r) | =o r
proof−

have | Field r ∪ Field p | =o | Field r | ∧
| Field p ∪ Field r | =o | Field r |

using assms by (auto simp add : card-of-Un-infinite)
thus ?thesis
using assms card-of-Field-ordIso[of r]

ordIso-transitive[of |Field r ∪ Field p|]
ordIso-transitive[of - |Field r |] by blast

qed

lemma card-of-Un-diff-infinite:
assumes INF : infinite A and LESS : |B | <o |A|
shows |A − B | =o |A|
proof−

obtain C where C-def : C = A − B by blast
have |A ∪ B | =o |A|
using assms ordLeq-iff-ordLess-or-ordIso card-of-Un-infinite by blast
moreover have C ∪ B = A ∪ B unfolding C-def by auto
ultimately have 1 : |C ∪ B | =o |A| by auto

{assume ∗: |C | ≤o |B |
moreover
{assume ∗∗: finite B
hence finite C

184

using card-of-ordLeq-finite ∗ by blast
hence False using ∗∗ INF card-of-ordIso-finite 1 by blast
}
hence infinite B by auto
ultimately have False
using card-of-Un-infinite 1 ordIso-equivalence

LESS not-ordLess-ordIso by blast
}
hence 2 : |B | ≤o |C | using card-of-Well-order ordLeq-total by blast
{assume ∗: finite C

hence finite B using card-of-ordLeq-finite 2 by blast
hence False using ∗ INF card-of-ordIso-finite 1 by blast

}
hence infinite C by auto
hence |C | =o |A|
using card-of-Un-infinite 1 2 ordIso-equivalence by blast
thus ?thesis unfolding C-def .

qed

corollary subset-ordLeq-diff-infinite:
assumes INF : infinite B and SUB : A ≤ B and LESS : |A| <o |B |
shows infinite (B − A)
using assms card-of-Un-diff-infinite card-of-ordIso-finite by blast

lemma card-of-Times-ordLess-infinite[simp]:
assumes INF : infinite C and

LESS1 : |A| <o |C | and LESS2 : |B | <o |C |
shows |A × B | <o |C |
proof(cases A = {} ∨ B = {})

assume Case1 : A = {} ∨ B = {}
hence A × B = {} by blast
moreover have C 6= {} using
LESS1 card-of-empty5 by blast
ultimately show ?thesis by(auto simp add : card-of-empty4)

next
assume Case2 : ¬(A = {} ∨ B = {})
{assume ∗: |C | ≤o |A × B |
hence infinite (A × B) using INF card-of-ordLeq-finite by blast
hence 1 : infinite A ∨ infinite B using finite-cartesian-product by blast
{assume Case21 : |A| ≤o |B |
hence infinite B using 1 card-of-ordLeq-finite by blast
hence |A × B | =o |B | using Case2 Case21
by (auto simp add : card-of-Times-infinite)
hence False using LESS2 not-ordLess-ordLeq ∗ ordLeq-ordIso-trans by blast
}
moreover
{assume Case22 : |B | ≤o |A|

185

hence infinite A using 1 card-of-ordLeq-finite by blast
hence |A × B | =o |A| using Case2 Case22
by (auto simp add : card-of-Times-infinite)
hence False using LESS1 not-ordLess-ordLeq ∗ ordLeq-ordIso-trans by blast
}
ultimately have False using ordLeq-total card-of-Well-order [of A]
card-of-Well-order [of B] by blast
}
thus ?thesis using ordLess-or-ordLeq [of |A × B | |C |]
card-of-Well-order [of A × B] card-of-Well-order [of C] by auto

qed

lemma card-of-Times-ordLess-infinite-Field [simp]:
assumes INF : infinite (Field r) and r : Card-order r and

LESS1 : |A| <o r and LESS2 : |B | <o r
shows |A × B | <o r
proof−

let ?C = Field r
have 1 : r =o |?C | ∧ |?C | =o r using r card-of-Field-ordIso
ordIso-symmetric by blast
hence |A| <o |?C | |B | <o |?C |
using LESS1 LESS2 ordLess-ordIso-trans by blast+
hence |A <∗> B | <o |?C | using INF
card-of-Times-ordLess-infinite by blast
thus ?thesis using 1 ordLess-ordIso-trans by blast

qed

lemma card-of-Plus-ordLess-infinite[simp]:
assumes INF : infinite C and

LESS1 : |A| <o |C | and LESS2 : |B | <o |C |
shows |A <+> B | <o |C |
proof(cases A = {} ∨ B = {})

assume Case1 : A = {} ∨ B = {}
hence |A| =o |A <+> B | ∨ |B | =o |A <+> B |
using card-of-Plus-empty1 card-of-Plus-empty2 by blast
hence |A <+> B | =o |A| ∨ |A <+> B | =o |B |
using ordIso-symmetric[of |A|] ordIso-symmetric[of |B |] by blast
thus ?thesis using LESS1 LESS2

ordIso-ordLess-trans[of |A <+> B | |A|]
ordIso-ordLess-trans[of |A <+> B | |B |] by blast

next
assume Case2 : ¬(A = {} ∨ B = {})
{assume ∗: |C | ≤o |A <+> B |
hence infinite (A <+> B) using INF card-of-ordLeq-finite by blast
hence 1 : infinite A ∨ infinite B using finite-Plus by blast
{assume Case21 : |A| ≤o |B |
hence infinite B using 1 card-of-ordLeq-finite by blast

186

hence |A <+> B | =o |B | using Case2 Case21
by (auto simp add : card-of-Plus-infinite)
hence False using LESS2 not-ordLess-ordLeq ∗ ordLeq-ordIso-trans by blast
}
moreover
{assume Case22 : |B | ≤o |A|
hence infinite A using 1 card-of-ordLeq-finite by blast
hence |A <+> B | =o |A| using Case2 Case22
by (auto simp add : card-of-Plus-infinite)
hence False using LESS1 not-ordLess-ordLeq ∗ ordLeq-ordIso-trans by blast
}
ultimately have False using ordLeq-total card-of-Well-order [of A]
card-of-Well-order [of B] by blast
}
thus ?thesis using ordLess-or-ordLeq [of |A <+> B | |C |]
card-of-Well-order [of A <+> B] card-of-Well-order [of C] by auto

qed

lemma card-of-Plus-ordLess-infinite-Field [simp]:
assumes INF : infinite (Field r) and r : Card-order r and

LESS1 : |A| <o r and LESS2 : |B | <o r
shows |A <+> B | <o r
proof−

let ?C = Field r
have 1 : r =o |?C | ∧ |?C | =o r using r card-of-Field-ordIso
ordIso-symmetric by blast
hence |A| <o |?C | |B | <o |?C |
using LESS1 LESS2 ordLess-ordIso-trans by blast+
hence |A <+> B | <o |?C | using INF
card-of-Plus-ordLess-infinite by blast
thus ?thesis using 1 ordLess-ordIso-trans by blast

qed

lemma card-of-Un-ordLess-infinite[simp]:
assumes INF : infinite C and

LESS1 : |A| <o |C | and LESS2 : |B | <o |C |
shows |A ∪ B | <o |C |
using assms card-of-Plus-ordLess-infinite card-of-Un-Plus-ordLeq

ordLeq-ordLess-trans by blast

lemma card-of-Un-ordLess-infinite-Field [simp]:
assumes INF : infinite (Field r) and r : Card-order r and

LESS1 : |A| <o r and LESS2 : |B | <o r
shows |A Un B | <o r
proof−

let ?C = Field r

187

have 1 : r =o |?C | ∧ |?C | =o r using r card-of-Field-ordIso
ordIso-symmetric by blast
hence |A| <o |?C | |B | <o |?C |
using LESS1 LESS2 ordLess-ordIso-trans by blast+
hence |A Un B | <o |?C | using INF
card-of-Un-ordLess-infinite by blast
thus ?thesis using 1 ordLess-ordIso-trans by blast

qed

lemma card-of-Un-singl-ordLess-infinite1 :
assumes infinite B and |A| <o |B |
shows |{a} Un A| <o |B |
proof−

have |{a}| <o |B | using assms by auto
thus ?thesis using assms card-of-Un-ordLess-infinite[of B] by fastforce

qed

lemma card-of-Un-singl-ordLess-infinite:
assumes infinite B
shows (|A| <o |B |) = (|{a} Un A| <o |B |)
using assms card-of-Un-singl-ordLess-infinite1 [of B A]
proof(auto)

assume |insert a A| <o |B |
moreover have |A| <=o |insert a A| using card-of-mono1 [of A] by blast
ultimately show |A| <o |B | using ordLeq-ordLess-trans by blast

qed

8.5 Cardinals versus lists

The next is an auxiliary operator, which shall be used for inductive proofs
of facts concerning the cardinality of List :

definition nlists :: ′a set ⇒ nat ⇒ ′a list set
where nlists A n ≡ {l . set l ≤ A ∧ length l = n}

lemma lists-def2 :
lists A = {l . set l ≤ A}
using in-listsI by blast

lemma lists-UNION-nlists: lists A = (
⋃

n. nlists A n)
unfolding lists-def2 nlists-def by blast

lemma card-of-lists: |A| ≤o |lists A|
proof−

let ?h = λ a. [a]

188

have inj-on ?h A ∧ ?h ‘ A ≤ lists A
unfolding inj-on-def lists-def2 by auto
thus ?thesis using card-of-ordLeq by blast

qed

lemma Card-order-lists: Card-order r =⇒ r ≤o |lists(Field r) |
using card-of-lists card-of-Field-ordIso ordIso-ordLeq-trans ordIso-symmetric by
blast

lemma Union-set-lists:
Union(set ‘ (lists A)) = A
unfolding lists-def2 proof(auto)

fix a assume a ∈ A
hence set [a] ≤ A ∧ a ∈ set [a] by auto
thus ∃ l . set l ≤ A ∧ a ∈ set l by blast

qed

lemma inj-on-map-lists:
assumes inj-on f A
shows inj-on (map f) (lists A)
using assms Union-set-lists[of A] inj-on-mapI [of f lists A] by auto

lemma map-lists-mono:
assumes f ‘ A ≤ B
shows (map f) ‘ (lists A) ≤ lists B
using assms unfolding lists-def2 by (auto, blast)

lemma map-lists-surjective:
assumes f ‘ A = B
shows (map f) ‘ (lists A) = lists B
using assms unfolding lists-def2
proof (auto, blast)

fix l ′ assume ∗: set l ′ ≤ f ‘ A
have set l ′ ≤ f ‘ A −→ l ′ ∈ map f ‘ {l . set l ≤ A}
proof(induct l ′, auto)

fix l a
assume a ∈ A and set l ≤ A and

IH : f ‘ (set l) ≤ f ‘ A
hence set (a # l) ≤ A by auto
hence map f (a # l) ∈ map f ‘ {l . set l ≤ A} by blast
thus f a # map f l ∈ map f ‘ {l . set l ≤ A} by auto

qed
thus l ′ ∈ map f ‘ {l . set l ≤ A} using ∗ by auto

qed

189

lemma bij-betw-map-lists:
assumes bij-betw f A B
shows bij-betw (map f) (lists A) (lists B)
using assms unfolding bij-betw-def
by(auto simp add : inj-on-map-lists map-lists-surjective)

lemma card-of-lists-mono[simp]:
assumes |A| ≤o |B |
shows |lists A| ≤o |lists B |
proof−

obtain f where inj-on f A ∧ f ‘ A ≤ B
using assms card-of-ordLeq [of A B] by auto
hence inj-on (map f) (lists A) ∧ (map f) ‘ (lists A) ≤ (lists B)
by (auto simp add : inj-on-map-lists map-lists-mono)
thus ?thesis using card-of-ordLeq [of lists A] by auto

qed

lemma ordIso-lists-mono:
assumes r ≤o r ′

shows |lists(Field r)| ≤o |lists(Field r ′)|
using assms card-of-mono2 card-of-lists-mono by blast

lemma card-of-lists-cong [simp]:
assumes |A| =o |B |
shows |lists A| =o |lists B |
proof−

obtain f where bij-betw f A B
using assms card-of-ordIso[of A B] by auto
hence bij-betw (map f) (lists A) (lists B)
by (auto simp add : bij-betw-map-lists)
thus ?thesis using card-of-ordIso[of lists A] by auto

qed

lemma ordIso-lists-cong :
assumes r =o r ′

shows |lists(Field r)| =o |lists(Field r ′)|
using assms card-of-cong card-of-lists-cong by blast

lemma length-Suc: (∃n. length l = Suc n) = (∃ a l ′. l = a # l ′)
by(induct l , auto)

190

lemma nlists-0 : nlists A 0 = {[]}
unfolding nlists-def by auto

lemma nlists-not-empty :
assumes A 6= {}
shows nlists A n 6= {}
proof(induct n, simp add : nlists-0)

fix n assume nlists A n 6= {}
then obtain a and l where a ∈ A ∧ l ∈ nlists A n using assms by auto
hence a # l ∈ nlists A (Suc n) unfolding nlists-def by auto
thus nlists A (Suc n) 6= {} by auto

qed

lemma Nil-in-lists: [] ∈ lists A
unfolding lists-def2 by auto

lemma lists-not-empty : lists A 6= {}
using Nil-in-lists by blast

lemma card-of-nlists-Succ: |nlists A (Suc n)| =o |A × (nlists A n)|
proof−

let ?B = A × (nlists A n) let ?h = λ(a,l). a # l
have inj-on ?h ?B ∧ ?h ‘ ?B ≤ nlists A (Suc n)
unfolding inj-on-def nlists-def by auto
moreover have nlists A (Suc n) ≤ ?h ‘ ?B
proof(auto)

fix l assume l ∈ nlists A (Suc n)
hence 1 : length l = Suc n ∧ set l ≤ A unfolding nlists-def by auto
then obtain a and l ′ where 2 : l = a # l ′ using length-Suc[of l] by auto
hence a ∈ A ∧ set l ′ ≤ A ∧ length l ′ = n using 1 by auto
thus l ∈ ?h ‘ ?B using 2 unfolding nlists-def by auto

qed
ultimately have bij-betw ?h ?B (nlists A (Suc n))
unfolding bij-betw-def by auto
thus ?thesis using card-of-ordIso ordIso-symmetric by blast

qed

lemma card-of-nlists-infinite:
assumes infinite A
shows |nlists A n| ≤o |A|
proof(induct n)

have A 6= {} using assms by auto
thus |nlists A 0 | ≤o |A| by(simp add : nlists-0)

next

191

fix n assume IH : |nlists A n| ≤o |A|
have |nlists A (Suc n)| =o |A × (nlists A n)|
using card-of-nlists-Succ by blast
moreover
{have nlists A n 6= {} using assms nlists-not-empty [of A] by blast
hence |A × (nlists A n)| =o |A|
using assms IH by (auto simp add : card-of-Times-infinite)
}
ultimately show |nlists A (Suc n)| ≤o |A|
using ordIso-transitive ordIso-iff-ordLeq by blast

qed

lemma card-of-lists-infinite[simp]:
assumes infinite A
shows |lists A| =o |A|
proof−

have |lists A| ≤o |A|
using assms
by (auto simp add : lists-UNION-nlists card-of-UNION-ordLeq-infinite

infinite-iff-card-of-nat card-of-nlists-infinite)
thus ?thesis using card-of-lists ordIso-iff-ordLeq by blast

qed

lemma Card-order-lists-infinite:
assumes Card-order r and infinite(Field r)
shows |lists(Field r)| =o r
using assms card-of-lists-infinite card-of-Field-ordIso ordIso-transitive by blast

corollary lists-infinite-bij-betw :
assumes infinite A
shows ∃ f . bij-betw f (lists A) A
using assms card-of-lists-infinite card-of-ordIso by blast

corollary lists-infinite-bij-betw-types:
assumes infinite(UNIV :: ′a set)
shows ∃ (f :: ′a list ⇒ ′a). bij f
using assms assms lists-infinite-bij-betw [of UNIV :: ′a set]
using bij-bij-betw lists-UNIV by auto

