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Abstract
Higher-order logic (HOL) forms the basis of several popular interactive theorem provers.
These follow the definitional approach, reducing high-level specifications to logical
primitives. This also applies to the support for datatype definitions. However, the inter-
nal datatype construction used in HOL4, HOL Light and Isabelle/HOL is fundamentally
noncompositional, limiting its efficiency and flexibility, and it does not cater for co-
datatypes.

We present a fully modular framework for constructing (co)datatypes in HOL, with
support for mixed mutual and nested (co)recursion. Mixed (co)recursion enables type
definitions involving both datatypes and codatatypes, such as the type of finitely branch-
ing trees of possibly infinite depth. Our framework draws heavily from category theory.
The key notion is that of a bounded natural functor—a functor satisfying specific proper-
ties preserved by interesting categorical operations. Our ideas are formalized in Isabelle
and implemented as a new definitional package, answering a long-standing user request.

Zusammenfassung
Logik höherer Stufe (engl. higher-order logic, HOL) macht den Kern von mehreren er-
folgreichen interaktiven Beweisassistenten wie HOL4, HOL Light and Isabelle/HOL
aus. Um diesen Erfolg zu verdienen, müssen die Beweisassistenten vertrauenswürdig
sein. Deswegen ist es empfehlenswert den im hohen Maße vertauenswürdigen Kern von
HOL nur konservativ zu erweitern, indem man höhere Programmiersprachenkonstruk-
te auf primitive Konstrukte zurückführt. Das trifft auch auf die Definition induktiver
Datentypen zu. Derzeit verwendete Implementierungen erfüllen dieses Kriterium. Sie
haben allerdings ihre Nachteile in Bezug auf Flexibilität und Performanz, begründet
durch einen nicht modularen Ansatz. Zudem ist es unklar ob mit dem gleichen Ansatz
Kodatentypen (die koinduktiven Gegenspieler von Datentypen) erfasst werden können.

Diese Arbeit entwickelt einen vollständig modularen Ansatz zur Konstruktion von
Ko-/Datentypen mit Unterstüzung für beliebig verschränkte und verschachtelte Defi-
nitionen. Letzteres erlaubt Typdefinitionen, die sowohl induktive als auch koinduktive
Komponenten enthalten, wie zum Beispiel der Typ der Bäume mit endlichem Verzwei-
gungsgrad, aber potentiell unendlicher Tiefe.

Unsere Konstruktion basiert auf der Kategorientheorie. Die Grundidee ist es Typ-
konstruktoren als Funktoren auf der Kategorie der Typen zu betrachten. Mit Hilfe von
weiteren semantischen Eigenschaften können wir den Abschluss dieser Funktoren un-
ter Komposition und Konstruktion initialer Algebren und finaler Koalgebren. Letztere
entsprechen Definitionen von Ko-/Datentypen auf kategorieller Ebene.

Unsere Ideen sind in Isabelle/HOL formalisiert. Zudem wurde eine Automatisierung
der Konstruktion von Datentypen implementiert, die anstelle der vorhandenen Imple-
mentierung verwendet werden kann.
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1. Introduction

Inductive datatypes are a ubiquitous high-level specification mechanism in functional
programming languages. Our particular functional programming language of interest
is that of higher-order logic (HOL, Chap. 2). HOL forms the basis of several popular
interactive theorem provers, notably HOL4 [GM93], HOL Light [Har96] and Isabelle/
HOL [NPW02] where HOL is introduced following the equation

HOL = Functional Programming + Logic.

Consequently, the semantics of datatypes is established in HOL by characteristic theo-
rems including an induction principle. The simplest way of providing those theorems
to the user is to state them as axioms. The drawback of axioms is the potential intro-
duction of inconsistencies. This motivates the LCF philosophy [GMW79]: Theorems
are derived within a small inference kernel, reducing the amount of code that must be
trusted. HOL-based provers traditionally follow the LCF philosophy and therefore try
to omit axiomatizations of high-level specification mechanisms whenever possible.

Instead, high-level specifications are expressed in terms of existing primitive con-
structs—this is the definitional approach. At the primitive level, a new type is defined
by carving out an isomorphic subset from an existing type. The task of a definitional
datatype package consists therefore of the following two steps:

1. Construct a set that is isomorphic to the given high-level specification;

2. Prove the characteristic theorems within the inference kernel.

Melham [Mel89] devised such a definitional package already two decades ago. His
approach, considerably extended by Gunter [Gun93, Gun94] and simplified by Harri-
son [Har95], now lies at the heart of the implementations in HOL4, HOL Light and Isa-
belle/HOL. After implementing the original datatype package in Isabelle following the
Melham–Gunter approach, Berghofer and Wenzel [Ber98, BW99] identified three main
limitations, the overcoming of which they suggested as challenges for future work:

1. Codatatypes

2. Composition of definitional packages

3. Non-freely generated types

Codatatypes (the coinductive pendant of datatypes) are not covered by the Melham–
Gunter approach. Users face an unappealing choice between tedious manual construc-
tions and risky axiomatizations [DHS05]. A solution to 1 could be a monolithic co-
datatype package. This is antithetical to goal 2. Many applications require a mixture
of datatypes and codatatype, as in the following nested-(co)recursive specification of
finitely branching trees of possibly infinite depth:

1



2 1. Introduction

datatype α list = Nil | Cons α (α list)
codatatype α tree I = Node α ((α tree I) list)

Finally, 3 demands well-behaved non-free structures (e.g., fset—the type of finite sets of
elements of α) being available in (co)datatype declarations. In particular formalizations,
it might be much more suitable if the Node type constructor from the above example has
unordered children:

codatatype α tree I = Node α ((α tree I) fset)

This thesis presents a fully compositional framework for defining datatypes and co-
datatypes in HOL, including mutual and nested (co)recursion through an arbitrary com-
bination of datatypes, codatatypes and other well-behaved type constructors (Chap. 3),
discarding the discussed limitations.

Our framework draws heavily from category theory and cardinality reasoning. We
take advantage of the fact that most type constructors are not only operators on the uni-
verse of types but also functors satisfying additional semantic properties. We call such
functors bounded natural functor (BNFs) and prove their closure under composition,
initial algebra and final coalgebra operations (Chap. 4). The latter two are category-
theoretical terminology for datatype and codatatype definitions. Unlike all previous
approaches implemented in HOL-based provers, our framework imposes no syntactic
restrictions on the type constructors that can participate in nested (co)recursion.

Our development is formalized in Isabelle/HOL. Cardinality reasoning with canonical
membership-based well-orders lies beyond HOL’s expressive power, so we need a theory
of cardinals that circumvents this limitation. Performing global categorical constructions
in a weak, “local” formalism arguably constitutes the logical equivalent of walking on a
tightrope.

Beyond the formalization, a prototypical package handles definitions of datatypes
automatically, while we are proceeding to implement the automation for the codatatype
construction.

The theoretical contributions of this thesis were published in the accepted paper
[TPB12]. The material form [TPB12] has been included in this thesis with the permis-
sion of the coauthors. The chapters 2, 3, 4 and 6 were taken only with minor changes
from the paper. The thesis additionally provides descriptions of selected interesting as-
pects of the framework that appear trivial when describing the solution categorically, but
are essential for a working implementation (Chap. 5).



2. Higher-Order Logic (HOL)

In this thesis, by HOL we mean classical higher-order logic with Hilbert choice, the
axiom of infinity and ML-style polymorphism. HOL is based on Church’s simple type
theory [Chu40, And02]. It is the logic of Gordon’s original HOL system [GM93] and
of its many successors and emulators. To keep the discussion focused on the relevant
issues, we depart from tradition and present HOL not as a formal system but rather as a
framework for expressing mathematics, much in the way that set theory is employed by
working mathematicians.

2.1. Basics

The standard semantics of HOL relies on a universe U of types, ranged over by α, β, γ,
which we view as nonempty collections of elements. Membership of an element a in
a type α is written a : α. The type unit consists of a single element written (), bool
is the Boolean type, and nat is the type of natural numbers. Fixed elements of types,
such as () : unit, are called constants. Given α and β, we can form the type α→ β of
(total) functions from α to β. If f : α→ β and a : α, then f a : β is the result of applying
f to a. The types α+ β and α× β are the disjoint sum and the product of α and β,
respectively. For functions taking n arguments, we generally prefer the curried form
f : α1→ ··· → αn→ β to the tuple form f : (α1×·· ·×αn)→ β.

HOL supports a restrictive, simply typed flavor of set theory. We write α set for the
powertype of α, consisting of sets of α elements; it is isomorphic to α→ bool. The
universe set of α, Uα : α set, is the set consisting of all the elements of α. For notational
convenience, we sometimes write α instead of Uα. Given an element a : α and a set
A : α set, a ∈ A tests whether a belongs to A. Although the two concepts are related, set
membership is not to be confused with type membership. Given a type α and a predicate
ϕ : α→ bool, we can form by comprehension the set {a :α. ϕ a} of type α set. Russell’s
paradox is avoided, because elements of α set cannot be elements of α.

While unit, bool and nat are types in their own right, set, →, + and × are type
constructors, i.e., functions on the universe of types. The first of these is unary and
the last three are binary. Types are a special case of type constructors, with arity 0.
We can introduce new type constructors by combining existing type constructors and
comprehension; for example, we can define the ternary type constructor (α1, α2, α3) F
as (α2+α1)×(α3 set). Except for infix operators, type constructor application is written
in postfix notation (e.g., α F), whereas function application is written in prefix notation
(e.g., f a). Depending on the context, (α1, . . . , αn) F either denotes the application of
F to (α1, . . . , αn) or simply indicates that F is an n-ary type constructor. We abbreviate
(α1, . . . , αn) F to α F. Given a binary type constructor (α1, α2) F and a fixed type β,
(_, β) F denotes the unary type constructor sending an arbitrary type α to (α, β) F and
similarly for (β, _) F.

3



4 2. Higher-Order Logic (HOL)

As the main primitive way of introducing custom types, HOL lets us carve out from
a type α the type corresponding to a nonempty set comprehension A = {a : α. ϕ a},
yielding a type β and an injective function f : β→ α whose image is A.

Where Church’s simple type theory only offers monomorphic types, HOL features
ML-style (rank-1) polymorphism and type inference. Polymorphic constants can be
regarded as families of constants indexed by types. For example, the identity function
id : α→ α is defined for any type α and corresponds to a family (idα)α∈U . Id : (α×α) set
is the identity relation. Function composition ◦ has type (α→ β)→ (β→ γ)→ α→ γ.
Type arguments can be indicated by a subscript (e.g., Uα) if needed.

Hilbert choice is represented by the ε-operator. Given a predicate P : α→ bool, the
term ε x. P x represents an element of type α that makes P true, if there is any and
therefore satisfying the axiom P z⇒ P (ε x. P x).

2.2. Expressiveness

HOL is significantly weaker than the set theories popular as foundations of mathematics,
such as Zermelo–Fraenkel with the axiom of choice (ZFC). Some standard mathemati-
cal constructions cannot be performed in HOL, notably those dealing with proper classes
or families of unboundedly large sets (not containable in any fixed set). A typical ex-
ample is the representation of the HOL semantics, which is impossible in HOL due to
the unbounded nature of the simple type hierarchy. Another example is the standard
(membership-based) theory of ordinals and cardinals, which involves the well-ordered
class of ordinals.