8.6 Cardinals versus the set-of-finite-sets operator

definition Fpow :: ′a set ⇒ ′a set set
where Fpow A ≡ {X . X ≤ A ∧ finite X }

192

lemma Fpow-mono: A ≤ B =⇒ Fpow A ≤ Fpow B
unfolding Fpow-def by auto

lemma empty-in-Fpow : {} ∈ Fpow A
unfolding Fpow-def by auto

lemma Fpow-not-empty : Fpow A 6= {}
using empty-in-Fpow by blast

lemma Fpow-subset-Pow : Fpow A ≤ Pow A
unfolding Fpow-def by auto

lemma card-of-Fpow [simp]: |A| ≤o |Fpow A|
proof−

let ?h = λ a. {a}
have inj-on ?h A ∧ ?h ‘ A ≤ Fpow A
unfolding inj-on-def Fpow-def by auto
thus ?thesis using card-of-ordLeq by blast

qed

lemma Card-order-Fpow : Card-order r =⇒ r ≤o |Fpow(Field r) |
using card-of-Fpow card-of-Field-ordIso ordIso-ordLeq-trans ordIso-symmetric by
blast

lemma Fpow-Pow-finite: Fpow A = Pow A Int {A. finite A}
unfolding Fpow-def Pow-def by blast

lemma inj-on-image-Fpow :
assumes inj-on f A
shows inj-on (image f) (Fpow A)
using assms Fpow-subset-Pow [of A] subset-inj-on[of image f Pow A]

inj-on-image-Pow by blast

lemma image-Fpow-mono:
assumes f ‘ A ≤ B
shows (image f) ‘ (Fpow A) ≤ Fpow B
using assms by(unfold Fpow-def , auto)

lemma image-Fpow-surjective:
assumes f ‘ A = B

193

shows (image f) ‘ (Fpow A) = Fpow B
using assms proof(unfold Fpow-def , auto)

fix Y assume ∗: Y ≤ f ‘ A and ∗∗: finite Y
hence ∀ b ∈ Y . ∃ a. a ∈ A ∧ f a = b by auto
with bchoice[of Y λb a. a ∈ A ∧ f a = b]
obtain g where 1 : ∀ b ∈ Y . g b ∈ A ∧ f (g b) = b by blast
obtain X where X-def : X = g ‘ Y by blast
have f ‘ X = Y ∧ X ≤ A ∧ finite X
by(unfold X-def , force simp add : ∗∗ 1)
thus Y ∈ (image f) ‘ {X . X ≤ A ∧ finite X } by auto

qed

lemma bij-betw-image-Fpow :
assumes bij-betw f A B
shows bij-betw (image f) (Fpow A) (Fpow B)
using assms unfolding bij-betw-def
by (auto simp add : inj-on-image-Fpow image-Fpow-surjective)

lemma card-of-Fpow-mono[simp]:
assumes |A| ≤o |B |
shows |Fpow A| ≤o |Fpow B |
proof−

obtain f where inj-on f A ∧ f ‘ A ≤ B
using assms card-of-ordLeq [of A B] by auto
hence inj-on (image f) (Fpow A) ∧ (image f) ‘ (Fpow A) ≤ (Fpow B)
by (auto simp add : inj-on-image-Fpow image-Fpow-mono)
thus ?thesis using card-of-ordLeq [of Fpow A] by auto

qed

lemma ordIso-Fpow-mono:
assumes r ≤o r ′

shows |Fpow(Field r)| ≤o |Fpow(Field r ′)|
using assms card-of-mono2 card-of-Fpow-mono by blast

lemma card-of-Fpow-cong [simp]:
assumes |A| =o |B |
shows |Fpow A| =o |Fpow B |
proof−

obtain f where bij-betw f A B
using assms card-of-ordIso[of A B] by auto
hence bij-betw (image f) (Fpow A) (Fpow B)
by (auto simp add : bij-betw-image-Fpow)
thus ?thesis using card-of-ordIso[of Fpow A] by auto

qed

194

lemma ordIso-Fpow-cong :
assumes r =o r ′

shows |Fpow(Field r)| =o |Fpow(Field r ′)|
using assms card-of-cong card-of-Fpow-cong by blast

lemma card-of-Fpow-lists: |Fpow A| ≤o |lists A|
proof−

have set ‘ (lists A) = Fpow A
unfolding lists-def2 Fpow-def using finite-list finite-set by blast
thus ?thesis using card-of-ordLeq2 [of Fpow A] Fpow-not-empty [of A] by blast

qed

lemma card-of-Fpow-infinite[simp]:
assumes infinite A
shows |Fpow A| =o |A|
using assms card-of-Fpow-lists card-of-lists-infinite card-of-Fpow

ordLeq-ordIso-trans ordIso-iff-ordLeq by blast

corollary Fpow-infinite-bij-betw :
assumes infinite A
shows ∃ f . bij-betw f (Fpow A) A
using assms card-of-Fpow-infinite card-of-ordIso by blast

8.7 The cardinal ω and the finite cardinals

The cardinal ω, of natural numbers, shall be the standard non-strict order
relation on nat, that we abbreviate by natLeq. The finite cardinals shall be
the restrictions of these relations to the numbers smaller than fixed numbers
n, that we abbreviate by natLeq-on n.

abbreviation (natLeq ::nat ∗ nat ⇒ bool) ≡ {(x ,y). x ≤ y}
abbreviation (natLess::nat ∗ nat ⇒ bool) ≡ {(x ,y). x < y}

abbreviation natLeq-on :: nat ⇒ (nat ∗ nat ⇒ bool)
where natLeq-on n ≡ {(x ,y). x < n ∧ y < n ∧ x ≤ y}

lemma infinite-cartesian-product [simp]:
assumes infinite A infinite B
shows infinite (A × B)
proof

assume finite (A × B)
from assms(1) have A 6= {} by auto
with 〈finite (A × B)〉 have finite B using finite-cartesian-productD2 by auto
with assms(2) show False by simp

qed

195

8.7.1 First as well-orders

lemma Field-natLeq : Field natLeq = (UNIV ::nat set)
by(unfold Field-def , auto)

lemma Field-natLess: Field natLess = (UNIV ::nat set)
by(unfold Field-def , auto)

lemma natLeq-Refl : Refl natLeq
unfolding refl-on-def Field-def by auto

lemma natLeq-trans: trans natLeq
unfolding trans-def by auto

lemma natLeq-Preorder : Preorder natLeq
unfolding preorder-on-def
by (auto simp add : natLeq-Refl natLeq-trans)

lemma natLeq-antisym: antisym natLeq
unfolding antisym-def by auto

lemma natLeq-Partial-order : Partial-order natLeq
unfolding partial-order-on-def
by (auto simp add : natLeq-Preorder natLeq-antisym)

lemma natLeq-Total : Total natLeq
unfolding total-on-def by auto

lemma natLeq-Linear-order : Linear-order natLeq
unfolding linear-order-on-def
by (auto simp add : natLeq-Partial-order natLeq-Total)

lemma natLeq-natLess-Id : natLess = natLeq − Id
by auto

lemma natLeq-Well-order : Well-order natLeq
unfolding well-order-on-def
using natLeq-Linear-order wf-less natLeq-natLess-Id by auto

196

corollary natLeq-well-order-on: well-order-on UNIV natLeq
using natLeq-Well-order Field-natLeq by auto

lemma natLeq-wo-rel : wo-rel natLeq
unfolding wo-rel-def using natLeq-Well-order .

lemma natLeq-ofilter-less: ofilter natLeq {0 ..< n}
by(auto simp add : natLeq-wo-rel wo-rel .ofilter-def ,

simp add : Field-natLeq , unfold rel .under-def , auto)

lemma natLeq-ofilter-leq : ofilter natLeq {0 .. n}
by(auto simp add : natLeq-wo-rel wo-rel .ofilter-def ,

simp add : Field-natLeq , unfold rel .under-def , auto)

lemma natLeq-UNIV-ofilter : ofilter natLeq UNIV
using natLeq-wo-rel Field-natLeq wo-rel .Field-ofilter [of natLeq] by auto

lemma closed-nat-set-iff :
assumes ∀ (m::nat) n. n ∈ A ∧ m ≤ n −→ m ∈ A
shows A = UNIV ∨ (∃n. A = {0 ..< n})
proof−
{assume A 6= UNIV hence ∃n. n /∈ A by blast
moreover obtain n where n-def : n = (LEAST n. n /∈ A) by blast
ultimately have 1 : n /∈ A ∧ (∀m. m < n −→ m ∈ A)
using LeastI-ex [of λ n. n /∈ A] n-def Least-le[of λ n. n /∈ A] by fastforce
have A = {0 ..< n}
proof(auto simp add : 1)

fix m assume ∗: m ∈ A
{assume n ≤ m with assms ∗ have n ∈ A by blast
hence False using 1 by auto
}
thus m < n by fastforce

qed
hence ∃n. A = {0 ..< n} by blast
}
thus ?thesis by blast

qed

lemma natLeq-ofilter-iff :
ofilter natLeq A = (A = UNIV ∨ (∃n. A = {0 ..< n}))
proof(rule iffI)

assume ofilter natLeq A
hence ∀m n. n ∈ A ∧ m ≤ n −→ m ∈ A

197

by(auto simp add : natLeq-wo-rel wo-rel .ofilter-def rel .under-def)
thus A = UNIV ∨ (∃n. A = {0 ..< n}) using closed-nat-set-iff by blast

next
assume A = UNIV ∨ (∃n. A = {0 ..< n})
thus ofilter natLeq A
by(auto simp add : natLeq-ofilter-less natLeq-UNIV-ofilter)

qed

lemma Field-natLeq-on: Field (natLeq-on n) = {0 ..< n}
unfolding Field-def by auto

lemma natLeq-underS-less: underS natLeq n = {0 ..< n}
unfolding rel .underS-def by auto

lemma natLeq-under-leq : under natLeq n = {0 .. n}
unfolding rel .under-def by auto

lemma Restr-natLeq : Restr natLeq {0 ..< n} = natLeq-on n
by auto

lemma Restr-natLeq2 :
Restr natLeq (underS natLeq n) = natLeq-on n
by (auto simp add : Restr-natLeq natLeq-underS-less)

lemma natLeq-on-Well-order : Well-order(natLeq-on n)
using Restr-natLeq [of n] natLeq-Well-order

Well-order-Restr [of natLeq {0 ..<n}] by auto

corollary natLeq-on-well-order-on: well-order-on {0 ..< n} (natLeq-on n)
using natLeq-on-Well-order Field-natLeq-on by auto

lemma natLeq-on-wo-rel : wo-rel(natLeq-on n)
unfolding wo-rel-def using natLeq-on-Well-order .

lemma natLeq-on-ofilter-less-eq :
n ≤ m =⇒ ofilter(natLeq-on m) {0 ..< n}
by(auto simp add : natLeq-on-wo-rel wo-rel .ofilter-def ,

simp add : Field-natLeq-on, unfold rel .under-def , auto)

198

corollary natLeq-on-ofilter :
ofilter(natLeq-on n) {0 ..< n}
by (auto simp add : natLeq-on-ofilter-less-eq)

lemma natLeq-on-ofilter-less:
n < m =⇒ ofilter (natLeq-on m) {0 .. n}
by(auto simp add : natLeq-on-wo-rel wo-rel .ofilter-def ,

simp add : Field-natLeq-on, unfold rel .under-def , auto)

lemma natLeq-on-ordLess-natLeq : natLeq-on n <o natLeq
using Field-natLeq Field-natLeq-on[of n] nat-infinite

finite-ordLess-infinite[of natLeq-on n natLeq]
natLeq-Well-order natLeq-on-Well-order [of n] by auto

lemma natLeq-on-injective:
natLeq-on m = natLeq-on n =⇒ m = n
using Field-natLeq-on[of m] Field-natLeq-on[of n]

atLeastLessThan-injective[of m n] by auto

lemma natLeq-on-injective-ordIso:
(natLeq-on m =o natLeq-on n) = (m = n)
proof(auto simp add : natLeq-on-Well-order ordIso-reflexive)

assume natLeq-on m =o natLeq-on n
then obtain f where bij-betw f {0 ..<m} {0 ..<n}
using Field-natLeq-on assms unfolding ordIso-def iso-def-raw by auto
thus m = n using atLeastLessThan-injective2 by blast

qed

lemma natLeq-on-ofilter-iff :
ofilter (natLeq-on m) A = (∃n ≤ m. A = {0 ..< n})
proof(rule iffI)

assume ∗: ofilter (natLeq-on m) A
hence 1 : A ≤ {0 ..<m}
by (auto simp add : natLeq-on-wo-rel wo-rel .ofilter-def rel .under-def Field-natLeq-on)
hence ∀n1 n2 . n2 ∈ A ∧ n1 ≤ n2 −→ n1 ∈ A
using ∗ by(fastforce simp add : natLeq-on-wo-rel wo-rel .ofilter-def rel .under-def)
hence A = UNIV ∨ (∃n. A = {0 ..< n}) using closed-nat-set-iff by blast
thus ∃n ≤ m. A = {0 ..< n} using 1 atLeastLessThan-less-eq by blast

next
assume (∃n≤m. A = {0 ..< n})
thus ofilter (natLeq-on m) A by (auto simp add : natLeq-on-ofilter-less-eq)

qed

199

8.7.2 Then as cardinals

lemma natLeq-Card-order : Card-order natLeq
proof(auto simp add : natLeq-Well-order

Card-order-iff-Restr-underS Restr-natLeq2 , simp add : Field-natLeq)
fix n have finite(Field (natLeq-on n))
unfolding Field-natLeq-on by auto
moreover have infinite(UNIV ::nat set) by auto
ultimately show natLeq-on n <o |UNIV ::nat set |
using finite-ordLess-infinite[of natLeq-on n |UNIV ::nat set |]

Field-card-of [of UNIV ::nat set]
card-of-Well-order [of UNIV ::nat set] natLeq-on-Well-order [of n] by auto

qed

corollary card-of-Field-natLeq :
|Field natLeq | =o natLeq
using Field-natLeq natLeq-Card-order Card-order-iff-ordIso-card-of [of natLeq]

ordIso-symmetric[of natLeq] by blast

corollary card-of-nat :
|UNIV ::nat set | =o natLeq
using Field-natLeq card-of-Field-natLeq by auto

corollary infinite-iff-natLeq-ordLeq :
infinite A = (natLeq ≤o |A|)
using infinite-iff-card-of-nat [of A] card-of-nat

ordIso-ordLeq-trans ordLeq-ordIso-trans ordIso-symmetric by blast

lemma ordIso-natLeq-infinite1 :
|A| =o natLeq =⇒ infinite A
using ordIso-symmetric ordIso-imp-ordLeq infinite-iff-natLeq-ordLeq by blast

lemma ordIso-natLeq-infinite2 :
natLeq =o |A| =⇒ infinite A
using ordIso-imp-ordLeq infinite-iff-natLeq-ordLeq by blast

corollary finite-iff-ordLess-natLeq :
finite A = (|A| <o natLeq)
using infinite-iff-natLeq-ordLeq not-ordLeq-iff-ordLess

card-of-Well-order natLeq-Well-order by blast

lemma ordIso-natLeq-on-imp-finite:
|A| =o natLeq-on n =⇒ finite A

200

unfolding ordIso-def iso-def-raw
by (auto simp add : Field-natLeq-on bij-betw-finite)

lemma natLeq-on-Card-order : Card-order (natLeq-on n)
proof(unfold card-order-on-def ,

auto simp add : natLeq-on-Well-order , simp add : Field-natLeq-on)
fix r assume well-order-on {0 ..<n} r
thus natLeq-on n ≤o r
using finite-atLeastLessThan natLeq-on-well-order-on

finite-well-order-on-ordIso ordIso-iff-ordLeq by blast
qed

corollary card-of-Field-natLeq-on:
|Field (natLeq-on n)| =o natLeq-on n
using Field-natLeq-on natLeq-on-Card-order

Card-order-iff-ordIso-card-of [of natLeq-on n]
ordIso-symmetric[of natLeq-on n] by blast

corollary card-of-less:
|{0 ..< n}| =o natLeq-on n
using Field-natLeq-on card-of-Field-natLeq-on by auto

lemma ordLeq-natLeq-on-imp-finite:
assumes |A| ≤o natLeq-on n
shows finite A
proof−

have |A| ≤o |{0 ..< n}|
using assms card-of-less ordIso-symmetric ordLeq-ordIso-trans by blast
thus ?thesis by (auto simp add : card-of-ordLeq-finite)

qed

lemma natLeq-on-ordLeq-less-eq :
((natLeq-on m) ≤o (natLeq-on n)) = (m ≤ n)
proof

assume natLeq-on m ≤o natLeq-on n
then obtain f where inj-on f {0 ..<m} ∧ f ‘ {0 ..<m} ≤ {0 ..<n}
using Field-natLeq-on[of m] Field-natLeq-on[of n]
unfolding ordLeq-def using embed-inj-on[of natLeq-on m natLeq-on n]
embed-Field [of natLeq-on m natLeq-on n] using natLeq-on-Well-order [of m] by

fastforce
thus m ≤ n using atLeastLessThan-less-eq2 by blast

next
assume m ≤ n
hence inj-on id {0 ..<m} ∧ id ‘ {0 ..<m} ≤ {0 ..<n} unfolding inj-on-def by