Nonetheless, many standard mathematical constructions are local, meaning that they
are performed within an arbitrary but fixed universe set. These are particularly well
suited to (polymorphic) HOL. Examples include basic algebra and analysis, formal lan-
guage theory, and structural operational semantics. Indeed, a large body of mathematics
can be expressed adequately in HOL, as witnessed by the extensive library developments
in HOL-based provers.



3. Datatypes in HOL

The limitations of HOL mentioned in Sect. 2.2 may seem exotic and contrived. Yet our
application—datatype definitions—is precisely one of those areas where HOL’s lack
of expressiveness is most painfully felt. Category theory offers a powerful, modular
methodology for constructing (co)datatypes, but filling the gap between theoretical cate-
gory theory and theorem proving in HOL, with its simply typed set theory, is challeng-
ing; indeed, it is our main concern.

3.1. The Melham–Gunter Approach

Melham’s original datatype package [Mel89] is based on a manually defined polymor-
phic datatype of finite labeled trees, from which simple datatypes are carved out as
subsets. Gunter [Gun93] generalized the package to support mutually recursive data-
types. She also showed how to reduce specifications with nested recursion to mutually
recursive specifications. A typical example is the recursive occurrence of α treeF nested
in the list type constructor in the definition of finite trees:

datatype α treeF = Node α ((α treeF) list)

To define such a type, Gunter unfolds the definition of list, resulting in a mutually recur-
sive definition of trees (α treeF) and “lists-of-trees” (α treeF_list):

datatype α treeF = Node α (α treeF_list)
and α treeF_list = Nil | Cons (α treeF) (α treeF_list)

Exploiting an isomorphism, the datatype package translates occurrences of α treeF_list
to (α treeF) list, maintaining to a large extent the illusion of nested recursion. Orthogo-
nally, in order to support positive recursion through functions, Gunter [Gun94] extended
Melham’s labeled trees with infinite branching.

The handling of mutual and nested recursion has several disadvantages, all related
to its non-modularity. Most importantly, it is not clear how to extend the approach to
nested recursion and corecursion or to non-free constructors. In addition, some of the
internal aspects of the construction are visible to the user (e.g., in the type of the iterator
used to define primitive recursive function). Finally, replaying recursive definitions and
transferring results via isomorphisms is prohibitive slow for datatypes with many layers
of nesting.

3.2. Bringing HOL Closer to Category Theory

Let α F be a unary type constructor. Category theory has elegant devices to define,
based on F, the associated datatype and codatatype by solving the equation α∼= α F (up

5



6 3. Datatypes in HOL

to isomorphism) in a minimal and maximal way, obtaining the initial F-algebra and final
F-coalgebra, respectively. However, this requires F to be complemented by an action on
functions between types, usually called a “map.”

The universe of types U naturally forms a category where the objects are types and
the morphisms are functions between types. We are interested in type constructors
(α1, . . . , αn) F that are also functors on U , i.e., that are equipped with an action on
morphisms commuting with identities and composition. Taking advantage of polymor-
phism, this action can be expressed as a constant Fmap : (α1 → β1)→ . . .→ (αn →
βn)→ α F→ β F satisfying

• Fmap id = id;

• Fmap (g1 ◦ f1) . . . (gn ◦ fn) = (Fmap g)◦ (Fmap f ).

Let us review some basic functors.

Example 1 (Basic functors)

α-constant functor (Cα, Cmapα): The α-constant functor (Cα, Cmapα) is the nullary
functor consisting of the constant type constructor Cα = α and the constant map
function Cmapα = id.

Sum functor (+,⊕): α1 +α2 consists of a copy Inl a1 of each element a1 : α1 and a
copy Inr a2 of each element a2 : α2. Given f1 : α1→ β and f2 : α2→ β, let
[ f1, f2] : α1 +α2→ β be the function sending Inl a1 to f1 a1 and Inr a2 to f2 a2.
Given f1 : α1→ β1 and f2 : α2→ β2, let f1⊕ f2 : α1 +α2→ β1 +β2 be
[Inl◦ f1, Inr ◦ f2].

Product functor (×,⊗): Let fst : α1×α2→ α1 and snd : α1×α2→ α2 denote the two
standard projection functions. Given f1 : α→ β1 and f2 : α→ β2, let
〈 f1, f2〉 : α→ β1×β2 be the function a 7→ ( f1 a, f2 a). Given f1 : α1→ β1 and
f2 : α2→ β2, let f1⊗ f2 : α1×α2→ β1×β2 be 〈 f1 ◦ fst, f2 ◦ snd〉.

α-Function space functor (funcα, compα): Given a type α, let β funcα = α→ β. For
all f : β1→ β2, we define compα f : β1 funcα→ β2 funcα as compα f g = f ◦g.

Powertype functor (set, image): The function image f : α set→ β set sends each set A
to the image of A through the function f : α→ β.

k-Powertype functor (setk, imagek): Given a cardinal k, for all types α, we define the
type α setk by comprehension, carving out from α set only those sets of
cardinality < k. For all f : α→ β, we define imagek f : α setk→ β setk as the
restriction and corestriction of image f via the embeddings of α setk into α set
and of β setk into β set. The definition of imagek f is correct since image does
not increase cardinality. For k = ℵ0, we obtain the finite powertype functor,
written (fset, fimage); for the successor of ℵ0, we obtain the countable
powertype functor, written (cset, cimage).

While specific map functions are heavily used in HOL theories (e.g., map, image),
the theorem provers traditionally do not record the functorial structure Fmap of F or
take advantage of it when defining datatypes. The next examples illustrate the benefits
of keeping such additional structure.
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Finite lists

The unary type constructor list, which sends each type α to the type α list of lists of α
elements, is categorically given as the initial algebra on the second argument of the bi-
nary functor (F, Fmap), where (α, β) F = unit+α×β and Fmap f g = id⊕ f ⊗g. More
precisely, there exists a (polymorphic) folding bijection fld : (α, α list) F→ α list mak-
ing (fld, α list) the initial algebra for the unary functor (α, _) F. Here, fld = 〈Nil, Cons〉,
where Nil and Cons are the familiar list operations. The initial algebra property corre-
sponds to the availability of the standard iterator for lists. Then (list, map) is itself a
unary functor.

Finitely branching trees of finite depth

The ability to define lists is hardly a spectacular achievement. It is the abstract interface
to lists that makes category theory relevant: (list, map) is simply another functor avail-
able for nesting in (co)datatype definitions. Assume we want to define finitely branching
trees of finite depth. This involves taking the initial algebra α treeF on the second argu-
ment of the functor (G, Gmap), where (α, β) G = α×β list and Gmap f g = f ⊗map g.
The resulting iterator iter has the polymorphic type (α× β list→ β)→ α treeF → β

and its characteristic equation is iter s ◦ fld = s ◦ (id⊗map (iter s)), where fld is the
folding bijection associated to α treeF (Fig. 3.1). Thus, the “contract” of tree iteration
reads as follows: Given tree-like structure on β as the function s : α×β list→ β (view-
ing β as consisting of “abstract trees,” featuring an abstract tree constructor s), provide
a function iter s such that iter s (fld (a, trl)) = s (a, map (iter s) trl) for all a : α and
trl : (α treeF) list. The characteristic equation of iter abstracts away completely from
the definition of lists, using instead the map interface for accessing lists, thereby allow-
ing truly modular nesting of recursive types inside recursive definitions of larger types.
Moreover, the categorical approach gracefully handles nested recursion through core-
cursion, as the next examples illustrate.

Finitely branching trees of possibly infinite depth

To define trees of possibly infinite depth, we can take the final coalgebra α tree I on the
second argument of the functor (G, Gmap) defined above. The resulting coiterator coiter
has polymorphic type (β→ α× β list)→ β→ α tree I and its characteristic equation is
unf ◦coiter s∼= (id⊗map (coiter s))◦ s, where unf is the unfolding bijection associated
to α tree I (Fig. 3.2). Normally, we would split unf in two functions as unf = 〈lab, sub〉,
where, for any tr : α tree I, lab tr : α is the label of the root and sub tr is the list of its
subtrees. Then, also splitting any s : β→ α× β list similarly to unf in two functions L
and C, the contract of tree coiteration reads as follows: Given a tree-like structure on β
consisting of functions L : β→ α and C : β→ β list, yield a function coiter〈C,L〉 such that
lab (coiter〈C,L〉 b) = L b and sub (coiter〈C,L〉 b) = map coiter〈C,L〉 (C b) for all b : β.

Unordered finitely branching trees of possibly infinite depth

Assume that we want our finitely branching trees to be unordered. Instead of lists,
we can employ finite sets (or even finite multisets). We can then define α tree I as the
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α× (α treeF) list
fld //

id ⊗ map (iter s)

��

α treeF

iter s

��
α×β list

s // β

Figure 3.1.: Iterator for finitely branching trees of finite depth

β
s //

coiter s

��

α×β list

id ⊗ map (coiter s)

��
α tree I

unf // α× (α tree I) list

Figure 3.2.: Coiterator for finitely branching trees of possibly infinite depth

final coalgebra of the functor (H, Hmap), where (α, β) H = α×β fset and Hmap f g =
f ⊗fimage g.

3.3. Bringing Category Theory Closer to HOL

Next we focus on devising a proper categorical setting to accommodate (co)datatype
definitions. Here is the system of constraints for our desired class K of functors (per-
haps with additional structure) on the universe of types:

C1 K contains basic functors, including at least the constant, sum, product and
function-space functors.

C2 All functors in K admit both (a) initial algebras and (b) final coalgebras.

C3 Class K is closed under (a) initial algebras; (b) final coalgebras; and (c) compo-
sition.

C4 The initial algebra and final coalgebra operations over K are expressible in HOL.

In addition to the above nonnegotiable requirements, we formulate a desideratum:

D K contains interesting non-free functors, such as the bounded sets and multisets.

Among the basic functors mentioned in C1, constants, + and× are needed for construct-
ing even simple datatypes, whereas funcα enables infinite branching. The non-free func-
tors mentioned in D further extend (co)datatypes with permutative structures, among
which finite sets and multisets are especially useful in computer science formalizations
(e.g., semantics of programming languages).

In C3, closure under initial algebras means the following, say, for binary functors
((α, β) F, Fmap). If we fix an argument, say, the first, then, by C2, for each fixed type α,
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there exists the initial F-algebra on the second argument, α IF, for which we can define
a map operator IFmap. C3 requires that the unary functor (IF, IFmap) be in K . And
similarly for closure under final coalgebras.

C4 is required because we are committed to a definitional framework. Otherwise, we
could simply postulate the types corresponding to initial and final coalgebras, together
with the necessary (co)iterators and their properties.

The literature does not appear to provide a complete solution for the above system
of constraints. An obvious candidate, the class of ω-bicontinuous functors [MA86],
satisfies C1–C3 but not C4, because the associated limit construction requires a logic
that can express infinite type families (e.g., (unit Fn)n for the final coalgebra).

Many results from the literature are concerned only with a given type of construction,
and only with admissibility (C2), ignoring closure (C3). Rutten’s monograph [Rut00]
focuses on coalgebras. It describes a general class of functors on sets, namely, those
that preserve weak pullbacks and have a set of generators, or, sufficiently, preserve weak
pullbacks and are bounded (in that there exists a cardinal upper bound for the coalgebras
generated by any singleton in any of their coalgebras). The main issue with this class
of functors is admissibility of initial algebras (C2-a). Closure properties (C3), which
Rutten omits to discuss, might also be an issue.

Also focusing on coalgebra, Barr [Bar93, Bar94] proves the existence of a final co-
algebra for accessible functors on sets (i.e., functors preserving k-filtered colimits for
some k). This result is an internalization to sets of Aczel and Mendler’s final coalge-
bra theorem [AM89] stated for set-based functors on classes. Moreover, Barr produces
a bound for the size of the final coalgebra, assuming the existence of a certain large
cardinal. However, k-filtered colimits are incompatible with C4 for the same reason ω-
limit constructions do and internalizing the construction to a sufficiently large type using
the provided cardinal bound is also infeasible, because it requires large cardinals whose
existence is not provable in HOL or even ZFC. (C2-a and C3 might also be problematic.)

A different result from Barr [Bar93] states that any quotient functor of an ω-bicontin-
uous functor admits a weakly final coalgebra obtained from any weakly final coalgebra
of the latter. A subclass of ω-bicontinuous that admits HOL-expressible (co)datatype
constructions could prove to be an answer to C1–C4 via this result. In fact, the class K
which we adopt includes the class K ′ of functors F that are quotients of Fbd-function-
space functors, with Fbd a cardinal number depending on F. Whether K ′ is also a
solution to C1–C4 remains for us an open question.

Finally, Hensel and Jacobs [HJ97] propose a modular development of (co)datatypes
for datafunctors, a syntactically specified class consisting of all functors obtained from
constants, + and× by repeated application of composition, initial algebra and final coal-
gebra. Datafunctors satisfy C1–C3 but ostensibly not C4, because the arguments, which
employ abstract results on categorical logic and fibrations [HJ98], rely on (co)limits.





4. Bounded Natural Functors

To accommodate constraints C1–C4 in HOL, we must work in a strict cardinal-bounded
fashion, always keeping in sight a universe type able to host the necessary construc-
tion. However, to stay flexible and not commit to a syntactically predetermined class of
functors, we cannot a priori fix a universe type, as required by the Melham–Gunter ap-
proach. For example, there is no type that can accommodate an arbitrary iteration of the
countable powertype construction. Consequently, our functors will carry their cardinal
bounds with themselves.

A useful means to keep cardinality under control is the consideration of a natural
“atom” structure potentially available for the HOL type constructors in addition to the
map structure. Namely (assuming F is unary), we consider a polymorphic constant
Fset : α F→ α set, where Fset x consists of all “atoms” of x; for example, if F is list,
Fset returns the set of elements in the list.

We think of the elements x of α F as consisting of a shape together with a content
that fills the shape with elements of α, with Fset x returning this content in flattened
format, as a set (Fig. 4.1). This suggests that Fset should be a natural transformation
between the functors (F, Fmap) and (set, image) (diagram in Fig. 4.2 commutative for
all f : α→ β). Fset allows us to internalize the type constructor F to sets of elements of
given types α. Namely, we define Fin : α set→ (α F) set by Fin A = {x : α F. Fset x⊆
A}. The generalization to n-ary functors is straightforward, with Fin A1 . . . An = {x :
(α1, . . . , αn) F.

∧
i Fseti x ⊆ Ai}. In particular, Fin α1 A2 = {x : (α1, α2) F. Fset2 x ⊆

A2} (where the first occurrence of α1 abbreviates Uα1).
Combining the map and set operators and suitable cardinal bounds, we obtain the

following key notion.

Definition 1 (Bounded natural functor (BNF)) An n-ary bounded natural functor is a
tuple (F, Fmap, Fset, Fbd), where

• F is an n-ary type constructor,

• Fmap : (α1→β1)→···→ (αn→βn)→ (α1, . . . , αn) F→ (β1, . . . , βn) F,

• Fseti : (α1, . . . , αn) F→ αi set for i ∈ {1, . . . , n},

.a2.a1 .a3

Figure 4.1.: An element x of α F with Fset x = {a1, a2, a3}

11
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α F
Fset //

Fmap f

��

α set

image f

��
β F

Fset // β set

Figure 4.2.: The “set” natural transformation

• Fbd is an infinite cardinal number,

satisfying the following properties for i ∈ {1, . . . , n}:

FUNC (F, Fmap) is a binary functor.

NATi For all α1, . . . , αi−1, αi+1, . . . , αn, Fseti is a natural transformation between
((α1, . . . , αi−1, _, αi+1, . . . , αn) F, Fmap) and (set, image).

WP (F, Fmap) preserves weak pullbacks.

CONG If ∀a ∈ Fseti x. fi a = gi a for all i ∈ {1, . . . , n}, then
Fmap f1 . . . fn x = Fmap g1 . . . gn x.

CBD The following cardinal-bound conditions hold:
a. ∀x : (α1, . . . , αn) F. |Fseti x| ≤ Fbd for all i ∈ {1, . . . , n};
b. |Fin A1 . . . An| ≤ (|A1|+ . . .+ |An|+2)Fbd.

Among the above conditions, FUNC and NATi were already explained and motivated.
WP is a technical condition allowing a smooth treatment of bisimilarity relations, rele-
vant for coinduction and corecursion [Rut00]; unlike other (weak) limits, weak pullbacks
involve a finite number of types and are hence expressible in HOL. We use a definition
of weak pullbacks that restricts the participating functions on given sets. We define the
predicate wpull A B1 B2 f1 f2 p1 p2 to hold iff for all b1 ∈ B1, b2 ∈ B2 if f1 b1 = f2 b2
holds, then there exist an a ∈ A such that p1 a = b1 ∧ p2 a = b2.

Thus, the WP property of an n-ary BNF says that if wpull Ai B1i B2i f1i f2i p1i p2i holds
for all i∈ 1 . . . n, then so does wpull (Fin A1 . . . An) (Fin B11 . . . B1n) (Fin B21 . . . B2n)
(Fmap f11 . . . f1n) (Fmap f21 . . . f2n) (Fmap p11 . . . p1n) (Fmap p21 . . . p2n). Our
definition is weaker than the standard notion from literature [Rut00], since it does not
require p1, p2, f1 and f2 to form a commutative diagram.

CONG states that Fmap f1 f2 x is uniquely determined by the action of fi on the
atoms of x, Fseti x—it ensures that Fmap behaves well with respect to Fin. Finally,
the cardinality conditions put bounds on the branching (CBD-a) and on the number of
elements (CBD-b) of the functor (F, Fmap) and can be understood in terms of shape
and content. Thus, CBD-a states that the F-shapes have no more than Fbd slots for
contents. Moreover, CBD-b states that shapes are not too redundant, so that all possible
combinations of shape and content do not exceed the number of assignments of contents
to slots, A1 +A2→ Fbd. (The +2 addition is a technicality that covers the case where
A1 = A2 =∅). We are now ready to state the main theoretical result:

Theorem 1 The class of BNFs satisfies constraints C1–C4 and desideratum D.
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Proof sketch

We must show that certain basic type constructors form BNFs and that the operations
of composition, initial algebra and final coalgebra exist in HOL and have themselves a
BNF structure. Sects. 4.1–4.6 below are dedicated to these tasks. �

4.1. Basic Type Constructors

Sect. 3.2 described the basic constructors’ map structure. We now present their set
structure and cardinal bound, guided by our “shape and content” intuition.

Example 2 (Basic BNFs)

• F = Cα: Fset x =∅; Fbd = ℵ0.

• F =+: Fset1 (Inl a1) = {a1}, Fset2 (Inl a1) =∅, Fset1 (Inr a2) =∅,
Fset2 (Inr a2) = {a2}; Fbd = ℵ0.

• F =×: Fset1 (a1, a2) = {a1}, Fset2 (a1, a2) = {a2}; Fbd = ℵ0.

• F = funcα: Fset1 g = image g α; Fbd = max (|α| , ℵ0).

• F = setk: Fset x is the set corresponding to x via the embedding of α setk into
α set; Fbd = max (k, ℵ0).

For F = set the set structure is clearly Fset x = x. Though, set is not a BNF, due to
the absence of a proper bound.

4.2. Composition

Although we seldom emphasize its role, composition is a pervasive auxiliary operation
in interesting (co)datatype definitions. For example, the list-defining BNF (α, β) F dis-
cussed in Sect. 3.2 is a composition of basic BNFs (+, Cunit and ×).

We describe the process of composing BNFs in extensive detail in Sect. 5.2.

4.3. Relators

A key insight due to Rutten [Rut98] is that, thanks to WP, the functor (F, Fmap) has a
natural extension to a relator, i.e., a functor on the category of types and binary relations,
denoted R. We can express the relator action of F as a polymorphic constant Frel : (α1×
α2) set→ (β1× β2) set→ ((α1, α2) F× (β1, β2) F) set defined as Frel Q R = {(Fmap
fst fst z, Fmap snd snd z). z ∈ Fin Q R}.

For reasoning in HOL, it is convenient to take an alternative (equivalent) view of
Frel, as an action on curried binary predicates Fpred : (α1 → α2 → bool) → (β1 →
β2 → bool)→ (α1, α2) F→ (β1, β2) F→ bool. Fpred ϕ ψ should be regarded as the
componentwise extension of the predicates ϕ and ψ. For example:

• if F is the product functor, Fpred ϕ1 ϕ2 (a1, a2) (b1, b2)⇐⇒ ϕ1 a1 b1 ∧ ϕ2 a2 b2;

• if F is the sum functor, Fpred ϕ1 ϕ2 a b⇐⇒ (∃a1 b1. a = Inl a1 ∧ b = Inl b1 ∧
ϕ1 a1 b1) ∨ (∃a2 b2. a = Inr a2 ∧ b = Inr b2 ∧ ϕ2 a2 b2).
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4.4. The Categories of (Co)algebras

For this and the next two sections, we fix a binary BNF F = (F, Fmap, Fset, Fbd). Bi-
nary functors suffice to illustrate the functorial structure of the initial and final algebras,
a structure that would be trivial if we started with unary functors.

We first show how to construct in HOL the initial algebra (or, dually, the final coal-
gebra) on the second argument—that is, the minimal solution α IF (or maximal solution
α JF) of the equation α ∼= (β, α) F. The general constructions involve n (m+ n)-ary
BNFs Fi with type constructors (β, α) Fi where β= (β1, . . . , βm) and α= (α1, . . . , αn)
and yield n m-ary BNFs IF1, . . . ,IFn (or JF1, . . . ,JFn) with their type construc-
tors of the form β IFi (or β JFi). Some interesting aspects of this general case are sketched
in Chap. 5.

Abstractly, the theories of algebras and of coalgebras are dual, allowing a unified
treatment of the basic (co)algebraic concepts. However, since the category of types is
not self-dual, concrete constructions are often specific to each.