201

auto
hence |{0 ..<m}| ≤o |{0 ..<n}| using card-of-ordLeq by blast
thus natLeq-on m ≤o natLeq-on n
using card-of-less ordIso-ordLeq-trans ordLeq-ordIso-trans ordIso-symmetric by

blast
qed

lemma natLeq-on-ordLeq-less:
((natLeq-on m) <o (natLeq-on n)) = (m < n)
using not-ordLeq-iff-ordLess[of natLeq-on m natLeq-on n]
natLeq-on-Well-order natLeq-on-ordLeq-less-eq by auto

8.7.3 ”Backwards compatibility” with the numeric cardinal op-
erator for finite sets

lemma finite-card-of-iff-card :
assumes FIN : finite A and FIN ′: finite B
shows (|A| =o |B |) = (card A = card B)
using assms card-of-ordIso[of A B] bij-betw-iff-card [of A B] by blast

lemma finite-card-of-iff-card2 :
assumes FIN : finite A and FIN ′: finite B
shows (|A| ≤o |B |) = (card A ≤ card B)
using assms card-of-ordLeq [of A B] inj-on-iff-card [of A B] by blast

lemma finite-card-of-iff-card3 :
assumes FIN : finite A and FIN ′: finite B
shows (|A| <o |B |) = (card A < card B)
proof−

have (|A| <o |B |) = (∼ (|B | ≤o |A|)) by simp
also have ... = (∼ (card B ≤ card A))
using assms by(simp add : finite-card-of-iff-card2)
also have ... = (card A < card B) by auto
finally show ?thesis .

qed

lemma finite-imp-card-of-natLeq-on:
assumes finite A
shows |A| =o natLeq-on (card A)
proof−

obtain h where bij-betw h A {0 ..< card A}
using assms ex-bij-betw-finite-nat by blast
thus ?thesis using card-of-ordIso card-of-less ordIso-equivalence by blast

qed

202

lemma finite-iff-card-of-natLeq-on:
finite A = (∃n. |A| =o natLeq-on n)
using finite-imp-card-of-natLeq-on[of A]
by(auto simp add : ordIso-natLeq-on-imp-finite)

lemma card-Field-natLeq-on:
card(Field(natLeq-on n)) = n
using Field-natLeq-on card-atLeastLessThan by auto

8.8 The successor of a cardinal

First we define isCardSuc r r ′, the notion of r ′ being a successor cardinal
of r. Although the definition does not require r to be a cardinal, only this
case will be meaningful.

definition isCardSuc :: ′a rel ⇒ ′a set rel ⇒ bool
where
isCardSuc r r ′ ≡
Card-order r ′ ∧ r <o r ′ ∧
(∀ (r ′′:: ′a set rel). Card-order r ′′ ∧ r <o r ′′ −→ r ′ ≤o r ′′)

Now we introduce the cardinal-successor operator cardSuc, by picking some
cardinal-order relation fulfilling isCardSuc. Again, the picked item shall be
proved unique up to order-isomorphism.

definition cardSuc :: ′a rel ⇒ ′a set rel
where
cardSuc r ≡ SOME r ′. isCardSuc r r ′

lemma exists-minim-Card-order :
[[R 6= {}; ∀ r ∈ R. Card-order r]] =⇒ ∃ r ∈ R. ∀ r ′ ∈ R. r ≤o r ′

unfolding card-order-on-def using exists-minim-Well-order by blast

lemma exists-isCardSuc:
assumes Card-order r
shows ∃ r ′. isCardSuc r r ′

proof−
let ?R = {(r ′:: ′a set rel). Card-order r ′ ∧ r <o r ′}
have |Pow(Field r)| ∈ ?R ∧ (∀ r ∈ ?R. Card-order r) using assms by simp
then obtain r where r ∈ ?R ∧ (∀ r ′ ∈ ?R. r ≤o r ′)
using exists-minim-Card-order [of ?R] by blast
thus ?thesis unfolding isCardSuc-def by auto

qed

lemma cardSuc-isCardSuc:

203

assumes Card-order r
shows isCardSuc r (cardSuc r)
unfolding cardSuc-def using assms
by (auto simp add : exists-isCardSuc someI-ex)

lemma cardSuc-Card-order [simp]:
Card-order r =⇒ Card-order(cardSuc r)
using cardSuc-isCardSuc unfolding isCardSuc-def by blast

lemma cardSuc-Well-order [simp]:
Card-order r =⇒ Well-order(cardSuc r)
using cardSuc-Card-order unfolding card-order-on-def by blast

lemma cardSuc-greater [simp]:
Card-order r =⇒ r <o cardSuc r
using cardSuc-isCardSuc unfolding isCardSuc-def by blast

lemma cardSuc-ordLeq [simp]:
Card-order r =⇒ r ≤o cardSuc r
using cardSuc-greater ordLeq-iff-ordLess-or-ordIso by blast

The minimality property of cardSuc originally present in its definition is
local to the type ′a set rel, i.e., that of cardSuc r :

lemma cardSuc-least-aux :
[[Card-order (r :: ′a rel); Card-order (r ′:: ′a set rel); r <o r ′]] =⇒ cardSuc r ≤o r ′

using cardSuc-isCardSuc unfolding isCardSuc-def by blast

But from this we can infer general minimality:

lemma cardSuc-least :
assumes CARD : Card-order r and CARD ′: Card-order r ′ and LESS : r <o r ′

shows cardSuc r ≤o r ′

proof−
let ?p = cardSuc r
have 0 : Well-order ?p ∧ Well-order r ′

using assms cardSuc-Card-order unfolding card-order-on-def by blast
{assume r ′ <o ?p
then obtain r ′′ where 1 : Field r ′′ < Field ?p and 2 : r ′ =o r ′′ ∧ r ′′ <o ?p
using internalize-ordLess[of r ′ ?p] by blast

have Card-order r ′′ using CARD ′ Card-order-ordIso2 2 by blast
moreover have r <o r ′′ using LESS 2 ordLess-ordIso-trans by blast
ultimately have ?p ≤o r ′′ using cardSuc-least-aux CARD by blast
hence False using 2 not-ordLess-ordLeq by blast
}
thus ?thesis using 0 ordLess-or-ordLeq by blast

204

qed

lemma Field-cardSuc-not-empty :
assumes Card-order r
shows Field (cardSuc r) 6= {}
proof

assume Field(cardSuc r) = {}
hence |Field(cardSuc r)| ≤o r using assms Card-order-empty [of r] by auto
hence cardSuc r ≤o r using assms card-of-Field-ordIso
cardSuc-Card-order ordIso-symmetric ordIso-ordLeq-trans by blast
thus False using cardSuc-greater not-ordLess-ordLeq assms by blast

qed

lemma cardSuc-ordLess-ordLeq :
assumes CARD : Card-order r and CARD ′: Card-order r ′

shows (r <o r ′) = (cardSuc r ≤o r ′)
proof(auto simp add : assms cardSuc-least)

assume cardSuc r ≤o r ′

thus r <o r ′ using assms cardSuc-greater ordLess-ordLeq-trans by blast
qed

lemma cardSuc-ordLeq-ordLess[simp]:
assumes CARD : Card-order r and CARD ′: Card-order r ′

shows (r ′ <o cardSuc r) = (r ′ ≤o r)
proof−

have Well-order r ∧ Well-order r ′

using assms unfolding card-order-on-def by auto
moreover have Well-order(cardSuc r)
using assms cardSuc-Card-order card-order-on-def by blast
ultimately show ?thesis
using assms cardSuc-ordLess-ordLeq [of r r ′]
not-ordLeq-iff-ordLess[of r r ′] not-ordLeq-iff-ordLess[of r ′ cardSuc r] by blast

qed

lemma cardSuc-mono-ordLeq [simp]:
assumes CARD : Card-order r and CARD ′: Card-order r ′

shows (cardSuc r ≤o cardSuc r ′) = (r ≤o r ′)
using assms cardSuc-ordLeq-ordLess cardSuc-ordLess-ordLeq cardSuc-Card-order
by blast

lemma cardSuc-mono-ordLess[simp]:
assumes CARD : Card-order r and CARD ′: Card-order r ′

shows (cardSuc r <o cardSuc r ′) = (r <o r ′)
proof−

205

have 0 : Well-order r ∧Well-order r ′∧Well-order(cardSuc r) ∧Well-order(cardSuc
r ′)

using assms by auto
thus ?thesis
using not-ordLeq-iff-ordLess not-ordLeq-iff-ordLess[of r r ′]
using cardSuc-mono-ordLeq [of r ′ r] assms by blast

qed

lemma cardSuc-invar-ordIso[simp]:
assumes CARD : Card-order r and CARD ′: Card-order r ′

shows (cardSuc r =o cardSuc r ′) = (r =o r ′)
proof−
have 0 : Well-order r ∧Well-order r ′∧Well-order(cardSuc r) ∧Well-order(cardSuc

r ′)
using assms by auto
thus ?thesis
using ordIso-iff-ordLeq [of r r ′] ordIso-iff-ordLeq
using cardSuc-mono-ordLeq [of r r ′] cardSuc-mono-ordLeq [of r ′ r] assms by blast

qed

lemma embed-implies-ordIso-Restr :
assumes WELL: Well-order r and WELL ′: Well-order r ′ and EMB : embed r ′ r
f
shows r ′ =o Restr r (f ‘ (Field r ′))
using assms embed-implies-iso-Restr Well-order-Restr unfolding ordIso-def by
blast

lemma cardSuc-natLeq-on-Suc:
cardSuc(natLeq-on n) =o natLeq-on(Suc n)
proof−

obtain r r ′ p where r-def : r = natLeq-on n and
r ′-def : r ′ = cardSuc(natLeq-on n) and
p-def : p = natLeq-on(Suc n) by blast

have CARD : Card-order r ∧ Card-order r ′ ∧ Card-order p unfolding r-def
r ′-def p-def
using cardSuc-ordLess-ordLeq natLeq-on-Card-order cardSuc-Card-order by blast
hence WELL: Well-order r ∧ Well-order r ′ ∧ Well-order p
unfolding card-order-on-def by force
have FIELD : Field r = {0 ..<n} ∧ Field p = {0 ..<(Suc n)}
unfolding r-def p-def Field-natLeq-on by simp
hence FIN : finite (Field r) by force
have r <o r ′ using CARD unfolding r-def r ′-def using cardSuc-greater by

blast
hence |Field r | <o r ′ using CARD card-of-Field-ordIso ordIso-ordLess-trans by

blast

206

hence LESS : |Field r | <o |Field r ′|
using CARD card-of-Field-ordIso ordLess-ordIso-trans ordIso-symmetric by blast

have r ′ ≤o p using CARD unfolding r-def r ′-def p-def
using natLeq-on-ordLeq-less cardSuc-ordLess-ordLeq by blast
moreover have p ≤o r ′

proof−
{assume r ′ <o p
then obtain f where 0 : embedS r ′ p f unfolding ordLess-def by force
let ?q = Restr p (f ‘ Field r ′)
have 1 : embed r ′ p f using 0 unfolding embedS-def by force
hence 2 : f ‘ Field r ′ < {0 ..<(Suc n)}
using WELL FIELD 0 by (auto simp add : embedS-iff)
have ofilter p (f ‘ Field r ′) using embed-Field-ofilter 1 WELL by blast
then obtain m where m ≤ Suc n and 3 : f ‘ (Field r ′) = {0 ..<m}
unfolding p-def by (auto simp add : natLeq-on-ofilter-iff)
hence 4 : m ≤ n using 2 by force

have bij-betw f (Field r ′) (f ‘ (Field r ′))
using 1 WELL embed-inj-on unfolding bij-betw-def by force
moreover have finite(f ‘ (Field r ′)) using 3 finite-atLeastLessThan[of 0 m]

by force
ultimately have 5 : finite (Field r ′) ∧ card(Field r ′) = card (f ‘ (Field r ′))
using bij-betw-imp-card bij-betw-finite by blast
hence card(Field r ′) ≤ card(Field r) using 3 4 FIELD by force
hence |Field r ′| ≤o |Field r | using FIN 5 finite-card-of-iff-card2 by blast
hence False using LESS not-ordLess-ordLeq by auto
}
thus ?thesis using WELL CARD by fastforce

qed
ultimately show ?thesis using ordIso-iff-ordLeq unfolding r ′-def p-def by

blast
qed

lemma card-of-cardSuc-finite[simp]:
finite(Field(cardSuc |A|)) = finite A
proof

assume ∗: finite (Field (cardSuc |A|))
have 0 : |Field(cardSuc |A|)| =o cardSuc |A|
using card-of-Card-order cardSuc-Card-order card-of-Field-ordIso by blast
hence |A| ≤o |Field(cardSuc |A|)|
using card-of-Card-order [of A] cardSuc-ordLeq [of |A|] ordIso-symmetric
ordLeq-ordIso-trans by blast
thus finite A using ∗ card-of-ordLeq-finite by blast

next
assume finite A
then obtain n where |A| =o natLeq-on n using finite-iff-card-of-natLeq-on by

blast

207

hence cardSuc |A| =o cardSuc(natLeq-on n)
using card-of-Card-order cardSuc-invar-ordIso natLeq-on-Card-order by blast
hence cardSuc |A| =o natLeq-on(Suc n)
using cardSuc-natLeq-on-Suc ordIso-transitive by blast
hence cardSuc |A| =o |{0 ..<(Suc n)}| using card-of-less ordIso-equivalence by

blast
moreover have |Field (cardSuc |A|) | =o cardSuc |A|
using card-of-Field-ordIso cardSuc-Card-order card-of-Card-order by blast
ultimately have |Field (cardSuc |A|) | =o |{0 ..<(Suc n)}|
using ordIso-equivalence by blast
thus finite (Field (cardSuc |A|))
using card-of-ordIso-finite finite-atLeastLessThan by blast

qed

lemma cardSuc-finite[simp]:
assumes Card-order r
shows finite (Field (cardSuc r)) = finite (Field r)
proof−

let ?A = Field r
have |?A| =o r using assms by simp
hence cardSuc |?A| =o cardSuc r using assms by simp
moreover have |Field (cardSuc |?A|) | =o cardSuc |?A|
using card-of-Field-ordIso by simp
moreover
{have |Field (cardSuc r) | =o cardSuc r
using assms card-of-Field-ordIso by simp
hence cardSuc r =o |Field (cardSuc r) |
using ordIso-symmetric by blast
}
ultimately have |Field (cardSuc |?A|) | =o |Field (cardSuc r) |
using ordIso-transitive by blast
hence finite (Field (cardSuc |?A|)) = finite (Field (cardSuc r))
using card-of-ordIso-finite by blast
thus ?thesis by simp

qed

lemma card-of-Plus-ordLeq-infinite[simp]:
assumes C : infinite C and A: |A| ≤o |C | and B : |B | ≤o |C |
shows |A <+> B | ≤o |C |
proof−

let ?r = cardSuc |C |
have Card-order ?r ∧ infinite (Field ?r) using assms by simp
moreover have |A| <o ?r and |B | <o ?r using A B by auto
ultimately have |A <+> B | <o ?r
using card-of-Plus-ordLess-infinite-Field by blast
thus ?thesis using C by simp

qed

208

lemma card-of-Plus-ordLeq-infinite-Field [simp]:
assumes r : infinite (Field r) and A: |A| ≤o r and B : |B | ≤o r
and c: Card-order r
shows |A <+> B | ≤o r
proof−

let ?r ′ = cardSuc r
have Card-order ?r ′ ∧ infinite (Field ?r ′) using assms by simp
moreover have |A| <o ?r ′ and |B | <o ?r ′ using A B c by auto
ultimately have |A <+> B | <o ?r ′

using card-of-Plus-ordLess-infinite-Field by blast
thus ?thesis using c r by simp

qed

lemma card-of-Un-ordLeq-infinite[simp]:
assumes C : infinite C and A: |A| ≤o |C | and B : |B | ≤o |C |
shows |A Un B | ≤o |C |
using assms card-of-Plus-ordLeq-infinite card-of-Un-Plus-ordLeq
ordLeq-transitive by blast

lemma card-of-Un-ordLeq-infinite-Field [simp]:
assumes C : infinite (Field r) and A: |A| ≤o r and B : |B | ≤o r
and Card-order r
shows |A Un B | ≤o r
using assms card-of-Plus-ordLeq-infinite-Field card-of-Un-Plus-ordLeq
ordLeq-transitive by blast

8.9 Regular cardinals

definition cofinal where
cofinal A r ≡
ALL a : Field r . EX b : A. a 6= b ∧ (a,b) : r

definition regular where
regular r ≡
ALL K . K ≤ Field r ∧ cofinal K r −→ |K | =o r

definition relChain where
relChain r As ≡
ALL i j . (i ,j) ∈ r −→ As i ≤ As j

lemma regular-UNION :
assumes r : Card-order r regular r
and As: relChain r As

209

and Bsub: B ≤ (UN i : Field r . As i)
and cardB : |B | <o r
shows EX i : Field r . B ≤ As i
proof−

let ?phi = %b j . j : Field r ∧ b : As j
have ALL b : B . EX j . ?phi b j using Bsub by blast
then obtain f where f : !! b. b : B =⇒ ?phi b (f b)
using bchoice[of B ?phi] by blast
let ?K = f ‘ B
{assume 1 : !! i . i : Field r =⇒ ∼ B ≤ As i
have 2 : cofinal ?K r
unfolding cofinal-def proof auto

fix i assume i : i : Field r
with 1 obtain b where b: b : B ∧ b /∈ As i by blast
hence i 6= f b ∧ ∼ (f b,i) : r
using As f unfolding relChain-def by auto
hence i 6= f b ∧ (i , f b) : r using r
unfolding card-order-on-def well-order-on-def linear-order-on-def
total-on-def using i f b by auto
with b show ∃ b∈B . i 6= f b ∧ (i , f b) ∈ r by blast

qed
moreover have ?K ≤ Field r using f by blast
ultimately have |?K | =o r using 2 r unfolding regular-def by blast
moreover
{
have |?K | <=o |B | using card-of-image .
hence |?K | <o r using cardB ordLeq-ordLess-trans by blast
}
ultimately have False using not-ordLess-ordIso by blast
}
thus ?thesis by blast

qed

lemma infinite-cardSuc-regular :
assumes r-inf : infinite (Field r) and r-card : Card-order r
shows regular (cardSuc r)
proof−

let ?r ′ = cardSuc r
have r ′: Card-order ?r ′

!! p. Card-order p −→ (p ≤o r) = (p <o ?r ′)
using r-card by auto
show ?thesis
unfolding regular-def proof auto

fix K assume 1 : K ≤ Field ?r ′ and 2 : cofinal K ?r ′

hence |K | ≤o |Field ?r ′| by simp
also have 22 : |Field ?r ′| =o ?r ′

using r ′ by (simp add : card-of-Field-ordIso[of ?r ′])
finally have |K | ≤o ?r ′ .

210

moreover
{let ?L = UN j : K . underS ?r ′ j
let ?J = Field r
have rJ : r =o |?J |
using r-card card-of-Field-ordIso ordIso-symmetric by blast
assume |K | <o ?r ′

hence |K | <=o r using r ′ card-of-Card-order [of K] by blast
hence |K | ≤o |?J | using rJ ordLeq-ordIso-trans by blast
moreover
{have ALL j : K . |underS ?r ′ j | <o ?r ′

using r ′ 1 by auto
hence ALL j : K . |underS ?r ′ j | ≤o r
using r ′ card-of-Card-order by blast
hence ALL j : K . |underS ?r ′ j | ≤o |?J |
using rJ ordLeq-ordIso-trans by blast
}
ultimately have |?L| ≤o |?J |
using r-inf card-of-UNION-ordLeq-infinite by blast
hence |?L| ≤o r using rJ ordIso-symmetric ordLeq-ordIso-trans by blast
hence |?L| <o ?r ′ using r ′ card-of-Card-order by blast
moreover
{
have Field ?r ′ ≤ ?L
using 2 unfolding rel .underS-def cofinal-def by auto
hence |Field ?r ′| ≤o |?L| by simp
hence ?r ′ ≤o |?L|
using 22 ordIso-ordLeq-trans ordIso-symmetric by blast
}
ultimately have |?L| <o |?L| using ordLess-ordLeq-trans by blast
hence False using ordLess-irreflexive by blast
}
ultimately show |K | =o ?r ′

unfolding ordLeq-iff-ordLess-or-ordIso by blast
qed

qed

lemma cardSuc-UNION :
assumes r : Card-order r and infinite (Field r)
and As: relChain (cardSuc r) As
and Bsub: B ≤ (UN i : Field (cardSuc r). As i)
and cardB : |B | <=o r
shows EX i : Field (cardSuc r). B ≤ As i
proof−

let ?r ′ = cardSuc r
have Card-order ?r ′ ∧ |B | <o ?r ′

using r cardB cardSuc-ordLeq-ordLess cardSuc-Card-order
card-of-Card-order by blast
moreover have regular ?r ′

using assms by(simp add : infinite-cardSuc-regular)

211

ultimately show ?thesis
using As Bsub cardB regular-UNION by blast

qed

8.10 Others

lemma under-mono[simp]:
assumes Well-order r and (i ,j) ∈ r
shows under r i ⊆ under r j
using assms unfolding rel .under-def order-on-defs
trans-def by blast

lemma underS-under :
assumes i ∈ Field r
shows underS r i = under r i − {i}
using assms unfolding rel .underS-def rel .under-def by auto

lemma relChain-under :
assumes Well-order r
shows relChain r (λ i . under r i)
using assms unfolding relChain-def by auto

lemma card-of-infinite-diff-finitte:
assumes infinite A and finite B
shows |A − B | =o |A|
by (metis assms card-of-Un-diff-infinite finite-ordLess-infinite2)

definition Bpow where
Bpow r A ≡ {X . X ⊆ A ∧ |X | ≤o r}

lemma Bpow-empty [simp]:
assumes Card-order r
shows Bpow r {} = {{}}
using assms unfolding Bpow-def by auto

lemma singl-in-Bpow :
assumes rc: Card-order r
and r : Field r 6= {} and a: a ∈ A
shows {a} ∈ Bpow r A
proof−

have |{a}| ≤o r using r rc by auto
thus ?thesis unfolding Bpow-def using a by auto

qed

lemma ordLeq-card-Bpow :
assumes rc: Card-order r and r : Field r 6= {}
shows |A| ≤o |Bpow r A|
proof−

212

have inj-on (λ a. {a}) A unfolding inj-on-def by auto
moreover have (λ a. {a}) ‘ A ⊆ Bpow r A
using singl-in-Bpow [OF assms] by auto
ultimately show ?thesis unfolding card-of-ordLeq [symmetric] by blast

qed

lemma infinite-Bpow :
assumes rc: Card-order r and r : Field r 6= {}
and A: infinite A
shows infinite (Bpow r A)
using ordLeq-card-Bpow [OF rc r]
by (metis A card-of-ordLeq-infinite)

definition Func where
Func A B ≡
{f . (∀ a. f a 6= None ←→ a ∈ A) ∧ (∀ a ∈ A. case f a of Some b ⇒ b ∈ B |None
⇒ True)}

lemma Func-empty [simp]:
Func {} B = {empty}
unfolding Func-def by auto

lemma Func-elim:
assumes g ∈ Func A B and a ∈ A
shows ∃ b. b ∈ B ∧ g a = Some b
using assms unfolding Func-def by (cases g a) force+

lemma Bpow-ordLeq-Func-Field :
assumes rc: Card-order r and r : Field r 6= {} and A: infinite A
shows |Bpow r A| ≤o |Func (Field r) A|
proof−

let ?F = λ f . {x | x a. f a = Some x}
{fix X assume X ∈ Bpow r A − {{}}
hence XA: X ⊆ A and |X | ≤o r
and X : X 6= {} unfolding Bpow-def by auto
hence |X | ≤o |Field r | by (metis Field-card-of card-of-mono2)
then obtain F where 1 : X = F ‘ (Field r)
using card-of-ordLeq2 [OF X] by metis
def f ≡ λ i . if i ∈ Field r then Some (F i) else None
have ∃ f ∈ Func (Field r) A. X = ?F f
apply (intro bexI [of - f]) using 1 XA unfolding Func-def f-def by auto
}
hence Bpow r A − {{}} ⊆ ?F ‘ (Func (Field r) A) by auto
hence |Bpow r A − {{}}| ≤o |Func (Field r) A|
by (rule surj-imp-ordLeq)
moreover
{have 2 : infinite (Bpow r A) using infinite-Bpow [OF rc r A] .
have |Bpow r A| =o |Bpow r A − {{}}|

213

using card-of-infinite-diff-finitte
by (metis Pow-empty 2 finite-Pow-iff infinite-imp-nonempty ordIso-symmetric)
}
ultimately show ?thesis by (metis ordIso-ordLeq-trans)

qed

definition curr where
curr A f ≡ λ a. if a ∈ A then Some (λ b. f (a,b)) else None

lemma curr-in[intro, simp]:
assumes f : f ∈ Func (A <∗> B) C
shows curr A f ∈ Func A (Func B C)
using assms unfolding curr-def Func-def by auto

lemma curr-inj :
assumes f1 ∈ Func (A <∗> B) C and f2 ∈ Func (A <∗> B) C
shows curr A f1 = curr A f2 ←→ f1 = f2
proof safe

assume c: curr A f1 = curr A f2
show f1 = f2
proof (clarify intro!: ext)

fix a b show f1 (a, b) = f2 (a, b)
proof (cases (a,b) ∈ A <∗> B)

case False
thus ?thesis using assms unfolding Func-def
apply(cases f1 (a,b)) apply(cases f2 (a,b), fastforce, fastforce)
apply(cases f2 (a,b)) by auto

next
case True hence a: a ∈ A and b: b ∈ B by auto
thus ?thesis
using c unfolding curr-def fun-eq-iff
apply(elim allE [of - a]) apply simp unfolding fun-eq-iff by auto

qed
qed

qed

lemma curr-surj :
assumes g ∈ Func A (Func B C)
shows ∃ f ∈ Func (A <∗> B) C . curr A f = g
proof

let ?f = λ ab. case g (fst ab) of None ⇒ None | Some g1 ⇒ g1 (snd ab)
show curr A ?f = g
proof (rule ext)

fix a show curr A ?f a = g a
proof (cases a ∈ A)

case False
hence g a = None using assms unfolding Func-def by auto
thus ?thesis unfolding curr-def using False by simp

next

214

case True
obtain g1 where g1 ∈ Func B C and g a = Some g1
using assms using Func-elim[OF assms True] by blast
thus ?thesis using True unfolding curr-def by auto

qed
qed
show ?f ∈ Func (A <∗> B) C
unfolding Func-def mem-Collect-eq proof(intro conjI allI ballI)

fix ab show ?f ab 6= None ←→ ab ∈ A × B
proof(cases g (fst ab))

case None
hence fst ab /∈ A using assms unfolding Func-def by force
thus ?thesis using None by auto

next
case (Some g1)
hence fst : fst ab ∈ A and g1 : g1 ∈ Func B C
using assms unfolding Func-def [of A] by force+
hence ?f ab 6= None ←→ g1 (snd ab) 6= None using Some by auto
also have ... ←→ snd ab ∈ B using g1 unfolding Func-def by auto
also have ... ←→ ab ∈ A × B using fst by (cases ab, auto)
finally show ?thesis .

qed
next

fix ab assume ab: ab ∈ A × B
hence fst ab ∈ A and snd ab ∈ B by(cases ab, auto)
then obtain g1 where g1 ∈ Func B C and g (fst ab) = Some g1
using assms using Func-elim[OF assms] by blast
thus case ?f ab of Some c ⇒ c ∈ C |None ⇒ True
unfolding Func-def by auto

qed
qed

lemma bij-betwe-curr :
bij-betw (curr A) (Func (A <∗> B) C) (Func A (Func B C))
unfolding bij-betw-def inj-on-def image-def
using curr-in curr-inj curr-surj by blast

lemma card-of-Func-Times:
|Func (A <∗> B) C | =o |Func A (Func B C)|
unfolding card-of-ordIso[symmetric]
using bij-betwe-curr by blast

definition Func-map where
Func-map B2 f1 f2 g b2 ≡
if b2 ∈ B2 then case g (f2 b2) of None ⇒ None | Some a1 ⇒ Some (f1 a1)

else None

lemma Func-map:
assumes g : g ∈ Func A2 A1 and f1 : f1 ‘ A1 ⊆ B1 and f2 : f2 ‘ B2 ⊆ A2

215

shows Func-map B2 f1 f2 g ∈ Func B2 B1
unfolding Func-def mem-Collect-eq proof(intro conjI allI ballI)

fix b2 show Func-map B2 f1 f2 g b2 6= None ←→ b2 ∈ B2
proof(cases b2 ∈ B2)

case True
hence f2 b2 ∈ A2 using f2 by auto
then obtain a1 where g (f2 b2) = Some a1 and a1 ∈ A1
using g unfolding Func-def by(cases g (f2 b2), fastforce+)
thus ?thesis unfolding Func-map-def using True by auto

qed(unfold Func-map-def , auto)
next

fix b2 assume b2 : b2 ∈ B2
hence f2 b2 ∈ A2 using f2 by auto
then obtain a1 where g (f2 b2) = Some a1 and a1 ∈ A1
using g unfolding Func-def by(cases g (f2 b2), fastforce+)
thus case Func-map B2 f1 f2 g b2 of None ⇒ True | Some b1 ⇒ b1 ∈ B1
unfolding Func-map-def using b2 f1 by auto

qed

lemma Func-map-empty [simp]:
Func-map B2 f1 f2 empty = empty
unfolding Func-map-def-raw by (rule ext , auto)

lemma Func-emp-empty [simp]:
Func {} B = {empty}
unfolding Func-def by auto

lemma Func-non-emp:
assumes B 6= {}
shows Func A B 6= {}
proof−

obtain b where b: b ∈ B using assms by auto
hence (λ a. if a ∈ A then Some b else None) ∈ Func A B
unfolding Func-def by auto
thus ?thesis by blast

qed

lemma Func-is-emp[simp]:
Func A B = {} ←→ A 6= {} ∧ B = {} (is ?L ←→ ?R)
proof

assume L: ?L
moreover {assume A = {} hence False using L by auto}
moreover {assume B 6= {} hence False using L Func-non-emp by metis}
ultimately show ?R by blast

next
assume R: ?R
moreover
{fix f assume f ∈ Func A B
moreover obtain a where a ∈ A using R by blast

216

ultimately obtain b where b ∈ B unfolding Func-def by(cases f a, force+)
with R have False by auto
}
thus ?L by blast

qed

lemma Func-emp2 [simp]: A 6= {} =⇒ Func A {} = {} by auto

lemma empty-in-Func[simp]:
B 6= {} =⇒ empty ∈ Func {} B
unfolding Func-def by auto

lemma Func-map-surj :
assumes B1 : f1 ‘ A1 = B1 and A2 : inj-on f2 B2 f2 ‘ B2 ⊆ A2
and B2A2 : B2 = {} =⇒ A2 = {}
shows Func B2 B1 = Func-map B2 f1 f2 ‘ Func A2 A1
proof(cases B2 = {})

case True
thus ?thesis using B2A2 by auto

next
case False note B2 = False
show ?thesis

proof safe
fix h assume h: h ∈ Func B2 B1
def j1 ≡ inv-into A1 f1
have ∀ a2 ∈ f2 ‘ B2 . ∃ b2 . b2 ∈ B2 ∧ f2 b2 = a2 by blast
then obtain k where k : ∀ a2 ∈ f2 ‘ B2 . k a2 ∈ B2 ∧ f2 (k a2) = a2 by metis
{fix b2 assume b2 : b2 ∈ B2
hence f2 (k (f2 b2)) = f2 b2 using k A2 (2) by auto
moreover have k (f2 b2) ∈ B2 using b2 A2 (2) k by auto
ultimately have k (f2 b2) = b2 using b2 A2 (1) unfolding inj-on-def by

blast
} note kk = this
obtain b22 where b22 : b22 ∈ B2 using B2 by auto
def j2 ≡ λ a2 . if a2 ∈ f2 ‘ B2 then k a2 else b22
have j2A2 : j2 ‘ A2 ⊆ B2 unfolding j2-def using k b22 by auto
have j2 :