Definition 2 ((Co)algebra and morphism) For a fixed type β, a (β-)algebra is a pair
A = (A, s) where:

• A : α set is the carrier set of A (and α is the underlying type of A ),

• s : (β, α) F→ α is the structural function of A ,

such that A is closed under s, in that ∀x ∈ Fin β A. s x ∈ A (and thus we may regard s as
a function s : Fin β A→ A).

Dually, a (β-)coalgebra is given by a pair (A : α set, s : α→ (β, α) F) such that ∀x ∈
A. s x∈ Fin β A. Algebras form a category where morphisms f : A1 =(A1 :α1 set, s1)→
A2 = (A2 : α2 set, s2) are functions f : α1 → α2 such that the diagram on the left of
Fig. 4.3 is commutative and dually for coalgebras and the diagram on the right.

In the category of algebras, one can form products of families of algebras having the
same underlying type, the carrier set of the product being the product of the carrier sets
of the components. Dually, one can form sums of families of coalgebras using sums of
sets.

Definition 3 (Initial algebras/final coalgebras) An algebra A is called initial if for all
algebras A ′ there exists a unique morphism f : A →A ′ and weakly initial if we omit
the uniqueness requirement. Dually, a coalgebra is final if it admits a unique morphism
from any other coalgebra and weakly final if uniqueness is dropped.

We are looking for a type constructor β IF (dually, β JF) and function fld : (β, β IF)→
β IF (dually, unf : β JF→ (β, β JF)) such that the algebra (β IF, fld) is initial (dually, the
coalgebra (β JF, unf) is final).

Typically, such a (co)algebra is obtained in two phases:

1. Construction of a weakly initial algebra (weakly final coalgebra) C.

2. Construction of an initial algebra (final coalgebra) as a subalgebra (quotient
coalgebra) of C.

In the next two sections, we discuss the key aspects of these constructions in HOL, both
times starting with the simpler phase 2.
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Fin β A1
s1 //

Fmap id f

��

A1

f

��
Fin β A2

s2 // A2

Fin β A1

Fmap id f

��

A1
s1oo

f

��
Fin β A2 A2

s2oo

Figure 4.3.: Algebra morphism (left) and coalgebra morphism (right)

4.5. Initial Algebra

Initial algebra from weakly initial algebra

Given an algebra A = (A, s), let Ms be the intersection of all sets B such that (B, s) is
an algebra and let M (A ), the minimal subalgebra of A , be (Ms, s). It is immediate
that there exists at most one morphism from M (A ) to any other algebra. Then, given a
weakly initial algebra C, the desired initial β-algebra is its minimal subalgebra, M (C ).
Of course, M (C ) depends on β (which was fixed all along). Now β IF is introduced by
a type definition, carving out the underlying set of M (C ) as a new type and the folding
map fld is defined by copying on β IF the structural map of M (C ) (so that in effect
(β IF, fld) becomes isomorphic to M (C )).

Construction of a weakly initial algebra

This relies on a crucial lemma about the cardinality of minimal subalgebras, whose proof
employs the BNF cardinality assumptions CBD.

Lemma 2 Let s : (β, α) F→α. Then |Ms| ≤ (|β|+2)Suc Fbd (where Suc Fbd is the suc-
cessor cardinal of Fbd).

Proof: The definition of Ms “from above,” as an intersection, is not helpful for estab-
lishing a cardinal bound. We need an alternative construction of Ms “from below,” as a
union. For this, we define the family (Ki)i<Suc Fbd by transfinite recursion as follows:

• Ki =
⋃

j<i K j, if i is a limit ordinal (thus, K0 =∅);

• Ki+1 = Ki∪{s x. Fset2 x⊆ Ki}.

Let K∞ =
⋃

i<Suc Fbd Ki. We must prove Ms = K∞. First, K∞ ⊆ Ms follows easily by
induction on i using that Ms is an algebra. For the harder inclusion K∞ ⊆ Ms, it suffices
to show that K∞ is an algebra. Let x be such that x ∈ Fin β K∞, i.e., Fset2 x⊆ K∞. Since
Suc Fbd is a regular cardinal and, by CBD-a, |Fset2 x| < Suc Fbd, we obtain i < Suc Fbd
such that Fset2 x ⊆ Ki. Hence s x ∈ Ki+1 ⊆ K∞, as desired. It then suffices to show
|K∞| ≤ (|β|+ 2)Suc Fbd. The stronger property ∀i < Suc Fbd. |Ki| ≤ (|β|+ 2)Suc Fbd

follows by induction on i, via CBD-b and cardinal arithmetic. �
Let Θ be the set of all algebras A having as underlying type a type γ of sufficiently

large cardinality, (|β|+ 2)Suc Fbd; such a type exists and in fact can be taken to be the
very underlying type of this cardinal. The desired weakly initial algebra C is the product
of all algebras in Θ. Indeed, by Lemma 2, for any algebra B, its minimal subalgebra



16 4. Bounded Natural Functors

M (B) is isomorphic to one in Θ, to which C has a projection morphism. This gives a
morphism from C to M (B), hence also one from C to B. We have thus proved:

Prop. 3 (β IF, fld) is the initial β-algebra.

This yields an iterator iter : ((β, α) F→ α)→ β IF→ α such that

iter s◦fld = s◦Fmap id (iter s)

holds (cf. Fig. 3.1).

Structural induction

The set structure Fset of a BNF not only plays an auxiliary role in the datatype con-
structions but also provides a simple means to express induction abstractly, for arbitrary
functors. Since fld is a bijection, for any element b∈ β IF there is a unique y∈ (β, β IF) F
such that b= unf y—this is an abstract version of case analysis. Then the inductive com-
ponents of b are precisely the elements of Fset2 y and we have the following induction
principle:

Prop. 4 Let ϕ : β IF → bool be a predicate and assume ∀y. (∀b ∈ Fset2 y. ϕ b) ⇒
ϕ (fld y). Then ∀b. ϕ b.

For F = unit+β×α with IF = list (Sect. 3.2), the above is equivalent to the familiar
induction principle.

BNF structure

It is standard to define a functorial structure for the initial algebra, namely IFmap f =
iter (fld ◦ (Fmap f id)). As for the set structure, consider b ∈ β IF. Intuitively, IFset b
should contain all the Fset1 atoms of b, then the Fset1 atoms of its inductive components
and so on, iteratively. Moreover, as we have seen, delving into the inductive components
is achieved by means of Fset2. We are led to defining IFset as iter collect, i.e., as the
unique function making the Fig. 4.4 diagram commutative, where collect a = Fset1 a ∪⋃

Fset2 a.

Prop. 5 (IF, IFmap, IFset, 2Fbd) is a BNF.

As a BNF, IF is also a relator (Sect. 4.3). Importantly for modular reasoning however,
we can express IFpred directly in terms of Fpred. Thus, IFpred is uniquely determined
by the recursive equations IFpred ϕ (fld x1) (fld x2)⇐⇒ Fpred ϕ (IFpred ϕ) x1 x2. For
example, for the list functor, the above equation splits in the following, according to the
relator structure of the component functors (unit, +, and ×):

• list_pred ϕ Nil Nil⇐⇒ True,

• list_pred ϕ Nil (Cons b bs)⇐⇒ False,

• list_pred ϕ (Cons a as) Nil⇐⇒ False,

• list_pred ϕ (Cons a as) (Cons b bs)⇐⇒ ϕ a b ∧ list_pred ϕ as bs,

revealing list_pred as the componentwise ordering on lists.
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(β, β IF) F
fld //

Fmap id IFset

��

β IF

IFset

��
(β, β set) F

collect // β set

Figure 4.4.: Set structure for IF

A

s

��

R
fstoo snd //

���
�
�
� A

s

��
Fin β A Fin β R

Fmap id fstoo Fmap id snd // Fin β A

A oo R //

s

��

A

s

��
Fin β A oo Frel Id R // Fin β A

Figure 4.5.: Bisimulation

4.6. Final Coalgebra

Final coalgebra from weakly final coalgebra

This follows by the standard coalgebraic theory of bisimulation relations [Rut00]. A
bisimulation on a coalgebra A = (A, s) is a relation R ⊆ A× A such that ∀(a, b) ∈
R. ∃z ∈ Fin β R. Fmap id fst z = a ∧ Fmap id fst z = b, i.e., such that in Fig. 4.5 (left)
there exists a function along the dotted arrow making the two diagrams commutative.
This abstract concept covers the natural ad hoc notions of bisimulation for concrete
functors [Rut00]. A bisimulation R is in effect an endomorphism on A in the types-and-
relations category R such that (a, b) ∈ R implies (s a, s b) ∈ Frel Id R—Fig. 4.5 (right).
Hence composition of bisimulations is a bisimulation and then it follows easily that the
largest bisimulation LB(A ) on a coalgebra A is an equivalence relation and that the
resulting quotient coalgebra A /LB(A ) has the property that any coalgebra has at most
one morphism to it.

Now let C be a weakly final coalgebra. By the above discussion, via an argument
dual to the corresponding one for algebras, we have C /LB(C ) final and based on it we
define the desired type β JF and its unfolding bijection unf.

Construction of a weakly final coalgebra

The abstract construction indicated in Rutten [Rut00], as the sum of all coalgebras over
a sufficiently large type (roughly dual to our weakly initial algebra construction), is pos-
sible in HOL thanks to our cardinality provisos. However, a more concrete construction
gives us a better grip on cardinality, allowing us to check the BNF properties for the
resulting coalgebra.

To lighten the presentation, we next identify sets with types—for example, we allow
ourselves to apply type constructors such as list to sets. Given a prefix-closed subset Kl
of Fbd list and kl ∈ Kl, we let SucKl,kl, the set of Kl-successors of kl, be {kl @ [k]. kl @
[k] ∈ Kl}, where @ denotes list concatenation and [k] the k-singleton list. We define an
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Fbd-tree to be a pair (Kl, tr), where Kl⊆ Fbd list is prefix closed and tr : Kl→ Fin β Fbd
is such that ∀kl∈Kl. Fset2 (tr kl) = SucKl,kl. Thus, Fbd-trees are at most Fbd-branching
trees labeled as follows: Every node is labeled with an element of Fin β Fbd whose set of
second-argument atoms consists of precisely the node’s emerging branches. Given a tree
(Kl, tr), we define sub(Kl,tr) : {k. [k]∈Kl}→C to send each k to the immediate k-subtree
of (Kl, tr), more precisely, sub(Kl,tr) k = (Kl ′, tr′), where Kl ′ = {kl ′. [k]@ kl ′ ∈ Kl} and
tr′ : Kl ′→ Fin β Fbd is defined by tr′ kl ′ = tr ([k]@ kl ′).

The set C of Fbd-trees can be naturally organized as a coalgebra C = (C, s) defining
s (Kl, tr) = Fmap id sub(Kl,tr) (tr Nil). Thus, s (Kl, tr) operates on (Kl, tr)’s root label
tr Nil, substituting in its shape the immediate subtrees for the contents. Then C is shown
to be a weakly final coalgebra by roughly the following argument. For each element a in
an algebra (A, t), one defines its behavior tree by iterating the unfolding of a according
to t—first a, then t a, then t b for all b ∈ Fset2 (t a) and so on. Thanks to CBD-a, such
trees are at most Fbd-branching, hence representable in C. We have thus proved:

Prop. 6 (β JF, unf) is the final β-coalgebra.