∧
b2 . b2 ∈ B2 =⇒ j2 (f2 b2) = b2

using kk unfolding j2-def by auto
def g ≡ Func-map A2 j1 j2 h
have Func-map B2 f1 f2 g = h
proof (rule ext)

fix b2 show Func-map B2 f1 f2 g b2 = h b2
proof(cases b2 ∈ B2)

case True
show ?thesis
proof (cases h b2)

case (Some b1)
hence b1 : b1 ∈ f1 ‘ A1 using True h unfolding B1 Func-def by auto
show ?thesis

217

using Some True A2 f-inv-into-f [OF b1]
unfolding g-def Func-map-def j1-def j2 [OF True] by auto

qed(insert A2 True j2 [OF True], unfold g-def Func-map-def , auto)
qed(insert h, unfold Func-def Func-map-def , auto)

qed
moreover have g ∈ Func A2 A1 unfolding g-def apply(rule Func-map[OF

h])
using inv-into-into j2A2 B1 A2 inv-into-into
unfolding j1-def image-def by(force, force)
ultimately show h ∈ Func-map B2 f1 f2 ‘ Func A2 A1
unfolding Func-map-def-raw unfolding image-def by auto

qed(insert B1 Func-map[OF - - A2 (2)], auto)
qed

definition Pfunc where
Pfunc A B ≡
{f . (∀ a. f a 6= None −→ a ∈ A) ∧

(∀ a. case f a of None ⇒ True | Some b ⇒ b ∈ B)}

lemma Func-mono[simp]:
assumes B1 ⊆ B2
shows Func A B1 ⊆ Func A B2
using assms unfolding Func-def by force

lemma Pfunc-mono[simp]:
assumes A1 ⊆ A2 and B1 ⊆ B2
shows Pfunc A B1 ⊆ Pfunc A B2
using assms in-mono unfolding Pfunc-def apply safe
apply(case-tac x a, auto)
by (metis in-mono option.simps(5))

lemma Func-Pfunc:
Func A B ⊆ Pfunc A B
unfolding Func-def Pfunc-def by auto

lemma Pfunc-Func:
Pfunc A B = (

⋃
A ′ ∈ Pow A. Func A ′ B)

proof safe
fix f assume f : f ∈ Pfunc A B
show f ∈ (

⋃
A ′∈Pow A. Func A ′ B)

proof (intro UN-I)
let ?A ′ = {a. f a 6= None}
show ?A ′ ∈ Pow A using f unfolding Pow-def Pfunc-def by auto
show f ∈ Func ?A ′ B using f unfolding Func-def Pfunc-def by auto

qed
next

fix f A ′ assume f ∈ Func A ′ B and A ′ ⊆ A
thus f ∈ Pfunc A B unfolding Func-def Pfunc-def by auto

218

qed

lemma card-of-Pow-Func:
|Pow A| =o |Func A (UNIV ::bool set)|
proof−

def F ≡ λ A ′ a. if a ∈ A then (if a ∈ A ′ then Some True else Some False)
else None

have bij-betw F (Pow A) (Func A (UNIV ::bool set))
unfolding bij-betw-def inj-on-def proof (intro ballI impI conjI)

fix A1 A2 assume A1 : A1 ∈ Pow A and A2 : A2 ∈ Pow A and eq : F A1 =
F A2

show A1 = A2
proof−
{fix a
have a ∈ A1 ←→ F A1 a = Some True using A1 unfolding F-def Pow-def

by auto
also have ... ←→ F A2 a = Some True unfolding eq ..
also have ... ←→ a ∈ A2 using A2 unfolding F-def Pow-def by auto
finally have a ∈ A1 ←→ a ∈ A2 .
}
thus ?thesis by auto

qed
next

show F ‘ Pow A = Func A UNIV
proof safe

fix f assume f : f ∈ Func A (UNIV ::bool set)
show f ∈ F ‘ Pow A unfolding image-def mem-Collect-eq proof(intro bexI)

let ?A1 = {a ∈ A. f a = Some True}
show f = F ?A1 unfolding F-def apply(rule ext)
using f unfolding Func-def mem-Collect-eq by (auto,force)

qed auto
qed(unfold Func-def mem-Collect-eq F-def , auto)

qed
thus ?thesis unfolding card-of-ordIso[symmetric] by blast

qed

lemma card-of-Func-mono:
fixes A1 A2 :: ′a set and B :: ′b set
assumes A12 : A1 ⊆ A2 and B : B 6= {}
shows |Func A1 B | ≤o |Func A2 B |
proof−

obtain bb where bb: bb ∈ B using B by auto
def F ≡ λ (f1 :: ′a ⇒ ′b option) a. if a ∈ A2 then (if a ∈ A1 then f1 a else Some

bb)
else None

show ?thesis unfolding card-of-ordLeq [symmetric] proof(intro exI [of - F] conjI)
show inj-on F (Func A1 B) unfolding inj-on-def proof safe
fix f g assume f : f ∈ Func A1 B and g : g ∈ Func A1 B and eq : F f = F g
show f = g

219

proof(rule ext)
fix a show f a = g a
proof(cases a ∈ A1)

case True
thus ?thesis using eq A12 unfolding F-def fun-eq-iff
by (elim allE [of - a]) auto

qed(insert f g , unfold Func-def , fastforce)
qed

qed
qed(insert bb, unfold Func-def F-def , force)

qed

lemma card-of-Pfunc-Pow-Func:
assumes B 6= {}
shows |Pfunc A B | ≤o |Pow A <∗> Func A B |
proof−

have |Pfunc A B | =o |
⋃

A ′ ∈ Pow A. Func A ′ B | (is - =o ?K)
unfolding Pfunc-Func by(rule card-of-refl)
also have ?K ≤o |Sigma (Pow A) (λ A ′. Func A ′B)| using card-of-UNION-Sigma

.
also have |Sigma (Pow A) (λ A ′. Func A ′ B)| ≤o |Pow A <∗> Func A B |
apply(rule card-of-Sigma-mono1) using card-of-Func-mono[OF - assms] by auto
finally show ?thesis .

qed

lemma ordLeq-Func:
assumes {b1 ,b2} ⊆ B b1 6= b2
shows |A| ≤o |Func A B |
unfolding card-of-ordLeq [symmetric] proof(intro exI conjI)

let ?F = λ aa a. if a ∈ A then (if a = aa then Some b1 else Some b2)
else None

show inj-on ?F A using assms unfolding inj-on-def fun-eq-iff by auto
show ?F ‘ A ⊆ Func A B using assms unfolding Func-def apply auto
by (metis option.simps(3))

qed

lemma infinite-Func:
assumes A: infinite A and B : {b1 ,b2} ⊆ B b1 6= b2
shows infinite (Func A B)
using ordLeq-Func[OF B] by (metis A card-of-ordLeq-finite)

definition Ffunc where
Ffunc A B ≡ {f . (∀ a ∈ A. f a ∈ B) ∧ (∀ a. a /∈ A −→ f a = undefined)}

lemma card-of-Func-Ffunc:
|Ffunc A B | =o |Func A B |
unfolding card-of-ordIso[symmetric] proof

let ?F = λ f a. if a ∈ A then Some (f a) else None

220

show bij-betw ?F (Ffunc A B) (Func A B)
unfolding bij-betw-def unfolding inj-on-def proof(intro conjI ballI impI)

fix f g assume f : f ∈ Ffunc A B and g : g ∈ Ffunc A B and eq : ?F f = ?F g
show f = g
proof(rule ext)

fix a
show f a = g a
proof(cases a ∈ A)

case True
have Some (f a) = ?F f a using True by auto
also have ... = ?F g a using eq unfolding fun-eq-iff by(rule allE)
also have ... = Some (g a) using True by auto
finally have Some (f a) = Some (g a) .
thus ?thesis by simp

qed(insert f g , unfold Ffunc-def Ffunc-def , auto)
qed

next
show ?F ‘ Ffunc A B = Func A B
proof safe

fix f assume f : f ∈ Func A B
def g ≡ λ a. case f a of Some b ⇒ b | None ⇒ undefined
have g ∈ Ffunc A B
using f unfolding g-def Func-def Ffunc-def by force+
moreover have f = ?F g
proof(rule ext)

fix a show f a = ?F g a
using f unfolding Func-def g-def by (cases a ∈ A) force+

qed
ultimately show f ∈ ?F ‘ (Ffunc A B) by blast

qed(unfold Ffunc-def Func-def , auto)
qed

qed

end

9 Cardinal Arithmetic

theory Cardinal-Arithmetic
imports Cardinal-Order-Relation
begin

The following collection of lemmas should be seen as an user interface to the
HOL Theory of cardinals. It is not expected to be complete in any sense,
since it’s development was driven by demand arising from the development

221

of the (co)datatype package.

lemma ordIso-refl : Card-order r =⇒ r =o r
by (rule card-order-on-ordIso) assumption

lemma ordLeq-refl : Card-order r =⇒ r ≤o r
by (rule ordIso-imp-ordLeq , rule card-order-on-ordIso) assumption

lemma card-of-refl-ordLeq : |A| ≤o |A|
by simp

lemma card-of-ordIso-subst : A = B =⇒ |A| =o |B |
by (simp only : ordIso-refl card-of-Card-order)

lemma card-of-Ball : |{x ∈ A. P x}| ≤o |A| (is |?L| ≤o |?R|)
proof −

have inj-on id ?L unfolding inj-on-def by simp
moreover have id ‘ ?L ⊆ ?R by auto
ultimately show ?thesis unfolding card-of-ordLeq [symmetric] by blast

qed

lemma ordIso-bij : |A| =o |B | =⇒ ∃ f . bij-betw f A B
unfolding ordIso-def iso-def-raw by auto

lemma card-of-Times-Plus-distrib:
|A <∗> (B <+> C)| =o |A <∗> B <+> A <∗> C | (is |?RHS | =o |?LHS |)

proof −
let ?f = λ(a, bc). case bc of Inl b ⇒ Inl (a, b) | Inr c ⇒ Inr (a, c)
have bij-betw ?f ?RHS ?LHS unfolding bij-betw-def inj-on-def by force
thus ?thesis using card-of-ordIso by blast

qed

9.1 Zero

definition czero where
czero = card-of {}

lemma empty-czero[simp]:
|{}| = czero

unfolding czero-def by simp

lemma czero-ordIso[simp]:
czero =o czero

using card-of-empty-ordIso by simp

222

lemma empty-czero-ordIso:
|{}| =o czero

using card-of-empty-ordIso by simp

lemma czero-ordLeq [simp]:
Card-order r =⇒ czero ≤o r

unfolding czero-def using Card-order-empty .

lemma card-of-czero-iff-empty :
|A| = czero ←→ A = {}

proof
assume |A| = czero
hence Field |A| = Field czero by auto
thus A = {} unfolding czero-def by (simp only : Field-card-of)

qed simp

lemma card-of-ordIso-czero-iff-empty :
|A| =o (czero :: ′a rel) ←→ A = ({} :: ′a set)

unfolding czero-def by (rule iffI [OF card-of-empty2]) auto

abbreviation Cnotzero where
Cnotzero (r :: ′a rel) ≡ ¬(r =o (czero :: ′a rel)) ∧ Card-order r

lemma Cnotzero-imp-not-empty :
assumes Cnotzero r
shows Field r 6= {}

proof (rule ccontr)
assume ¬ (Field r 6= {})
hence |Field r | =o czero by simp
with assms(1) have r =o czero by (blast intro: card-of-unique ordIso-transitive)
with assms show False by blast

qed

lemma czeroI :
[[Card-order r ; Field r = {}]] =⇒ r =o czero

using Cnotzero-imp-not-empty ordIso-transitive[OF - czero-ordIso] by blast

lemma czeroE :
r =o czero =⇒ Field r = {}

unfolding czero-def
by (drule card-of-cong) (simp only : Field-card-of card-of-empty2)

lemma Cnotzero-mono:
[[Cnotzero r ; Card-order q ; r ≤o q]] =⇒ Cnotzero q

apply (rule ccontr)
apply auto

223

apply (drule czeroE)
apply (erule notE)
apply (erule czeroI)
apply (drule card-of-mono2)
apply (simp only : card-of-empty3)
done

9.2 Infinite cardinals

definition cinfinite where
cinfinite r = infinite (Field r)

abbreviation Cinfinite where
Cinfinite r ≡ cinfinite r ∧ Card-order r

lemma natLeq-ordLeq-cinfinite:
assumes inf : Cinfinite r
shows natLeq ≤o r

proof −
from inf have natLeq ≤o |Field r | by (simp add : cinfinite-def infinite-iff-natLeq-ordLeq)
also from inf have |Field r | =o r by simp
finally show ?thesis .

qed

lemma cinfinite-not-czero[simp]:
cinfinite r =⇒ ¬ (r =o (czero :: ′a rel))

proof
assume cinfinite r r =o (czero :: ′a rel)
then obtain f where bij-betw f (Field r) (Field (czero :: ′a rel))

unfolding ordIso-def iso-def-raw by auto
hence bij-betw f (Field r) {} unfolding czero-def by (simp only : Field-card-of)
hence Field r = {} using Fun.bij-betw-empty2 by blast
with 〈cinfinite r 〉 show False unfolding cinfinite-def by simp

qed

lemma Cinfinite-Cnotzero[simp]:
Cinfinite r =⇒ Cnotzero r

by simp

lemma Cinfinite-cong :
assumes r1 =o r2 Cinfinite r1
shows Cinfinite r2

proof (unfold cinfinite-def , rule ccontr)
assume ¬ (infinite (Field r2) ∧ Card-order r2)
hence finite (Field r2) ∨ ¬ Card-order r2 by simp
with assms have finite (Field r2) using Card-order-ordIso2 by blast
hence finite (Field r1)

using card-of-ordIso-finite[OF card-of-cong [OF assms(1)]] by simp
with assms(2) show False unfolding cinfinite-def by simp

224

qed

lemma cinfinite-mono:
assumes r1 ≤o r2 cinfinite r1
shows cinfinite r2

proof (unfold cinfinite-def , rule ccontr)
assume ¬ infinite (Field r2)
hence finite (Field r2) by simp
hence finite (Field r1)

using card-of-ordLeq-finite[OF card-of-mono2 [OF assms(1)]] by simp
with assms(2) show False unfolding cinfinite-def by simp

qed

lemma card-of-Cinfinite-mono:
[[r ≤o |A|; Cinfinite r]] =⇒ Cinfinite |A|

using cinfinite-mono card-of-Card-order by (rule conjI) auto

lemma Cinfinite-mono:
[[r1 ≤o r2 ; Cinfinite r1 ; Card-order r2]] =⇒ Cinfinite r2

using cinfinite-mono by (rule conjI) auto

9.3 Binary sum

definition csum (infixr +c 65) where
r1 +c r2 ≡ |Field r1 <+> Field r2 |

lemma Card-order-csum[simp]:
Card-order (r1 +c r2)

unfolding csum-def by simp

lemma csum-not-czero[simp]:
A 6= {} ∨ B 6= {} =⇒ ¬ (|A| +c |B | =o czero)

unfolding czero-def csum-def
using Field-card-of Plus-eq-empty-conv card-of-empty2 by auto

lemma csum-Cnotzero:
A 6= {} ∨ B 6= {} =⇒ Cnotzero (|A| +c |B |)

unfolding czero-def csum-def
using Field-card-of Plus-eq-empty-conv card-of-empty2 by auto

lemma csum-not-czero1 [simp]:
assumes Cnotzero r1
shows ¬ (r1 +c r2 =o czero)

proof −
from assms(1) have ∗: |Field r1 | =o r1 by simp
moreover
from assms have Field r1 6= {} using Cnotzero-imp-not-empty [of r1] by simp
hence ¬ (|Field r1 | +c |Field r2 | =o czero) by simp
ultimately show ?thesis by (simp add : csum-def)

225

qed

lemma csum-Cnotzero1 :
Cnotzero r1 =⇒ Cnotzero (r1 +c r2)

by simp

lemma csum-not-czero2 [simp]:
assumes Cnotzero r2
shows ¬ (r1 +c r2 =o czero)

proof −
from assms(1) have ∗: |Field r2 | =o r2 by auto
moreover
from assms have Field r2 6= {} using Cnotzero-imp-not-empty [of r2] by auto
hence ¬ (|Field r1 | +c |Field r2 | =o czero) by simp
ultimately show ?thesis by (simp add : csum-def)

qed

lemma csum-Cnotzero2 :
Cnotzero r2 =⇒ Cnotzero (r1 +c r2)

by simp

lemma csum-not-czero ′[simp]:
assumes Cnotzero r1 ∨ Cnotzero r2
shows ¬ (r1 +c r2 =o czero)

proof −
from assms have Field r1 6= {} ∨ Field r2 6= {}

using Cnotzero-imp-not-empty [of r1] Cnotzero-imp-not-empty [of r2] by blast
hence ¬ (|Field r1 | +c |Field r2 | =o czero) by (rule csum-not-czero)
thus ?thesis by (simp add : csum-def)

qed

lemma csum-Cnotzero ′:
Cnotzero r1 ∨ Cnotzero r2 =⇒ Cnotzero (r1 +c r2)

by simp

lemma card-order-csum[simp]:
assumes card-order r1 card-order r2
shows card-order (r1 +c r2)

proof −
have Field r1 = UNIV Field r2 = UNIV using assms card-order-on-Card-order

by auto
thus ?thesis unfolding csum-def by auto

qed

lemma cinfinite-csum[simp]:
cinfinite r1 ∨ cinfinite r2 =⇒ cinfinite (r1 +c r2)

unfolding cinfinite-def csum-def by auto

lemma Cinfinite-csum[simp]:

226

Cinfinite r1 ∨ Cinfinite r2 =⇒ Cinfinite (r1 +c r2)
unfolding cinfinite-def csum-def by auto

lemma csum-cong [simp]:
assumes p1 =o r1 and p2 =o r2
shows p1 +c p2 =o r1 +c r2

unfolding csum-def by (simp only : assms ordIso-Plus-cong)

lemma csum-cong1 [simp]:
assumes p1 =o r1
shows p1 +c q =o r1 +c q

unfolding csum-def by (simp only : assms ordIso-Plus-cong1)

lemma csum-cong2 [simp]:
assumes p2 =o r2
shows q +c p2 =o q +c r2

unfolding csum-def by (simp only : assms ordIso-Plus-cong2)

lemma csum-mono[simp]:
assumes p1 ≤o r1 and p2 ≤o r2
shows p1 +c p2 ≤o r1 +c r2

unfolding csum-def by (simp only : assms ordLeq-Plus-mono)

lemma csum-mono1 [simp]:
assumes p1 ≤o r1
shows p1 +c q ≤o r1 +c q

unfolding csum-def by (simp only : assms ordLeq-Plus-mono1)

lemma csum-mono2 [simp]:
assumes p2 ≤o r2
shows q +c p2 ≤o q +c r2

unfolding csum-def by (simp only : assms ordLeq-Plus-mono2)

lemma ordLeq-csum1 :
assumes Card-order p1
shows p1 ≤o p1 +c p2

unfolding csum-def by (simp only : assms Card-order-Plus1)

lemma ordLeq-csum2 :
assumes Card-order p2
shows p2 ≤o p1 +c p2

unfolding csum-def by (simp only : assms Card-order-Plus2)

lemma csum-com:
p1 +c p2 =o p2 +c p1

unfolding csum-def by (simp only : card-of-Plus-commute)

lemma csum-assoc:
(p1 +c p2) +c p3 =o p1 +c p2 +c p3

227

unfolding csum-def by (simp only : Field-card-of card-of-Plus-assoc)

lemma Plus-csum[simp]:
|A <+> B | =o |A| +c |B |

unfolding csum-def by (simp only : Field-card-of card-of-refl)

lemma czero-csum[simp]:
assumes Card-order r
shows czero +c r =o r

proof −
have |{} <+> Field r | =o r by (simp only : Card-order-Plus-empty2 assms

ordIso-symmetric)
thus ?thesis unfolding csum-def czero-def by (simp only : Field-card-of)

qed

lemma csum-czero[simp]:
assumes Card-order r
shows r +c czero =o r

proof −
have |Field r <+> {}| =o r by (simp only : Card-order-Plus-empty1 assms

ordIso-symmetric)
thus ?thesis unfolding csum-def czero-def by (simp only : Field-card-of)

qed

lemma Un-csum[simp]:
|A ∪ B | ≤o |A| +c |B |

using ordLeq-ordIso-trans[OF card-of-Un-Plus-ordLeq Plus-csum] by blast

lemmas Un-csum3 [simp] =
ordLeq-transitive[OF Un-csum csum-mono1 [OF Un-csum]]
ordLeq-transitive[OF Un-csum csum-mono2 [OF Un-csum]]

9.4 One

definition cone where
cone = card-of {()}

lemma card-order-cone[simp]:
card-order cone

unfolding cone-def using UNIV-unit by simp

lemma Card-order-cone[simp]:
Card-order cone

unfolding cone-def by simp

lemma single-cone:
|{x}| =o cone

proof −
let ?f = λx . ()

228

have bij-betw ?f {x} {()} unfolding bij-betw-def by auto
thus ?thesis unfolding cone-def using card-of-ordIso by blast

qed

lemma czero-not-cone:
¬ (czero =o cone)

using card-of-empty3 [of {()}] ordIso-iff-ordLeq by (auto simp: cone-def)

lemma cone-not-czero:
¬ (cone =o czero)

using card-of-empty3 [of {()}] ordIso-iff-ordLeq by (auto simp: cone-def)

lemma cone-Cnotzero:
Cnotzero cone

by (simp add : cone-not-czero)

lemma cone-ordLeq-Cnotzero:
assumes r : Cnotzero r (is ¬ (- =o ?zero) ∧ -)
shows cone ≤o r

proof −
from r have Field r 6= {} using czeroI by blast
then obtain x where x ∈ Field r by blast
hence cone ≤o |Field r |

unfolding cone-def inj-on-def card-of-ordLeq [symmetric]
using exI [of - λ-. x] by auto

with r show ?thesis by (simp add : ordLeq-ordIso-trans)
qed

9.5 Two

definition ctwo where
ctwo = |UNIV :: bool set |

lemma Card-order-ctwo[simp]:
Card-order ctwo

unfolding ctwo-def by simp

lemma ordLeq-ctwo:
|{a,b}| ≤o ctwo

proof −
have ab: {a,b} 6= {} by simp
show ?thesis unfolding ctwo-def card-of-ordLeq2 [OF ab, symmetric]

by (rule exI [of - λ c. if c then a else b]) auto
qed

lemma ordIso-ctwo:
a 6= b =⇒ |{a,b}| =o ctwo

unfolding ctwo-def card-of-ordIso[symmetric] bij-betw-def
by (rule exI [of - λc. c = a]) auto

229

lemma cone-ordLeq-ctwo:
cone ≤o ctwo

unfolding cone-def ctwo-def card-of-ordLeq [symmetric] by auto

lemma cone-ordLess-ctwo:
cone <o ctwo

proof−
{ assume ctwo ≤o cone

hence |UNIV ::bool set | ≤o |UNIV ::unit set |
unfolding ctwo-def cone-def by (auto intro: card-of-UNIV ordLeq-transitive)

then obtain f ::bool ⇒ unit where inj f
unfolding card-of-ordLeq [symmetric] by auto

hence f True 6= f False unfolding inj-on-def by auto
hence False by auto

}
thus ?thesis using cone-ordLeq-ctwo

using ordIso-iff-ordLeq ordLeq-iff-ordLess-or-ordIso by auto
qed

lemma czero-not-ctwo:
¬ (czero =o ctwo)

using card-of-empty3 [of UNIV :: bool set] ordIso-iff-ordLeq by (auto simp: ctwo-def)

lemma ctwo-not-czero:
¬ (ctwo =o czero)

using card-of-empty3 [of UNIV :: bool set] ordIso-iff-ordLeq by (auto simp: ctwo-def)

lemma ctwo-Cnotzero:
Cnotzero ctwo

by (simp add : ctwo-not-czero)

9.6 Family sum

definition Csum where
Csum r rs ≡ |SIGMA i : Field r . Field (rs i)|

syntax -Csum ::
pttrn => (′a ∗ ′a) set => ′b ∗ ′b set => ((′a ∗ ′b) ∗ (′a ∗ ′b)) set
((3CSUM -:-. -) [0 , 51 , 10] 10)

translations
CSUM i :r . rs == CONST Csum r (%i . rs)

lemma card-of-UNION-csum[simp]:
|
⋃

i∈I . A i | ≤o (CSUM i : |I |. |A i |)
unfolding Csum-def by (simp add : card-of-UNION-Sigma)

230

lemma SIGMA-CSUM [simp]:
|SIGMA i : I . As i | = (CSUM i : |I |. |As i |)

unfolding Csum-def by simp

9.7 Product

definition cprod (infixr ∗c 80) where
r1 ∗c r2 = |Field r1 <∗> Field r2 |

lemma Times-cprod : |A × B | =o |A| ∗c |B |
unfolding cprod-def by (simp only : Field-card-of card-of-refl)

lemma card-order-cprod [simp]:
assumes card-order r1 card-order r2
shows card-order (r1 ∗c r2)

proof −
have Field r1 = UNIV Field r2 = UNIV using assms card-order-on-Card-order

by auto
thus ?thesis unfolding cprod-def by auto

qed

lemma Card-order-cprod [simp]:
Card-order (r1 ∗c r2)

unfolding cprod-def by (simp only : Field-card-of card-of-card-order-on)

lemma cprod-cong [simp]:
assumes p1 =o r1 and p2 =o r2
shows p1 ∗c p2 =o r1 ∗c r2

unfolding cprod-def by (simp only : assms ordIso-Times-cong)

lemma cprod-cong1 [simp]:
assumes p1 =o r1
shows p1 ∗c q =o r1 ∗c q

unfolding cprod-def by (simp only : assms ordIso-Times-cong1)

lemma cprod-cong2 [simp]:
assumes p2 =o r2
shows q ∗c p2 =o q ∗c r2

unfolding cprod-def by (simp only : assms ordIso-Times-cong2)

lemma cprod-mono[simp]:
assumes p1 ≤o r1 and p2 ≤o r2
shows p1 ∗c p2 ≤o r1 ∗c r2

unfolding cprod-def by (simp only : assms ordLeq-Times-mono)

lemma cprod-mono1 [simp]:
assumes p1 ≤o r1
shows p1 ∗c q ≤o r1 ∗c q

unfolding cprod-def by (simp only : assms ordLeq-Times-mono1)

231

lemma cprod-mono2 [simp]:
assumes p2 ≤o r2
shows q ∗c p2 ≤o q ∗c r2

unfolding cprod-def by (simp only : assms ordLeq-Times-mono2)

lemma ordLeq-cprod1 [simp]:
assumes Card-order p1 Cnotzero p2
shows p1 ≤o p1 ∗c p2

proof −
from assms(2) have ∗: |Field p2 | =o p2 by simp
{ assume |Field p2 | = czero

with ∗ have czero =o p2 using czero-ordIso ordIso-transitive by fastforce
hence p2 =o czero using ordIso-symmetric by blast
with assms(2) have False by blast

}
hence |Field p2 | 6= czero by blast
hence Field p2 6= {} by (simp add : card-of-czero-iff-empty)
with assms(1) show ?thesis unfolding cprod-def by (simp add : Card-order-Times1

del : SIGMA-CSUM)
qed

lemma ordLeq-cprod1 ′[simp]:
assumes Card-order r A 6= {}
shows r ≤o r ∗c |A|

proof −
from assms(2) have Card-order |A| ¬ (|A| =o czero) by (auto simp add :

card-of-empty2)+
with assms(1) show ?thesis using ordLeq-cprod1 by blast

qed

lemma ordLeq-cprod2 [simp]:
assumes Cnotzero p1 Card-order p2
shows p2 ≤o p1 ∗c p2

proof −
from assms(1) have ∗: |Field p1 | =o p1 by simp
{ assume |Field p1 | = czero

with ∗ have czero =o p1 using czero-ordIso ordIso-transitive by fastforce
hence p1 =o czero using ordIso-symmetric by blast
with assms(1) have False by blast

}
hence |Field p1 | 6= czero by blast
hence Field p1 6= {} by (simp add : card-of-czero-iff-empty)
with assms(2) show ?thesis unfolding cprod-def by (simp add : Card-order-Times2

del : SIGMA-CSUM)
qed

lemma ordLeq-cprod2 ′[simp]:
assumes Card-order r A 6= {}

232

shows r ≤o |A| ∗c r
proof −

from assms(2) have Card-order |A| ¬ (|A| =o czero) by (auto simp add :
card-of-empty2)+

with assms(1) show ?thesis using ordLeq-cprod2 by blast
qed

lemma cinfinite-cprod [simp]:
[[cinfinite r1 ; cinfinite r2]] =⇒ cinfinite (r1 ∗c r2)

unfolding cinfinite-def cprod-def by (simp del : SIGMA-CSUM)

lemma Cinfinite-cprod [simp]:
[[Cinfinite r1 ; Cinfinite r2]] =⇒ Cinfinite (r1 ∗c r2)

unfolding cinfinite-def cprod-def by (simp del : SIGMA-CSUM)

lemma cinfinite-cprod1 :
assumes Cinfinite r1 Cnotzero r2
shows cinfinite (r1 ∗c r2)

proof −
from assms have r1 ≤o r1 ∗c r2 by (auto intro: ordLeq-cprod1)
with assms(1) show ?thesis unfolding cinfinite-def cprod-def

using card-of-mono2 card-of-ordLeq-infinite by auto
qed

lemma Cinfinite-cprod1 :
[[Cinfinite r1 ; Cnotzero r2]] =⇒ Cinfinite (r1 ∗c r2)

by (blast intro: cinfinite-cprod1 Card-order-cprod)

lemma cinfinite-cprod2 :
assumes Cnotzero r1 Cinfinite r2
shows cinfinite (r1 ∗c r2)

proof −
from assms have r2 ≤o r1 ∗c r2 by (auto intro: ordLeq-cprod2)
with assms(2) show ?thesis unfolding cinfinite-def cprod-def

using card-of-mono2 card-of-ordLeq-infinite by auto
qed

lemma Cinfinite-cprod2 :
[[Cnotzero r1 ; Cinfinite r2]] =⇒ Cinfinite (r1 ∗c r2)

by (blast intro: cinfinite-cprod2 Card-order-cprod)

lemma Cnotzero-cprod :
assumes r1 : Cnotzero (r1 :: ′a rel) and r2 : Cnotzero (r2 :: ′b rel)
shows Cnotzero (r1 ∗c r2)

proof (intro conjI , rule ccontr)
assume ¬ (r1 ∗c r2 , czero :: (′a × ′b) rel) /∈ ordIso
hence r1 ∗c r2 =o (czero :: (′a × ′b) rel) by blast
hence Field r1 <∗> Field r2 = ({} :: (′a × ′b) set) unfolding cprod-def

using iffD1 [OF card-of-ordIso-czero-iff-empty] by blast

233

hence Field r1 = {} ∨ Field r2 = {} by auto
thus False
using Cnotzero-imp-not-empty [OF r1] Cnotzero-imp-not-empty [OF r2] by simp

qed simp

lemma cprod-com:
p1 ∗c p2 =o p2 ∗c p1

unfolding cprod-def by (simp only : card-of-Times-commute)

lemma cprod-assoc:
(p1 ∗c p2) ∗c p3 =o p1 ∗c p2 ∗c p3

unfolding cprod-def by (simp only : Field-card-of card-of-Times-assoc)

lemma Prod-cprod [simp]:
|A <∗> B | =o |A| ∗c |B |

unfolding cprod-def by(simp only : Field-card-of card-of-refl)

lemma czero-cprod [simp]:
czero ∗c r =o czero

unfolding cprod-def czero-def by (simp del : empty-czero add : card-of-empty-ordIso)

lemma cprod-czero[simp]:
r ∗c czero =o czero

unfolding cprod-def czero-def by (simp del : empty-czero add : card-of-empty-ordIso)

lemma cone-cprod [simp]:
assumes Card-order r
shows cone ∗c r =o r

proof −
have |{()} <∗> Field r | =o r by (simp only : Card-order-Times-singl2 assms

ordIso-symmetric)
thus ?thesis unfolding cprod-def cone-def by (simp only : Field-card-of)

qed

lemma cprod-cone[simp]:
assumes Card-order r
shows r ∗c cone =o r

proof −
have |Field r <∗> {()}| =o r by (simp only : Card-order-Times-singl1 assms

ordIso-symmetric)
thus ?thesis unfolding cprod-def cone-def by (simp only : Field-card-of)

qed

lemma card-of-Csum-Times:
∀ i ∈ I . |A i | ≤o |B | =⇒ (CSUM i : |I |. |A i |) ≤o |I | ∗c |B |

unfolding Csum-def cprod-def using card-of-Sigma-Times by simp

lemma card-of-Csum-Times ′:
assumes Card-order r ∀ i ∈ I . |A i | ≤o r

234

shows (CSUM i : |I |. |A i |) ≤o |I | ∗c r
proof −

from assms(1) have ∗: r =o |Field r | by simp
with assms(2) have ∀ i ∈ I . |A i | ≤o |Field r | by (blast intro: ordLeq-ordIso-trans)
hence (CSUM i : |I |. |A i |) ≤o |I | ∗c |Field r | by (simp only : card-of-Csum-Times)
also from ∗ have |I | ∗c |Field r | ≤o |I | ∗c r by simp
finally show ?thesis .