This yields a coiterator coiter : (α→ (β, α) F)→ α→ β JF such that

unf (coiter s) = Fmap id (coiter s)◦ s

holds (cf. Fig. 3.2).

Structural coinduction

Since LB(C ) is the greatest bisimulation on C , it follows that Id is the greatest bisim-
ulation on the quotient coalgebra C /LB(C ). This gives us the following coinduction
principle on (β JF, unf) (which is a copy of C /LB(C )): If R is a bisimulation relation,
then R⊆ Id. Viewing bisimilarities via the relator structure (cf. Fig. 4.5, left) and using
the predicate notation, we can rephrase the coinduction principle as follows:

Prop. 7 Let ϕ : β JF→ β JF→ bool be a binary predicate and assume ∀a b. ϕ a b⇒
Fpred Eq ϕ (unf a) (unf b) (where Eq : β→ β→ bool is the equality predicate). Then
∀a b. ϕ a b⇒ a = b.

BNF structure

Again, the functorial structure of the final coalgebra is standard, namely, JFmap f =
coiter ((Fmap f id) ◦ unf). Moreover, JFset can be defined by collecting all the Fset1
results of repeated unfolding, namely Fset1 a =

⋃
i∈nat collecti,a, where collecti,a is de-

fined recursively on i as follows:

• collect0,a =∅;

• collecti+1,a = Fset1 (unf a) ∪
⋃
{collecti,b. b ∈ Fset2 a}.

Similarly to IFpred, the relator JFpred can be described in terms of Fpred, by JFpred ϕ
a1 a2⇐⇒ Fpred ϕ (JFpred ϕ) (unf a1) (unf a2).

Prop. 8 (JF, JFmap, JFset, FbdFbd) is a BNF.



5. Implementation as a Definitional
Package

Theorem 1 and its formalization form the basis of a new (co)datatype package for Isa-
belle/HOL. Users define (co)datatypes using an intuitive high-level specification syntax;
internally, the package ensures that each specification corresponds to a BNF, defines the
(co)datatype and proves that the result is itself a BNF.

These constructions require a theory of cardinals in HOL, including cardinal arith-
metic and regular cardinals. Simple type theory does not cater for ordinals as a canon-
ical collection of well-orders, a very convenient concept for the standard theory of car-
dinals. Therefore, we worked with well-orders directly, dispersed polymorphically over
types, with cardinals defined as well-orders minimal with respect to initial-segment em-
beddings. This theory and its challenges not presented in this thesis but can be found
in [PT12].

All proofs that are performed by the package are using specially tailored Isabelle
tactics, whose running time is independent of the amount of nesting (unlike for the
Melham–Gunter approach).

In the following sections, we describe some interesting aspects of the concrete im-
plementation, that are not apparent in the theoretical description (Chap. 4). Sect. 5.1
introduces the important distinction between live and dead variables, while Sect. 5.2
describes the task of proving the closure of BNFs under composition. Further, we cover
the requirement of proving non-emptiness of newly defined types in HOL (Sect. 5.3)
and consider the fixed point construction in their full generality (Sect. 5.4).

5.1. ML-representation of BNFs

Each BNF is represented by an ML record bnf consisting of the polymorphic constants
and their properties as proved theorems, stored in Isabelle’s theory database [WW07,
§4.1]. The basic BNFs for unit, +, ×, funcα, fset, countable sets and finite multisets are
constructed in the user space, as they do not require ML; users can construct and register
custom BNFs in the same way.

Type constructors that are defined as BNFs may depend on two kinds of type vari-
ables. We refer to the functorial arguments of a type constructor as live variables. Those
are exactly the type variables that are acted on by the given map function. The action is
required to be covariant. All other variable dependencies of a type constructor are dead.
Thus, the sum type constructor α1 +α2 has two live and zero dead variables, while the
function space type constructor β funcα has one live variable (β) and one dead variable
(α). We consistently use the prefix notation for live variables and postfix indexed nota-
tion for dead variables. In general, the type constructor (β1, . . . , βn) Fα1,. . .,αm indicates a
BNF having n live and m dead variables. The arity of a BNF denotes the number of live

19
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variables.
The distinction between live and dead type variables is barely visible in the mathe-

matical descriptions, but crucial in HOL. For instance, the type of the cardinal bound
may not depend on the live type variables, but only on the dead ones. Otherwise, the
(co)algebraic fixed points would depend on variables on which these fixed points are
taken, making the construction impossible. This is just another example of walking on
a tightrope in HOL.

5.2. From user specifications to BNFs

The first task of a definitional package is to parse the high-level user specification. After
abstracting out concrete syntax sugar, the user specification in our case is a system of
fixed point equations on types. For example, the declaration of the list datatype corre-
sponds to taking the least fixed point of the equation τ= unit+α×τ.

Before resolving fixed point equations, we need to prove that each right hand side of
such an equation is a BNF. In order automate this task, we have identified four simple
operations on BNFs: compose, lift, kill and permute. In the following subsections, we
describe the contracts of those operations (input, precondition, output) and how they are
combined to obtain a BNF from a right hand side of a fixed point equation.

5.2.1. Compose

The compose operation extends the standard functorial composition to respect the set
structure and the cardinal bound conditions of a BNF.

INPUTS: n-ary BNF G = (G, Gmap, Gset, Gbd) and n m-ary BNFs Fi = (Fi, Fmapi,

Fseti, Fbdi)

PRECONDITION: The Fi’s have all the same live variables α

OUTPUT: m-ary BNF H = G ◦ (F1, . . . ,Fn) defined as follows:

• α H = (α F1, . . . , α Fn) G;

• Hmap f1 . . . fm = Gmap (Fmap1 f1 . . . fm) . . . (Fmapn f1 . . . fm);

• Hset j y =
n⋃

i=1

( ⋃
x∈Gseti y

Fseti
j x

)
for j ∈ {1, . . . , m};

• Hbd = Gbd∗ (Fbd1 + · · ·+Fbdn).

5.2.2. Lift

The lift operation adds new live variable to a BNF.

INPUTS: Natural number k and n-ary BNF F = (F, Fmap, Fset, Fbd) with live
variables α1, . . . , αn

PRECONDITION: {α1, . . . , αn}∩{αn+1, . . . , αn+k}=∅
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OUTPUT: (k+n)-ary BNF H defined as follows:

• (αn+1, . . . , αn+k, α1, . . . , αn) H = (α1, . . . , αn) F;

• Hmap fn+1 . . . fn+k f1 . . . fn = Fmap f1 . . . fn;

• Hseti y =

{
∅ if 1≤ i≤ k
Fseti−k y if k < i≤ n;

• Hbd = Fbd.

5.2.3. Kill

The kill operation turns some live variable of a BNF into dead variables.

INPUTS: Natural number k and n-ary BNF F = (F, Fmap, Fset, Fbd) with live
variables α1, . . . , αn

PRECONDITION: k ≤ n

OUTPUT: (n− k)-ary BNF H defined as follows:

• (αk+1, . . . , αn) Hα1,. . .,αk = (α1, . . . , αn) F;

• Hmap fk+1 . . . fn = Fmap id . . . id︸ ︷︷ ︸
k

fk+1 . . . fn;

• Hseti = Fseti+k for i ∈ {1, . . . , n− k};
• Hbd = Fbd∗ (|Uα1 |+ · · ·+ |Uαk |).1

5.2.4. Permute

The permute operation changes the order of live variables of a BNF.

INPUTS: Permutation σ ∈Sn and n-ary BNF F = (F, Fmap, Fset, Fbd)

OUTPUT: n-ary BNF H defined as follows:

• (α1, . . . , αn) H = (ασ(1), . . . , ασ(n)) F;

• Hmap f1 . . . fn = Fmap fσ(1) . . . fσ(n);

• Hseti = Fsetσ(i) for i ∈ {1, . . . , n};
• Hbd = Fbd.

5.2.5. Assembling a BNF

Next we show how to assemble a BNF form a given type. Note that the compose opera-
tion (Subsect. 5.2.1) assumes the same arities for the BNFs Fi on the right hand side of
the composite, while in general one may need to compose BNFs having different arities
mi. This case is reducible to the above definition of composition via the lift operation.
Furthermore, the forgetful kill operation must be used to ensure that dead variables of
a BNF do not occur at live positions of an other BNF participating in composition. To

1 Recall that Uα denotes the universe set of the type α.
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keep the operations lift and kill as simple as possible we assume that live variables are
sequantially ordered according to their occurrence in the type of the map function and let
these operations work on the first live variables according to this ordering. The permute
operation is used to change the ordering of live variables.

Further, we allow dead variables to be substituted with any type. All variables that
occur in those substitutions are considered dead. The following procedure handles the
general case of composition.

INPUT: Type ((α1
1, . . . , α

1
m1
) F1

τ1
1,. . .,τ

1
d1

, . . . , (αn
1, . . . , α

n
mn
) Fn

τn
1,. . .,τ

n
dn
) Gτ0

1,. . .,τ
0
d0

PRECONDITION: G = (Gβ0
1,. . .,β

0
d0
, Gmap, Gset, Gbd) and Fi = (Fi

βi
1,. . .,β

i
di

, Fmapi, Fseti,

Fbdi) for i ∈ {1, . . . , n} are BNFs

OUTPUT: BNF H that corresponds to the input type

PROCEDURE:

1. a) δ1, . . . , δkδ ← all variables from τ0
1, . . . , τ

0
d0
, . . . , τn

1, . . . , τ
n
dn

b) For all i ∈ {1, . . . , n}
i. n1, . . . , nki ← positions of elements of
{δ1, . . . , δkδ}∩{αi

1, . . . , α
i
mi
} in αi

1, . . . , α
i
mi

ii. pick σ ∈Smi such that σ( j) = n j for j ∈ {1, . . . , ki}
iii. F i← kill ki (permute σF i)

2. a) γ1, . . . , γkγ ← all live variables from F 1, . . . ,F n

b) For all i ∈ {1, . . . , n}
i. n1, . . . , nki ← positions of live variables of F i in γ1, . . . , γkγ

ii. pick σ ∈Skγ such that σ(n j) = j for j ∈ {ki +1, . . . , kγ}

iii. F i← permute σ (lift (kγ− ki) F i)

3. H ← compose G F 1 . . . F n

4. H ← apply substitution {βi
j 7→ τi

j | i ∈ {0, . . . , n}, j ∈ {1, . . . , di}} to H

To obtain a proof that a type is BNF we simply traverse the type recursively, applying
the above procedure in postorder. The base cases of this recursion are handled by basic
BNFs.

Example 3 We demonstrate the general composition of BNFs on the input type α→
β+α×γ or using the notation from the procedure description (β F1

α, (α, β) F2) G where
F1 =→, F2 =× and G =+. First the procedure collects all dead variables that are par-
ticipating in composition. In our example this is only α. There is another live occurence
of α, which is transformed into a dead occurence by step 1b. Then, all remaining live
variables β, γ are collected and the BNFs F1 and F2 are lifted to have exactly those
variables as their live variables by step 2b. Finally, we have reduced the original task
of composition such that it can be handled by the simple compose operation (step 3).
The last step is not required in our example since there are no complex types that are
substituting the dead variables of the given BNFs.
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5.3. Non-Emptiness Witnesses for Datatypes

New types are defined in HOL via a representing non-empty set. While this is not an
issue for codatatypes, as final coalgebras are always non-empty, an initial algebra might
be empty. For instance, initial algebras of the product BNF for both variables are empty.
In other words, the minimal solution of the fixed point equation α= α×β (or β= α×β)
is α=∅ (or β=∅).