qed

lemma cprod-csum-distrib1 :
r1 ∗c r2 +c r1 ∗c r3 =o r1 ∗c (r2 +c r3)

unfolding csum-def cprod-def
by (simp add : card-of-Times-Plus-distrib ordIso-symmetric del : SIGMA-CSUM)

lemma cprod-csum-distrib2 :
r1 ∗c r3 +c r2 ∗c r3 =o (r1 +c r2) ∗c r3

by (blast intro: cprod-com cprod-csum-distrib1 csum-cong ordIso-transitive)

lemma csum-cprod-ordLeq :
assumes Cnotzero r1 Card-order r2
shows r1 +c r2 ≤o r1 ∗c (cone +c r2)

proof −
from assms(1) have r1 ≤o r1 ∗c cone

using Card-order-cone cone-Cnotzero by (blast intro: ordLeq-cprod1)
moreover from assms have r2 ≤o r1 ∗c r2 by (blast intro: ordLeq-cprod2)
ultimately have r1 +c r2 ≤o r1 ∗c cone +c r1 ∗c r2 by (rule csum-mono)
also have r1 ∗c cone +c r1 ∗c r2 =o r1 ∗c (cone +c r2) by (rule cprod-csum-distrib1)
finally show ?thesis .

qed

lemma csum-absorb2 ′:
assumes card : Card-order r2
and r12 : r1 ≤o r2 and cr12 : cinfinite r1 ∨ cinfinite r2
shows r1 +c r2 =o r2

proof −
have infinite (Field r2)

using assms card-of-mono2 card-of-ordLeq-infinite
unfolding csum-def cinfinite-def by auto

hence r1 +c r2 =o |Field r2 |
using card-of-Plus-infinite2 card-of-mono2 r12 unfolding csum-def by auto

thus ?thesis using card card-of-Field-ordIso ordIso-transitive by auto
qed

lemma csum-absorb2 :
[[Cinfinite r2 ; r1 ≤o r2]] =⇒ r1 +c r2 =o r2

by (rule csum-absorb2 ′) auto

lemma csum-absorb1 ′:
assumes card : Card-order r2

235

and r12 : r1 ≤o r2 and cr12 : cinfinite r1 ∨ cinfinite r2
shows r2 +c r1 =o r2

by (rule ordIso-transitive, rule csum-com, rule csum-absorb2 ′, (simp only : assms)+)

lemma csum-absorb1 :
[[Cinfinite r2 ; r1 ≤o r2]] =⇒ r2 +c r1 =o r2

by (rule csum-absorb1 ′) auto

lemma cprod-infinite1 :
[[Cinfinite r ; A 6= {}; |A| ≤o r]] =⇒ r ∗c |A| =o r

unfolding cinfinite-def cprod-def
by (rule Card-order-Times-infinite[THEN conjunct1]) auto

lemma cprod-infinite1 ′:
[[Cinfinite r ; Cnotzero p; p ≤o r]] =⇒ r ∗c p =o r

unfolding cinfinite-def cprod-def
by (rule Card-order-Times-infinite[THEN conjunct1]) (blast intro: czeroI)+

lemma cprod-infinite1-natLeq :
Cinfinite r =⇒ r ∗c natLeq =o r

unfolding cprod-def
by (rule Card-order-Times-infinite[THEN conjunct1])

(auto simp add : natLeq-ordLeq-cinfinite cinfinite-def Field-natLeq)

lemma cprod-infinite2 :
[[Cinfinite r ; A 6= {}; |A| ≤o r]] =⇒ |A| ∗c r =o r

unfolding cinfinite-def cprod-def
by (rule Card-order-Times-infinite[THEN conjunct2]) auto

lemma cprod-infinite2 ′:
[[Cinfinite r ; Cnotzero p; p ≤o r]] =⇒ p ∗c r =o r

unfolding cinfinite-def cprod-def
by (rule Card-order-Times-infinite[THEN conjunct2]) (blast intro: czeroI)+

lemma cprod-infinite2-natLeq :
Cinfinite r =⇒ natLeq ∗c r =o r

unfolding cprod-def
by (rule Card-order-Times-infinite[THEN conjunct2])

(auto simp add : natLeq-ordLeq-cinfinite cinfinite-def Field-natLeq)

9.8 Exponentiation

definition cexp (infixr ˆc 80) where
r1 ˆc r2 ≡ |Func (Field r2) (Field r1)|

definition ccexp (infixr ˆˆc 80) where
r1 ˆˆc r2 ≡ |Pfunc (Field r2) (Field r1)|

lemma cexp-ordLeq-ccexp:

236

r1 ˆc r2 ≤o r1 ˆˆc r2
unfolding cexp-def ccexp-def by (rule card-of-mono1) (rule Func-Pfunc)

lemma card-order-ccexp:
assumes card-order r1 card-order r2
shows card-order (r1 ˆˆc r2)

proof −
have Field r1 = UNIV Field r2 = UNIV using assms card-order-on-Card-order

by auto
thus ?thesis unfolding ccexp-def Pfunc-def by (auto split : option.split)

qed

lemma Card-order-cexp: Card-order (r1 ˆc r2)
unfolding cexp-def by simp

lemma Card-order-ccexp: Card-order (r1 ˆˆc r2)
unfolding ccexp-def by simp

lemma cexp-mono ′:
assumes 1 : p1 ≤o r1 and 2 : p2 ≤o r2
and n1 : Field p1 6= {} ∨ cone ≤o r1 ˆc r2
and n2 : Field p2 = {} =⇒ Field r2 = {}
shows p1 ˆc p2 ≤o r1 ˆc r2

proof(cases Field p1 = {})
case True
hence |Field (p1 ˆc p2)| ≤o cone

unfolding cone-def cexp-def Field-card-of by (cases Field p2 = {}) auto
hence p1 ˆc p2 ≤o cone by (simp add : cexp-def)
thus ?thesis using True n1 ordLeq-transitive by auto

next
case False
have 1 : |Field p1 | ≤o |Field r1 | and 2 : |Field p2 | ≤o |Field r2 |

using 1 2 by auto
obtain f1 where f1 : f1 ‘ Field r1 = Field p1

using 1 unfolding card-of-ordLeq2 [OF False, symmetric] by auto
obtain f2 where f2 : inj-on f2 (Field p2) f2 ‘ Field p2 ⊆ Field r2

using 2 unfolding card-of-ordLeq [symmetric] by blast
have 0 : Func-map (Field p2) f1 f2 ‘ (Field (r1 ˆc r2)) = Field (p1 ˆc p2)
unfolding cexp-def Field-card-of using Func-map-surj [OF f1 f2 n2 , symmetric]

.
have 00 : Field (p1 ˆc p2) 6= {} unfolding cexp-def Field-card-of Func-is-emp

using False by simp
show ?thesis

using 0 card-of-ordLeq2 [OF 00] unfolding cexp-def Field-card-of by blast
qed

lemma cexp-mono[simp]:
assumes 1 : p1 ≤o r1 and 2 : p2 ≤o r2
and n1 : Cnotzero p1 ∨ cone ≤o r1 ˆc r2

237

and n2 : p2 =o czero =⇒ r2 =o czero and card : Card-order p2
shows p1 ˆc p2 ≤o r1 ˆc r2

proof (rule cexp-mono ′[OF 1 2])
show Field p1 6= {} ∨ cone ≤o r1 ˆc r2
proof (cases Cnotzero p1)

case True show ?thesis using Cnotzero-imp-not-empty [OF True] by (rule
disjI1)

next
case False with n1 show ?thesis by blast

qed
qed (rule czeroI [OF card , THEN n2 , THEN czeroE])

lemma cexp-mono1 ′:
assumes 1 : p1 ≤o r1
and n1 : Field p1 6= {} ∨ cone ≤o r1 ˆc q and q : Card-order q
shows p1 ˆc q ≤o r1 ˆc q

using ordLeq-refl [OF q] by (rule cexp-mono ′[OF 1 - n1]) auto

lemma cexp-mono1 [simp]:
assumes 1 : p1 ≤o r1
and n1 : Cnotzero p1 ∨ cone ≤o r1 ˆc q and q : Card-order q
shows p1 ˆc q ≤o r1 ˆc q

using ordLeq-refl [OF q] by (rule cexp-mono[OF 1 - n1]) (auto simp: q)

lemma cexp-mono2 ′:
assumes 2 : p2 ≤o r2 and q : Card-order q
and n1 : Field q 6= {} ∨ cone ≤o q ˆc r2
and n2 : Field p2 = {} =⇒ Field r2 = {}
shows q ˆc p2 ≤o q ˆc r2

using ordLeq-refl [OF q] by (rule cexp-mono ′[OF - 2 n1 n2]) auto

lemma cexp-mono2 [simp]:
assumes 2 : p2 ≤o r2 and q : Card-order q
and n1 : Cnotzero q ∨ cone ≤o q ˆc r2
and n2 : p2 =o czero =⇒ r2 =o czero and card : Card-order p2
shows q ˆc p2 ≤o q ˆc r2

using ordLeq-refl [OF q] by (rule cexp-mono[OF - 2 n1 n2 card]) auto

lemma cexp-cong ′:
assumes 1 : p1 =o r1 and 2 : p2 =o r2
and p1 : Field p1 6= {} ∨ cone ≤o r1 ˆc r2
and r1 : Field r1 6= {} ∨ cone ≤o p1 ˆc p2
shows p1 ˆc p2 =o r1 ˆc r2

proof −
obtain f where bij-betw f (Field p2) (Field r2)

using 2 card-of-ordIso[of Field p2 Field r2] card-of-cong by auto
hence 0 : Field p2 = {} ←→ Field r2 = {} unfolding bij-betw-def by auto
show ?thesis using 0 1 2 cexp-mono ′[OF - - p1] cexp-mono ′[OF - - r1]

unfolding ordIso-iff-ordLeq by auto

238

qed

lemma cexp-cong [simp]:
assumes 1 : p1 =o r1 and 2 : p2 =o r2
and p1 : Cnotzero p1 ∨ cone ≤o r1 ˆc r2 and Cr : Card-order r2
and r1 : Cnotzero r1 ∨ cone ≤o p1 ˆc p2 and Cp: Card-order p2
shows p1 ˆc p2 =o r1 ˆc r2

proof −
obtain f where bij-betw f (Field p2) (Field r2)

using 2 card-of-ordIso[of Field p2 Field r2] card-of-cong by auto
hence 0 : Field p2 = {} ←→ Field r2 = {} unfolding bij-betw-def by auto
have r : p2 =o czero =⇒ r2 =o czero

and p: r2 =o czero =⇒ p2 =o czero
using 0 Cr Cp czeroE czeroI by auto

show ?thesis using 0 1 2 unfolding ordIso-iff-ordLeq
using r p cexp-mono[OF - - p1 - Cp] cexp-mono[OF - - r1 - Cr]
by blast

qed

lemma cexp-cong1 ′:
assumes 1 : p1 =o r1 and q : Card-order q
and p1 : Field p1 6= {} ∨ cone ≤o r1 ˆc q
and r1 : Field r1 6= {} ∨ cone ≤o p1 ˆc q
shows p1 ˆc q =o r1 ˆc q

by (rule cexp-cong ′[OF 1 - p1 r1]) (rule ordIso-refl [OF q])

lemma cexp-cong1 [simp]:
assumes 1 : p1 =o r1 and q : Card-order q
and p1 : Cnotzero p1 ∨ cone ≤o r1 ˆc q
and r1 : Cnotzero r1 ∨ cone ≤o p1 ˆc q
shows p1 ˆc q =o r1 ˆc q

by (rule cexp-cong [OF 1 - p1 q r1 q]) (rule ordIso-refl [OF q])

lemma cexp-cong2 ′:
assumes 2 : p2 =o r2 and q : Card-order q
shows Field q 6= {} ∨ (cone ≤o q ˆc p2 ∧ cone ≤o q ˆc r2) =⇒

q ˆc p2 =o q ˆc r2
by (rule cexp-cong ′[OF - 2]) (auto simp only : ordIso-refl q)

lemma cexp-cong2 [simp]:
assumes 2 : p2 =o r2 and q : Card-order q
and p: Card-order p2 and r : Card-order r2
shows Cnotzero q ∨ (cone ≤o q ˆc p2 ∧ cone ≤o q ˆc r2) =⇒

q ˆc p2 =o q ˆc r2
by (rule cexp-cong [OF - 2]) (auto simp only : ordIso-refl q p r)

lemma cexp-czero:
r ˆc czero =o cone

unfolding cexp-def czero-def Field-card-of Func-emp-empty by (rule single-cone)

239

lemma czero-cexp:
Cnotzero r =⇒ czero ˆc r =o czero

unfolding cexp-def czero-def Field-card-of
using Func-emp2 [of Field r] card-of-empty-ordIso card-of-unique[of Field r r]
by fastforce

lemma cexp-cone:
assumes Card-order r
shows r ˆc cone =o r

proof −
have r ˆc cone =o |Field r |

unfolding cexp-def cone-def Field-card-of Func-emp-empty
card-of-ordIso[symmetric] bij-betw-def Func-def inj-on-def image-def

by (rule exI [of - λf . case f () of Some a ⇒ a]) auto
also have |Field r | =o r by (rule card-of-Field-ordIso[OF assms])
finally show ?thesis .

qed

lemma cexp-cprod :
assumes r1 : Cnotzero r1
shows (r1 ˆc r2) ˆc r3 =o r1 ˆc (r2 ∗c r3) (is ?L =o ?R)

proof −
have ?L =o r1 ˆc (r3 ∗c r2)

unfolding cprod-def cexp-def Field-card-of
using card-of-Func-Times by(rule ordIso-symmetric)

also have r1 ˆc (r3 ∗c r2) =o ?R
apply(rule cexp-cong2) using cprod-com r1 by auto

finally show ?thesis .
qed

lemma cexp-cprod-ordLeq :
assumes r1 : Cnotzero r1 and r2 : Cinfinite r2
and r3 : Cnotzero r3 r3 ≤o r2
shows (r1 ˆc r2) ˆc r3 =o r1 ˆc r2 (is ?L =o ?R)

proof−
have ?L =o r1 ˆc (r2 ∗c r3) using cexp-cprod [OF r1] .
also have r1 ˆc (r2 ∗c r3) =o ?R
apply(rule cexp-cong2)
apply(rule cprod-infinite1 ′[OF r2 r3]) using r1 r2 by fastforce+
finally show ?thesis .

qed

lemma cexp-cprod-natLeq :
assumes r1 : Cnotzero r1
and r2 : Cinfinite r2
shows (r1 ˆc r2) ˆc natLeq =o r1 ˆc r2 (is ?L =o ?R)

proof−
have ?L =o r1 ˆc (r2 ∗c natLeq) using cexp-cprod [OF r1] .

240

also have r1 ˆc (r2 ∗c natLeq) =o ?R
apply(rule cexp-cong2)
apply(rule cprod-infinite1-natLeq [OF r2]) using r1 r2 by fastforce+
finally show ?thesis .

qed

lemma Cnotzero-UNIV [simp]: Cnotzero |UNIV |
by (simp, rule notI , drule czeroE , auto)

lemma card-of-Pfunc-Func:
assumes A: infinite A and B : {b1 ,b2} ⊆ B b1 6= b2
shows |Pfunc A B | =o |Func A B |

unfolding ordIso-iff-ordLeq proof
show |Func A B | ≤o |Pfunc A B | using Func-Pfunc by (rule card-of-mono1)

next
have B ′: B 6= {} using B by auto
have B ′′: |UNIV ::bool set | ≤o |B |
using ordIso-ordLeq-trans[OF card-of-bool [OF B(2)] card-of-mono1 [OF B(1)]]

.
have |Pfunc A B | ≤o |Pow A × Func A B | by (rule card-of-Pfunc-Pow-Func[OF

B ′])
also have |Pow A × Func A B | =o |Func A (UNIV :: bool set) × Func A B |

by (rule card-of-Times-cong1 [OF card-of-Pow-Func])
also have |Func A (UNIV :: bool set) × Func A B | =o |Func A B |
proof (rule card-of-Times-infinite[THEN conjunct2 , OF infinite-Func[OF A B]])

show Func A (UNIV :: bool set) 6= {} using A unfolding Func-is-emp by
simp

next
show |Func A (UNIV :: bool set)| ≤o |Func A B |

using cexp-mono1 [OF B ′′, of |A|, OF - card-of-Card-order]
unfolding cexp-def Field-card-of by auto

qed
finally show |Pfunc A B | ≤o |Func A B | .

qed

lemma Pow-cexp-ctwo:
|Pow A| =o ctwo ˆc |A|

unfolding ctwo-def cexp-def Field-card-of by (rule card-of-Pow-Func)

lemma ordLess-ctwo-cexp:
assumes Card-order r
shows r <o ctwo ˆc r

proof −
have r <o |Pow (Field r)| using assms by simp
also have |Pow (Field r)| =o ctwo ˆc r

unfolding ctwo-def cexp-def Field-card-of by (rule card-of-Pow-Func)
finally show ?thesis .

qed

241

lemma ordLeq-cexp1 :
assumes Cnotzero r Card-order q
shows q ≤o q ˆc r

proof (cases q =o (czero :: ′a rel))
case True thus ?thesis by (simp add : ordIso-ordLeq-trans Card-order-cexp)

next
case False
thus ?thesis

apply −
apply (rule ordIso-ordLeq-trans)
apply (rule ordIso-symmetric)
apply (rule cexp-cone)
apply (rule assms(2))
apply (rule cexp-mono2)
apply (rule cone-ordLeq-Cnotzero)
apply (rule assms(1))
apply (rule assms(2))
apply (rule disjI1)
apply (rule conjI)
apply (rule notI)
apply (erule notE)
apply (rule ordIso-transitive)
apply assumption
apply (rule czero-ordIso)
apply (rule assms(2))
apply (rule notE)
apply (rule cone-not-czero)
apply assumption
apply (rule Card-order-cone)

done
qed

lemma ordLeq-cexp2 :
assumes ctwo ≤o q Card-order r
shows r ≤o q ˆc r

proof (cases r =o (czero :: ′a rel))
case True thus ?thesis by (simp add : ordIso-ordLeq-trans Card-order-cexp)

next
case False thus ?thesis

apply −
apply (rule ordLess-imp-ordLeq)
apply (rule ordLess-ordLeq-trans)
apply (rule ordLess-ctwo-cexp)
apply (rule assms(2))
apply (rule cexp-mono1)
apply (rule assms(1))
apply (rule disjI1)
apply (rule ctwo-Cnotzero)
apply (rule assms(2))

242

done
qed

lemma Cnotzero-cexp:
assumes Cnotzero q Card-order r
shows Cnotzero (q ˆc r)

proof (cases r =o czero)
case False thus ?thesis

apply −
apply (rule Cnotzero-mono)
apply (rule assms(1))
apply (rule Card-order-cexp)
apply (rule ordLeq-cexp1)
apply (rule conjI)
apply (rule notI)
apply (erule notE)
apply (rule ordIso-transitive)
apply assumption
apply (rule czero-ordIso)
apply (rule assms(2))
apply (rule conjunct2)
apply (rule assms(1))

done
next

case True thus ?thesis
apply −
apply (rule Cnotzero-mono)
apply (rule cone-Cnotzero)
apply (rule Card-order-cexp)
apply (rule ordIso-imp-ordLeq)
apply (rule ordIso-symmetric)
apply (rule ordIso-transitive)
apply (rule cexp-cong2)
apply assumption
apply (rule conjunct2)
apply (rule assms(1))
apply (rule assms(2))
apply (simp only : card-of-Card-order czero-def)
apply (rule disjI1)
apply (rule assms(1))
apply (rule cexp-czero)

done
qed

lemma cinfinite-ctwo-cexp:
cinfinite r =⇒ cinfinite (ctwo ˆc r)

unfolding ctwo-def cexp-def cinfinite-def Field-card-of
by (rule infinite-Func) auto

243

lemma Cinfinite-ctwo-cexp:
Cinfinite r =⇒ Cinfinite (ctwo ˆc r)

unfolding ctwo-def cexp-def cinfinite-def Field-card-of
by (rule conjI , rule infinite-Func) auto

lemma cinfinite-cexp:
assumes q : ctwo ≤o q and r : Cinfinite r
shows cinfinite (q ˆc r)

proof −
have ctwo ˆc r ≤o q ˆc r by (rule cexp-mono1 [OF q]) (auto simp add : r ctwo-def)
thus ?thesis using Cinfinite-ctwo-cexp[OF r]
unfolding cinfinite-def using card-of-ordLeq-infinite card-of-mono2 by blast

qed

lemma cinfinite-ccexp:
[[ctwo ≤o q ; Cinfinite r]] =⇒ cinfinite (q ˆˆc r)

using cinfinite-mono[OF cexp-ordLeq-ccexp cinfinite-cexp] by auto

lemma Cinfinite-cexp:
[[ctwo ≤o q ; Cinfinite r]] =⇒ Cinfinite (q ˆc r)

by (simp add : cinfinite-cexp Card-order-cexp)

lemma Cinfinite-ccexp:
[[ctwo ≤o q ; Cinfinite r]] =⇒ Cinfinite (q ˆˆc r)

using Cinfinite-mono[OF cexp-ordLeq-ccexp Cinfinite-cexp]
by (auto simp add : Card-order-ccexp)

lemma ctwo-ordLeq-natLeq :
ctwo ≤o natLeq

proof −
have ctwo ≤o |Field natLeq |

unfolding Field-natLeq ctwo-def inj-on-def card-of-ordLeq [symmetric]
by (rule exI [of - λ c. if c then 0 else Suc 0]) auto

thus ?thesis using card-of-Field-natLeq ordLeq-ordIso-trans by blast
qed

lemma ctwo-ordLess-natLeq :
ctwo <o natLeq

unfolding ctwo-def using finite-iff-ordLess-natLeq finite-UNIV by fastforce

lemma ctwo-ordLess-Cinfinite:
assumes r : Cinfinite r
shows ctwo <o r

proof −
have natLeq ≤o r using r by (rule natLeq-ordLeq-cinfinite)
thus ?thesis using ctwo-ordLess-natLeq ordLess-ordLeq-trans by blast

qed

lemma ctwo-ordLeq-Cinfinite:

244

assumes r : Cinfinite r
shows ctwo ≤o r

by (rule ordLess-imp-ordLeq [OF ctwo-ordLess-Cinfinite[OF r]])

lemma Cinfinite-ordLess-cexp:
assumes r : Cinfinite r
shows r <o r ˆc r

proof −
have r <o ctwo ˆc r using r by (simp only : ordLess-ctwo-cexp)
also have ctwo ˆc r ≤o r ˆc r

by (rule cexp-mono1 [OF ctwo-ordLeq-Cinfinite]) (auto simp: r ctwo-not-czero)
finally show ?thesis .

qed

lemma infinite-ordLeq-cexp:
assumes r : Cinfinite r
shows r ≤o r ˆc r

by (rule ordLess-imp-ordLeq [OF Cinfinite-ordLess-cexp[OF r]])

lemma cone-ordLeq-iff-Field :
assumes cone ≤o r
shows Field r 6= {}

proof (rule ccontr)
assume ¬ Field r 6= {}
hence Field r = {} by simp
thus False using card-of-empty3

card-of-mono2 [OF assms] Cnotzero-imp-not-empty [OF cone-Cnotzero] by auto
qed

lemma cone-ordLeq-cexp[simp]:
assumes cone ≤o r1
shows cone ≤o r1 ˆc r2

proof −
have Field r1 6= {} using assms cone-ordLeq-iff-Field by auto
thus ?thesis unfolding cone-def cexp-def by auto

qed

lemma Card-order-czero[simp]: Card-order czero
by (simp only : card-of-Card-order czero-def)

lemma cexp-mono2 ′′:
assumes 2 : p2 ≤o r2
and n1 : Cnotzero q
and n2 : Card-order p2
shows q ˆc p2 ≤o q ˆc r2

proof (cases p2 =o (czero :: ′a rel))
case True
hence q ˆc p2 =o q ˆc (czero :: ′a rel) using n1 n2 cexp-cong2 Card-order-czero

by blast

245

also have q ˆc (czero :: ′a rel) =o cone using cexp-czero by blast
also have cone ≤o q ˆc r2 using cone-ordLeq-cexp cone-ordLeq-Cnotzero n1 by

blast
finally show ?thesis .

next
case False thus ?thesis using assms cexp-mono2 ′ czeroI by metis

qed

9.9 Infinite bounds

lemma cone-ordLeq-cinfinite: Cinfinite r =⇒ cone ≤o r
unfolding cinfinite-def cone-def
by (auto intro: Card-order-singl-ordLeq)

lemma Un-Cinfinite-bound :
[[|A| ≤o r ; |B | ≤o r ; Cinfinite r]] =⇒ |A ∪ B | ≤o r

by (auto simp add : cinfinite-def)

lemma UNION-Cinfinite-bound :
[[|I | ≤o r ; ∀ i ∈ I . |A i | ≤o r ; Cinfinite r]] =⇒ |

⋃
i ∈ I . A i | ≤o r

by (auto simp add : card-of-UNION-ordLeq-infinite-Field cinfinite-def)

lemma csum-cinfinite-bound :
assumes p ≤o r q ≤o r Card-order p Card-order q Cinfinite r
shows p +c q ≤o r

proof −
from assms(1−4) have |Field p| ≤o r |Field q | ≤o r

unfolding card-order-on-def
using card-of-least ordLeq-transitive by blast+

with assms show ?thesis unfolding cinfinite-def csum-def
by (blast intro: card-of-Plus-ordLeq-infinite-Field)

qed

lemma csum-cexp: [[Cinfinite r1 ; Cinfinite r2 ; Card-order q ; ctwo ≤o q]] =⇒
q ˆc r1 +c q ˆc r2 ≤o q ˆc (r1 +c r2)

apply (rule csum-cinfinite-bound)
apply (rule cexp-mono2)
apply (rule ordLeq-csum1)
apply (erule conjunct2)
apply assumption
apply (rule disjI2)
apply (rule ordLeq-transitive)
apply (rule cone-ordLeq-ctwo)
apply (rule ordLeq-transitive)
apply assumption
apply (rule ordLeq-cexp1)
apply (rule Cinfinite-Cnotzero)
apply (rule Cinfinite-csum)
apply (rule disjI1)

246

apply assumption
apply assumption
apply (rule notE)
apply (rule cinfinite-not-czero[of r1])
apply (erule conjunct1)
apply assumption
apply (erule conjunct2)
apply (rule cexp-mono2)
apply (rule ordLeq-csum2)
apply (erule conjunct2)
apply assumption
apply (rule disjI2)
apply (rule ordLeq-transitive)
apply (rule cone-ordLeq-ctwo)
apply (rule ordLeq-transitive)
apply assumption
apply (rule ordLeq-cexp1)
apply (rule Cinfinite-Cnotzero)
apply (rule Cinfinite-csum)
apply (rule disjI1)
apply assumption
apply assumption
apply (rule notE)
apply (rule cinfinite-not-czero[of r2])
apply (erule conjunct1)
apply assumption
apply (erule conjunct2)
apply (rule Card-order-cexp)
apply (rule Card-order-cexp)
apply (rule Cinfinite-cexp)
apply assumption
apply (rule Cinfinite-csum)
apply (rule disjI1)
apply assumption
done

lemma csum-cexp ′: [[Cinfinite r ; Card-order q ; ctwo ≤o q]] =⇒ q +c r ≤o q ˆc r
by (rule csum-cinfinite-bound) (auto simp add : ordLeq-cexp1 ordLeq-cexp2 Cinfinite-cexp)

lemma cprod-cinfinite-bound :
assumes p ≤o r q ≤o r Card-order p Card-order q Cinfinite r
shows p ∗c q ≤o r

proof −
from assms(1−4) have |Field p| ≤o r |Field q | ≤o r

unfolding card-order-on-def
using card-of-least ordLeq-transitive by blast+

with assms show ?thesis unfolding cinfinite-def cprod-def
by (blast intro: card-of-Times-ordLeq-infinite-Field)

qed

247

lemma cprod-csum-cexp:
r1 ∗c r2 ≤o (r1 +c r2) ˆc ctwo

unfolding cprod-def csum-def cexp-def ctwo-def Field-card-of
proof −

let ?f = λ(a, b). %x . if x then Some (Inl a) else Some (Inr b)
have inj-on ?f (Field r1 × Field r2) (is inj-on - ?LHS)

unfolding inj-on-def fun-eq-iff by (auto split : bool .split)
moreover
have ?f ‘ ?LHS ⊆ Func (UNIV :: bool set) (Field r1 <+> Field r2) (is - ⊆

?RHS)
unfolding Func-def by auto

ultimately show |?LHS | ≤o |?RHS | using card-of-ordLeq by blast
qed

lemma Cinfinite-cardSuc: Cinfinite r =⇒ Cinfinite (cardSuc r)
by (rule Cinfinite-mono) auto

lemma Cnotzero-cardSuc: Card-order r =⇒ Cnotzero (cardSuc r)
using Field-cardSuc-not-empty czeroE by auto

9.10 Powerset

definition cpow where cpow r = |Pow (Field r)|

lemma card-order-cpow [simp]:
assumes card-order r
shows card-order (cpow r)

proof −
have Field r = UNIV using assms card-order-on-Card-order by auto
thus ?thesis unfolding cpow-def by auto

qed

lemma cpow-greater [simp]: Card-order r =⇒ r <o cpow r
unfolding cpow-def by auto

lemma cpow-greater-eq [simp]: Card-order r =⇒ r ≤o cpow r
by (rule ordLess-imp-ordLeq) (erule cpow-greater)

lemma Card-order-cpow [simp]: Card-order (cpow r)
unfolding cpow-def by simp

lemma Cinfinite-cpow : Cinfinite r =⇒ Cinfinite (cpow r)
by (rule Cinfinite-mono) auto

lemma Cnotzero-cpow : Card-order r =⇒ Cnotzero (cpow r)

248

unfolding cpow-def by (auto , drule czeroE , auto)

lemma cardSuc-ordLeq-cpow : Card-order r =⇒ cardSuc r ≤o cpow r
by (rule cardSuc-least) auto

lemma cpow-cexp-ctwo:
cpow r =o ctwo ˆc r

unfolding cpow-def ctwo-def cexp-def Field-card-of by (rule card-of-Pow-Func)

end

249

	Introduction
	More on injections, bijections and inverses
	Purely functional properties
	Properties involving finite and infinite sets
	Properties involving Hilbert choice
	Cantor's Paradox
	The Cantor-Bernstein Theorem
	Other facts

	Basics on order-like relations
	Auxiliaries
	The upper and lower bounds operators
	Properties depending on more than one relation

	More on well-founded relations
	Well-founded recursion via genuine fixpoints
	Characterizations of well-founded-ness

	Well-order relations
	Auxiliaries
	Well-founded induction and recursion adapted to non-strict well-order relations
	The notions of maximum, minimum, supremum, successor and order filter
	Properties of max2
	Existence and uniqueness for isMinim and well-definedness of minim
	Properties of minim
	Properties of supr
	Properties of successor
	Properties of order filters
	Other properties

	Well-order embeddings
	Auxiliaries
	(Well-order) embeddings, strict embeddings, isomorphisms and order-compatible functions
	Given any two well-orders, one can be embedded in the other
	Uniqueness of embeddings
	More properties of embeddings, strict embeddings and isomorphisms

	Constructions on wellorders
	Restriction to a set
	Order filters versus restrictions and embeddings
	The strict inclusion on proper ofilters is well-founded
	Ordering the well-orders by existence of embeddings
	42 1000 63 1000 33 1000 58 1000 59 1000 44 1000 <o is well-founded
	Copy via direct images
	Ordinal-like sum of two (disjoint) well-orders
	Bounded square
	The maxim among a finite set of ordinals

	Cardinal-order relations
	Cardinal orders
	Cardinal of a set
	Cardinals versus set operations on arbitrary sets
	Cardinals versus set operations involving infinite sets
	Cardinals versus lists
	Cardinals versus the set-of-finite-sets operator
	The cardinal and the finite cardinals
	First as well-orders
	Then as cardinals
	"Backwards compatibility" with the numeric cardinal operator for finite sets

	The successor of a cardinal
	Regular cardinals
	Others

	Cardinal Arithmetic
	Zero
	Infinite cardinals
	Binary sum
	One
	Two
	Family sum
	Product
	Exponentiation
	Infinite bounds
	Powerset