Hence, we need to extend the BNF structure with a facility that allows to distin-
guish between BNFs with empty and non-empty initial algebras and actually prove non-
emptiness in the latter case. We achieve this by maintaining additional constants—non-
emptiness witnesses—with certain proved properties about them.

Definition 4 (Non-emptiness witness) A non-emptiness witness for an n-ary BNF F =
(F, Fmap, Fset, Fbd) is a constant Fwit[i1,. . .,ik] of type αi1 → ·· · → αik → (α1, . . . αn)F
such that I = {i1, . . . , ik} is a subset of {1, . . . , n} and for all j ∈ {1, . . . , n} it holds

Fset j (Fwit ai1 . . . aik)⊆ {a j} if j ∈ I,
Fset j (Fwit ai1 . . . aik) =∅ if j /∈ I.

We say Fwit[i1,. . .,ik] depends on variables in I. We write Fwit instead of Fwit[], if I is
empty.

The intuition behind this definition is: If for all j ai j is an algebra element, then so
is the witness Fwit ai1 . . . aik . We will sketch how this helps in proving non-emptiness
later in this section, but first we define the witnesses for basic type constructors.

Example 4 (Non-emptiness witnesses for the basic BNFs)

• F = Cα: Fwit = εa. a ∈ Uα.

• F =+: Fwit[1] = Inl, Fwit[2] = Inr.

• F =×: Fwit[1,2] a b = (a, b).

• F = funcα: Fwit[1] b = λa. b.

• F = setk: Fwit =∅

Non-emptiness witnesses integrate nicely with the simple BNF operations. In particu-
lar, their properties are preserved through composition, which corresponds to “plugging”
the witnesses of F i into the witnesses of G (of course with respect to types).

The witnesses enable us to prove non-emptiness of arbitrary algebras. We illustrate
this on the example of the list generating fixed point equation α= unit+β×α.

Lemma 9 Let A = (A, s) be a β-algebra for the type constructor (β, α) F = unit+β×
α. Then A 6=∅.

Proof:
We show the existence of an element x ∈ Fin Uβ A constructively. Then, s x ∈ A 6=∅

follows by the definition of an algebra.
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An element x of type unit+β×α is in Fin Uβ A if and only if Fset2 x ⊆ A. For this
concrete example it is easy to see that Fset2 = [λz.∅, λz. {snd z}] clearly indicating
what the x should be, but we should not rely on such ad hoc observations in general.
Instead we use the composed witnesses for (β, α)F. Those are the following two: Fwit=
Inl (εa. a ∈ Uunit) and Fwit[1,2] a b = Inr (a, b). By the witness properties we have
Fset1 Fwit = Fset2 Fwit = ∅, Fset1

(
Fwit[1,2] a b

)
⊆ {a} and Fset2

(
Fwit[1,2] a b

)
⊆

{b}. The first equation already serves its purpose to prove Fset2 Fwit = ∅ ⊆ A and
therefore Fwit ∈ Fin Uβ A. �

Keeping all constructable witnesses is overly redundant. For instance, if we have
two witnesses Fwit[i1,. . .,ik] and Fwit[ j1,. . ., jl] such that {i1, . . . , ik} ⊆ { j1, . . . , jl}, we will
always prefer Fwit[i1,. . .,ik] in proofs of algebras being non-empty. Using this observations
we can define a partial order on witnesses. Keeping the set of witnesses of a BNF
minimized with respect to this partial order is sufficient for the purpose of proving non-
emptiness of algebras.

5.4. Fixed Point Operations

In the general case, to define mutually recursive (co)datatypes we need to resolve a
system of n equations:

αi1 = (α1, . . . , αmi1+n) F1

. . .

αin = (α1, . . . , αmin+n) Fn

with i1, . . . , in all distinct.
Just as in the general case of composition, in order to automate this task, it is easier

to work in a normalized setting. Therefore, we assume that all involved BNFs F i share
the same variables and the fixed point variables (we call them active) are the last n live
variables:

αm+1 = (α1, . . . , αm+n) F1

. . .

αm+n = (α1, . . . , αm+n) Fn

Consequently, the first m live variable are called passive. We say the variable αm+ j is
associated with the BNF F j.

Note that the normalized setting is obtained from the original one using the steps 1
and 2 of the procedure in Subsect. 5.2.5.

5.4.1. Least Fixed Point

The package defines the notions of algebras and morphisms dependent on this fixed
normalized setting. This must happen each time during a datatype definition, as e.g., the
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type of an algebra predicate constant depends on m and n, which is not representable
with the simple types of HOL in the general case.

To check whether the given specification constitutes a valid datatype we need to prove
non-emptiness of the defined algebras. In the proof that we have shown in the case of
the list-defining BNF (Lemma 9), a witness not depending on any variable arises from
composition. Such witnesses or more generally witnesses that depend only on a subset
of the passive live variables lead directly to a proof of non-emptiness, and are therefore
referred to as direct witnesses. In the general case some of the given BNFs might not
have a direct witness. For instance, if none of the BNFs has direct witnesses, the datatype
specification is not valid. Indirect witnesses (i.e., witnesses depending on active live
variables) must be composed with other witnesses of the BNFs associated with those
dependencies. We use the following procedure to check if the known witnesses provide
a proof of non-emptiness.

INPUT: Sets I j = {I j
1, . . . , I j

k j
} for j ∈ {1, . . . , n} such that for all k ∈ {1, . . . , k j}, it

holds {i j
1, . . . , i j

lk}= I j
k ⊆ {1, . . . , m+n} and there is a non-emptiness witness

Fwit j
[i j

1,. . .,i
j
lk
]
for F j

RECURSIVE DEFINITION:
X0 = ∅
Xi+1 = Xi∪{ j. ∃k ∈ {1, . . . , k j}. I j

k ⊆ {1, . . . , m}∪{m+ j. j ∈ Xi}}

OUTPUT: Xn

Each j that is contained in Xn was included at some iteration justified by the existence
of a witness Fwit j

I j
k
. We call those witnesses the right witnesses for j. Intuitively, X1

represents those BNFs, that have direct right witnesses, X2 adds those that needs to be
composed with right witnesses of X1, X3 adds those that needs to be composed with
right witnesses of X2 and so on. If the system of fixed point equations yields a valid
datatype, all BNFs should be represented in our set after at most n iterations. In other
words, Xn = {1, . . . , n} should hold. The proof of non-emptiness of algebras then easily
follows by usage of the additionally stored right witnesses.

The minimal algebras K j
∞ for the mutual case ( j∈ {1, . . . , n}) are defined from below.

Definition 5 (K j
∞) Given n BNFs F j and n structural maps s j, we define simultaneously

n families (K j
i )i<Suc Fbd by transfinite recursion as follows for j ∈ {1, . . . , n}:

• K j
i =

⋃
i′<i K j

i′ , if i is a limit ordinal (thus, K j
0 =∅);

• K j
i+1 = K j

i ∪{s j x. x ∈ Fin j α1 . . . αm K1
i . . . Kn

i }.

Then, we define K j
∞ as

⋃
i<Suc Fbd K j

i .

Further, the package proves the minimal algebras Ms j being equal to K j
∞ as in the

proof of Lemma 2 (Sect. 4.5), defines initial algebras, registers their carrier sets as the
new types IF j and their structural maps as the fld j-operations. From the fact that the
algebras (IF j, fld j) are initial, characteristic theorems (including the following induction
rule) are defined.
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(α, α IF1, . . . , α IFn) F j fld j
//

Fmap j id . . . id (iter1 s1 . . . sn) . . . (itern s1 . . . sn)

��

α IF j

iter j s1 . . . sn

��
(α, β1, . . . , βn) F j s j // β j

Figure 5.1.: Iterator for the initial algebra α IF j

(α, α IF1, . . . , α IFn) F j fld j
//

Fmap j id . . . id 〈id, rec1 s1 . . . sn〉 . . . 〈id, recn s1 . . . sn〉

��

α IF j

rec j s1 . . . sn

��
(α, α IF1×β1, . . . , α IFn×βn) F j

s j // β j

Figure 5.2.: Recursor for the initial algebra α IF j

Theorem 10 (fld-induction) Let ϕ1 : α IF1→ bool, . . . , ϕn : α IFn→ bool be predicates

and assume ∀y. (
n∧

k=1
∀b ∈ Fset j

m+k y. ϕk b)⇒ ϕ j (fld j y) for all j ∈ {1, . . . , n}. Then

∀b1, . . . , bn. ϕ1 b1 ∧ . . . ∧ ϕn bn.

Additionally, iterator and recursor constants (iter j and rec j) are defined in a way such
that the diagrams 5.1 and 5.2 are commutative for all j ∈ {1, . . . , n}.

Recursion is a more powerful definition principle than iteration, allowing, at recursion
time, the consideration of not only elements of the target type (i.e., results computed
so far), but also the original values of the source type. For example, the predecessor
function on natural numbers cannot be defined by iteration without introducing auxiliary
arguments, but it is definable by a trivial recursion.

All this infrastructure is not only presented to the user, but also heavily used in proving
that all IF j’s can themselves be endowed with a BNF-structure.

Theorem 11 IF j = (IF j, IFmap j, IFset j, IFbd) defined by:

• IFmap j f1 . . . fm =
iter j (fld1 ◦ Fmap1 f1 . . . fm id . . . id

)
. . . (fldn ◦ Fmapn f1 . . . fm id . . . id);

• IFset j
i =

iter j
(
λz. Fset1

i z ∪
m+n⋃

k=m+1

⋃
Fset1

k z
)
. . .

(
λz. Fsetn

i z ∪
m+n⋃

k=m+1

⋃
Fsetn

k z
)

for i ∈ {1, . . . , m};

• IFbd = 2max{Fbd1,. . .,Fbdn}.

is a BNF for all j ∈ {1, . . . , n}.
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5.4.2. Greatest Fixed Point

Dually to the least fixed point construction, the package defines notions of coalgebras,
morphisms and bisimulations locally with respect to the fixed setting. The concrete
tree coalgebra construction from Sect. 4.6 can be easily extended to the general mutual
case. The final coalgebras (JF j, unf j) are then the quotients of the tree coalgebras to
the greatest bisimulation. Characteristic theorems (including the following coinduction
rule) are derived from the finality properties.

Theorem 12 (unf-coinduction) Let ϕ1 : α JF1→α JF1→bool, . . . , ϕn : α JFn→α JFn→
bool be binary predicates and x1, y1 : JF1, . . . , xn, yn : JFn such that ϕ1 x1 y1 ∧ ·· · ∧
ϕn xn yn holds. Further, assume:

∀ x, y. ϕ j x y⇒

∃z.

Fmap j id . . . id fst . . . fst z = unf j x ∧
Fmap j id . . . id snd . . . snd z = unf j y ∧

n∧
k=1
∀(a, b) ∈ Fset j

m+k z. ϕk a b


for all j ∈ {1, . . . , n}. Then x1 = y1∧·· ·∧ xn = yn.

Exploiting the relator structure of the F j’s, we can express coinduction more com-
pactly in terms of Fpred j and the binary equality predicate Eq.

Corollary 13 (Fpred-coinduction) Let ϕ1 : α JF1 → α JF1 → bool, . . . , ϕn : α JFn →
α JFn→ bool be binary predicates and x1, y1 : JF1, . . . , xn, yn : JFn such that ϕ1 x1 y1∧
·· ·∧ϕn xn yn holds. Further, assume:

∀ x, y. ϕ j x y⇒ Fpred j Eq . . . Eq ϕ1 . . . ϕn (unf j x) (unf j y)

for all j ∈ {1, . . . , n}. Then x1 = y1∧·· ·∧ xn = yn.

Coinduction “up to equality” is a syntactic strengthening of the raw coinduction prin-
ciple of Fpred-coinduction that reduces the coinduction proof task to disjunction with
equality (we write ‘|’ for disjunction of binary predicates).

Corollary 14 (Fpred-“up-to”-coinduction) Let ϕ1 : α JF1 → α JF1 → bool, . . . , ϕn :
α JFn→ α JFn→ bool be binary predicates and x1, y1 : JF1, . . . , xn, yn : JFn such that
ϕ1 x1 y1∧·· ·∧ϕn xn yn holds. Further, assume:

∀ x, y. ϕ j x y⇒ Fpred j Eq . . . Eq (ϕ1 | Eq) . . . (ϕn | Eq) (unf j x) (unf j y)

for all j ∈ {1, . . . , n}. Then x1 = y1∧·· ·∧ xn = yn.

The coiterator and corecursor constants are defined making the diagrams 5.3 and 5.4
commutative.

As the final step, the package defines the BNF structure for JF j as follows and proves
the BNF properties using coinduction and other characteristic theorems.

Theorem 15 JF j = (JF j, JFmap j, JFset j, JFbd) defined by:
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β j
s j //

coiter j s1 . . . sn

��

(α, β1, . . . , βn) F j

Fmap j id . . . id (coiter1 s1 . . . sn) . . . (coitern s1 . . . sn)

��

α JF j unf j
// (α, α JF1, . . . , α JFn) F j

Figure 5.3.: Coiterator for the final coalgebra α JF j

β j
s j //

corec j s1 . . . sn

��

(α, α JF1 +β1, . . . , α JFn +βn) F j

Fmap j id . . . id [id, corec1 s1 . . . sn] . . . [id, corecn s1 . . . sn]

��

α JF j unf j
// (α, α JF1, . . . , α JFn) F j

Figure 5.4.: Corecursor for the final coalgebra α JF j

• JFmap j f1 . . . fm =
coiter j (Fmap1 f1 . . . fm id . . . id ◦ unf1) . . . (Fmapn f1 . . . fm id . . . id ◦ unfn);

• JFset j
i a=

⋃
k∈nat

collect j
i a k for i∈{1, . . . , m}where, for each i, the family(

collect j
i

)
j∈{1,. . .,n}

is defined mutually by recursion on nat:

collect j
i a 0 =∅

collect j
i a (k+1) = Fset j

i (unf j a)∪
m+n⋃

l=m+1

⋃
b∈Fset j

l (unf j a)
collectl−m

i b k;

• JFbd =
(
max{Fbd1, . . . , Fbdn}

)max{Fbd1,. . .,Fbdn}
.

is a BNF for all j ∈ {1, . . . , n}.

5.4.3. Transferring the Non-Emptiness Witnesses along Fixed Point
Constructions

Theorems 11 and 15 show that our package is modular, i.e., the (co)datatypes defined
by greatest/least fixed point operations can be used in further (co)datatype definitions.
However, the modularity statement is not complete without the consideration of non-
emptiness witnesses. For instance, if we try to define a datatype (of unlabeled finitely
branching trees) as the least fixed point of α = α list,2 the package will not succeed in
proving non-emptiness of the new type unless it knows some non-emptiness witnesses
for the list BNF. To obtain such a witness, we need to transport the information that

2where α list was itself defined as the least fixed point of β= unit+α×β
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we already have for the list-defining BNF unit+α×β into the list BNF itself. There is
not much choice on how to do this—the fld-bijection is the only reasonable candidate.
Therefore, the desired witness for list is fld (Inl (εa. a ∈ Uunit)).

In the general case, a witness for F j may depend on live variables. The dependencies
on passive live variables of F j are transported to the IF j type without change. This is not
possible for active live variables, since the fixed points don’t depend on them. Instead,
if Fwit j depends on the k-th active live variable, a witness for IFk must be plugged as
an argument in Fwit before folding it to a witness for IF j using fld j. Applying this
procedure recursively resembles generating words with a context free grammar. Indeed,
the language of the following grammar (with the start symbol am+ j) is the set of all IF j

witnesses:

TERMINALS: fld j, Fwit j
I , a1, . . . , am for j ∈ {1, . . . , n}, I ⊆ {1, . . . , m+n}

NON-TERMINALS: am+1, . . . , am+n

PRODUCTIONS: am+ j −→ fld j (Fwit j
[i1,. . .,ik]

ai1 . . . aik) for j ∈ {1, . . . , n} and all

known witnesses Fwit j
[i1,. . .,ik]

for F j

Of course, the subset of the terminals a1, . . . , am that are occurring in a word of this
grammar are exactly the dependent variables of the corresponding IF j witness.

Since we are interested in a minimal non-redundant set of witnesses (c.f. the end
of Subsect. 5.3), it is enough to consider only the words that were derived using each
production at most once.

This transfer of witnesses also applies to greatest fixed points, replacing IF by JF in
the above construction and defining fld j as the inverse of unf j (which is a bijection).





6. Further Related Work

Some related work has already been covered in previous sections. Here we take a more
systematic look at prior art, whether or not it has influenced our own work.

Interactive theorem provers include various mechanisms for introducing new types,
which can be characterized as primitive (intrinsic), axiomatic, or definitional [BW99,
p. 3]. In the world of HOL, the primitive type definition mechanism (Sect. 2.1) and
the datatype package (Sect. 3.1) are the most widely used, but there are many others.
Homeier [Hom05] developed a package to define quotient types (i.e., types whose ele-
ments correspond to equivalence classes of a base type) in HOL4, now ported to Isabelle/
HOL [KU11]. Nominal Isabelle [Urb08] extends HOL with infrastructure for reasoning
about datatypes containing name binders; (i.e., values are equal modulo renaming of
their bound variables). Urban is currently rebasing it on the quotient package, possibly
in unison with our (co)datatype package, exploiting the support for non-free construc-
tors. HOLCF, a HOL library for domain theory, has long included an axiomatic package
for defining (co)recursive domains; Huffman [Huf09] recast it into a purely definitional
package, based on a large enough universal domain—a useful simplification in the con-
text of domain theory, that unfortunately is not available for general HOL datatypes.
The package combines many of the categorical ideas present in our work, notably the
modular mixture of recursion via enriched constructors. Some ideas have yet to be au-
tomated in a definitional package: Völker [Völ95] sketches a categorical approach to
datatypes that prefigures our work; Vos and Swierstra [VS02] elaborate an ad hoc con-
struction for recursion through finite sets; and Paulson [Pau97] designed building blocks
for codatatypes.

PVS, whose logic is a simple type theory extended with dependent types and sub-
typing (but without polymorphism), provides monolithic axiomatic packages for data-
types [OS93] and codatatypes [Got07]. Hensel and Jacobs [HJ97] illustrate the catego-
rical approach to (co)datatypes in PVS by axiomatic declarations of various flavors of
trees (including our treeF and tree I) with associated (co)iterators and proof principles.
HOLω, which extends HOL4 with higher-rank polymorphism, provides a safe primitive
for introducing abstractly specified types [Hom11]. Isabelle/ZF, based on ZFC, reduces
(co)datatypes to (co)inductive predicates [Pau00], with no support for mixed (co)recur-
sion; for codatatypes, it relies on a concrete, definitional treatment of non-well-founded
objects. In Agda and Coq, (co)datatypes are built into the underlying calculus. Mixed
(co)recursion is possible [NUB11] but not the combination with non-free types.
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7. Conclusion

This thesis presented the design and implementation of a definitional (co)datatype pack-
age in higher-order logic. Our work is motivated by long-existing limitations of the
current datatype package based on a predefined universal type—namely the lack of co-
datatypes, the non-modular handling of nested recursion by unfolding and the impossi-
bility of employing non-free types in datatype declarations.

In this work, we have tackled the problem from another angle: Our approach is based
on category theory. In categorical terms datatypes correspond to initial algebras and co-
datatypes to final coalgebras. Both notions are well understood. However, performing
those global categorical constructions in HOL is a difficult task. We achieve the con-
struction maintaining a structural invariant on types that are participating in (co)data-
type declarations. This invariant—incarnated by the notion of a bounded natural functor
(BNF)—presents HOL type constructors as functors with additional categorical struc-
ture rather than functions between unstructured collections of types. Basic type con-
structors have a natural BNF structure. Moreover, BNFs are closed under initial algebra,
final coalgebra and composition operations. This makes our approach fully composi-
tional and enables an arbitrary mixture of (co)datatype and custom BNFs.

Of course, the prototypical implementation still needs to reach the level of usability of
the existing datatype package. Also, the codatatype construction is not fully automated
yet. Nevertheless, the automation developed so far already enables the usage of non-free
structures in datatypes (cf. Appendix A) and the positive effects of the modularity of our
approach are also already visible (cf. Appendix B).

As ongoing work we are automating the codatatype package and working on the inte-
gration of the package in Isabelle. Furthermore, we plan to exploit the relator structure
of BNFs to obtain a notion of parametric constants in HOL. For those constants, we will
be able to prove Wadler’s free theorems [Wad89] literally for free in HOL.
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A. Recasting Berghofer’s Running
Example

In his master’s thesis [Ber98], Stefan Berghofer demonstrates the treatment of nested
recursion on the example of a very simple recursive term datatype. A term is either a
variable identifier or a function identifier applied to other terms. The goal is to prove a
simple theorem about substitutions of variable identifiers.

In the following sections, we define the term datatype in three different ways: first
using the old datatype package, second our new datatype package, and finally using
an alternate orderless representation of function arguments by the finite set type ′a fset
instead of the list type ′a list.

Of course, the usability features of the old datatype package are more advanced than
those of our package. The sugared syntax for datatypes is convenient for functional
programming languages, in contrast to our raw fixed point equations. We are working
on implementing the sugared syntax on top of our raw syntax which is a conceptually
easy task but essential for the usefulness of the package.

Nevertheless, some of the discussed benefits of our approach are already visible at
this small example even with the prototypical version of the new package. For instance,
the third definition using the type ′a fset is not possible with the old package.

A.1. Old Datatype Package by Berghofer/Wenzel

The old datatype package unfolds the definition of the ′a list datatype in the following
declaration, making the latter mutually recursive.

datatype ( ′a, ′b) TRM = Var ′a | App ′b ( ′a, ′b) TRM list

definition subst-TRM where
subst-TRM f = TRM-rec-1 f (λb xs ys. App b ys) Nil (λx xs y ys. Cons y ys)

definition subst-TRM-list where
subst-TRM-list f = TRM-rec-2 f (λb xs ys. App b ys) Nil (λx xs y ys. Cons y ys)

The user of the old datatype package must be aware of the replacement of nested
recursion by mutual recursion. For instance, even if we are only interested in the first
statement that is not involving subst-TRM-list of the following theorem, we need to prove
a stronger version in order to strengthen the induction hypothesis. Stating the right
theorem is hereby the creative part, while the automation takes care of the rest.

theorem subst-TRM (subst-TRM f ◦ g) t = subst-TRM f (subst-TRM g t)
and subst-TRM-list (subst-TRM f ◦ g) ts = subst-TRM-list f (subst-TRM-list g ts)
by (induct t and ts) simp-all
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40 A. Recasting Berghofer’s Running Example

A.2. New Datatype Package

A.2.1. Short Library of Lists

For demonstration purposes we define the list datatype using the new package. Of
course, we could also reuse the existing type since it is registered as a BNF.

lfp newLIST: ′l = unit + ′a × ′l

Note that the raw interface of fixed point equations does not include name bindings for
datatype constructors. Instead we define the constructors manually and also prove some
characteristic theorems of their interaction with the automatically derived map and set
constants of the newly defined type. Future versions of the new datatype package will
perform all of these operations automatically.

definition newNil where newNil = newLIST-fld (Inl ())
definition newCons where newCons x xs = newLIST-fld (Inr (x, xs))

definition newLIST-all where
newLIST-all P = newLIST-iter (sum-case (λxs. True) (λ(x, xs). P x ∧ xs))

lemmas newLIST-defs =
newLIST.defs newLIST.iter newLIST.fld-diff newNil-def newCons-def newLIST-all-def
newLISTRTC.defs sum.defs prod.defs ID.defs collect-def-raw

lemma newLIST-map f newNil = newNil
by (simp add: newLIST-defs)

lemma newLIST-map f (newCons x xs) = newCons (f x) (newLIST-map f xs)
by (simp add: newLIST-defs)

lemma newLIST-set newNil = {}
by (simp add: newLIST-defs)

lemma newLIST-set (newCons x xs) = {x} ∪ newLIST-set xs
by (simp add: newLIST-defs)

lemma newLIST-all P newNil = True
by (simp add: newLIST-defs)

lemma newLIST-all P (newCons x xs) = (P x ∧ newLIST-all P xs)
by (simp add: newLIST-defs)

lemma newLIST-induct:
fixes xs :: ′a newLIST
assumes IB: P newNil and IH:

∧
x xs. P xs =⇒ P (newCons x xs)

shows P xs
proof (induct rule: newLIST.fld-induct)
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fix xs :: unit + ′a × ′a newLIST
assume raw-IH:

∧
a. a ∈ newLISTRTC-set2 xs =⇒ P a

show P (newLIST-fld xs)
proof (cases xs)
case (Inl a) with IB show ?thesis by (simp add: newNil-def)

next
case (Inr b)
then obtain y ys where yys: newLIST-fld xs = newCons y ys

by (auto simp add: newLIST-defs intro: prod.exhaust)
hence ys ∈ newLISTRTC-set2 xs by (simp add: newLIST-defs)
with raw-IH have P ys by blast
with IH have P (newCons y ys) by blast
with yys show ?thesis by simp

qed
qed

lemma newLIST-all-cong:
newLIST-all (λx. f x = g x) xs =⇒ newLIST-map f xs = newLIST-map g xs

by (induct xs rule: newLIST-induct) auto

lemma newLIST-all-mono: [[newLIST-all P xs;
∧

x. P x =⇒ Q x]] =⇒ newLIST-all Q xs
by (induct xs rule: newLIST-induct) auto

A.2.2. Term Datatype

lfp newTRM: ′t = ′a + ′b × ′t newLIST

definition newVar where newVar a = newTRM-fld (Inl a)
definition newApp where newApp b ts = newTRM-fld (Inr (b, ts))

lemmas newTRM-defs =
newTRM.iter newTRM.fld-diff newVar-def newApp-def
newTRMRTC.defs sum.defs prod.defs ID.defs collect-def-raw

lemma newTRM-induct:
fixes t :: ( ′a, ′b) newTRM
assumes IB:

∧
a. P (newVar a) and IH:

∧
b ts. newLIST-all P ts =⇒ P (newApp b ts)

shows P t
proof (induct rule: newTRM.fld-induct)

fix t :: ′a + ′b × (( ′a, ′b) newTRM) newLIST
assume raw-IH:

∧
a. a ∈ newTRMRTC-set3 t =⇒ P a

show P (newTRM-fld t)
proof (cases t)
case (Inl a) with IB show ?thesis by (simp add: newVar-def)

next
case (Inr app)
then obtain b ts where bts: newTRM-fld t = newApp b ts
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by (auto simp add: newTRM-defs intro: prod.exhaust)
hence newLIST-all (λt ′. t ′∈ newTRMRTC-set3 t) ts (is newLIST-all (?P t) ts)
proof (induct ts arbitrary: t rule: newLIST-induct)

case (2 x xs)
hence x ∈ newTRMRTC-set3 t by (simp add: newTRM-defs)
moreover
from 2(2) have ∗: newTRMRTC-set3 (Inr (b, xs)) ⊆ newTRMRTC-set3 t
by (auto simp add: newTRM-defs)

from 2(1) have newLIST-all (?P (Inr (b, xs))) xs by (simp add: newTRM-defs)
hence newLIST-all (?P t) xs by (rule newLIST-all-mono) (rule set-mp[OF ∗])
ultimately show ?case by simp

qed simp
with raw-IH have newLIST-all P ts by (induct ts rule: newLIST-induct) auto
with IH have P (newApp b ts) by blast
with bts show ?thesis by simp

qed
qed

definition subst-newTRM where
subst-newTRM f = newTRM-iter (sum-case f (newTRM-fld o Inr))

lemma subst-newTRM f (newVar a) = f a
by (simp add: subst-newTRM-def newTRM-defs)

lemma subst-newTRM f (newApp b ts) = newApp b (newLIST-map (subst-newTRM f) ts)
by (simp add: subst-newTRM-def newTRM-defs)

With the new datatype, there is no mutual recursion going on in this example. The
user can state the theorem that she wants to prove and not a stronger one. On the other
hand, some creativity is required to select the right simplification lemmas for the proof.

theorem subst-newTRM (subst-newTRM f ◦ g) t = subst-newTRM f (subst-newTRM g t)
by (induct t rule: newTRM-induct)
(auto simp add: newLIST-all-cong newLIST.map-comp ′ comp-def)

A.3. Usage of Finite Sets in Datatypes

Non-free structures such as finite sets are not allowed in the old datatype declarations.
Since finite sets can be declared as BNFs, the new datatype package handles them
smoothly.

lfp fsetTRM: ′t = ′a + ′b × ′t fset

definition fsetVar where fsetVar a = fsetTRM-fld (Inl a)
definition fsetApp where fsetApp b ts = fsetTRM-fld (Inr (b, ts))

lemmas fsetTRM-defs =
fsetTRM.iter fsetTRM.fld-diff fsetVar-def fsetApp-def
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fsetTRMRTC.defs sum.defs prod.defs ID.defs fset.defs collect-def-raw

lemma fsetTRM-induct:
fixes t :: ( ′a, ′b) fsetTRM
assumes

IB:
∧

a. P (fsetVar a) and
IH:
∧

b ts. (∀ x ∈ fset ts. P x) =⇒ P (fsetApp b ts)
shows P t

proof (induct rule: fsetTRM.fld-induct)
fix t :: ′a + ′b × (( ′a, ′b) fsetTRM) fset
assume raw-IH:

∧
a. a ∈ fsetTRMRTC-set3 t =⇒ P a

show P (fsetTRM-fld t)
proof (cases t)

case (Inl a) with IB show ?thesis by (simp add: fsetVar-def)
next

case (Inr app)
then obtain b ts where bts: fsetTRM-fld t = fsetApp b ts
by (auto simp add: fsetTRM-defs intro: prod.exhaust)

hence ∀ x ∈ fset ts. x ∈ fsetTRMRTC-set3 t by (simp add: fsetTRM-defs)
with raw-IH have ∀ x ∈ fset ts. P x by blast
with IH have P (fsetApp b ts) by blast
with bts show ?thesis by simp

qed
qed

definition subst-fsetTRM where
subst-fsetTRM f = fsetTRM-iter (sum-case f (fsetTRM-fld o Inr))

lemma subst-fsetTRM f (fsetVar a) = f a
by (simp add: subst-fsetTRM-def fsetTRM-defs)

lemma subst-fsetTRM f (fsetApp b ts) = fsetApp b (fset-map (subst-fsetTRM f) ts)
by (simp add: subst-fsetTRM-def fsetTRM-defs)

lemma fset-map-cong: ∀ x ∈ fset X. f x = g x =⇒ fset-map f X = fset-map g X
by (rule fset.map-cong) (simp only: fset.defs)

theorem subst-fsetTRM (subst-fsetTRM f ◦ g) t = subst-fsetTRM f (subst-fsetTRM g t)
by (induct t rule: fsetTRM-induct)
(auto simp add: fset.map-comp ′ comp-def intro: arg-cong[OF fset-map-cong])





B. Comparison of the Datatype Packages
with Focus on Nested Recursion

Nested recursion is handled by the Melham–Gunter approach by unfolding definitions
of nested datatype and thereby simulating nested recursion by mutual recursion. Un-
folding is a source of non-modularity. It has negative influences on the flexibility and
performance. We demonstrate this by considering iterated nested recursion. First we
compare the current Isabelle datatype package implemented by Berghofer and Wenzel
using the Melham–Gunter approach to our package on a nullary datatype, that has a sin-
gle constructor with iterated application of the list type constructor on the recursive type
argument. We measure the CPU time that is needed to process the datatype command.
The measured times are given in seconds.

n datatype d = C (d

n times︷ ︸︸ ︷
list . . . list)

old package new package
1 1.144 1.244
2 1.788 1.608
3 2.680 2.008
4 5.704 2.620
5 6.152 3.148
6 8.569 3.620
7 11.461 4.280
8 19.181 4.832
9 24.738 5.684

The measurements confirm that our modular handling of nested recursion pays off.
One could argue that examples that are nesting nine levels of lists are not very real-
istic. First, this is not necessarily true—complex formalizations may require complex
datatypes. Second, the gain of time is also visible for smaller depth of nesting, if we
increase the number of constructors. We have performed the measurements for two and
three constructors.

n1 n2 datatype d = C1 (d

n1 times︷ ︸︸ ︷
list . . . list) |C2 (d

n2 times︷ ︸︸ ︷
list . . . list)

old package new package
2 2 4.620 3.764
3 3 13.045 4.802
4 4 19.373 5.980
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n1 n2 n3 datatype d = C1 (d

n1 times︷ ︸︸ ︷
list . . . list) |C2 (d

n2 times︷ ︸︸ ︷
list . . . list) |C3 (d

n3 times︷ ︸︸ ︷
list . . . list)

old package new package
2 2 2 8.845 5.948
3 3 3 23.241 8.033
4 4 4 38.826 9.917

Datatypes with an even much bigger number of constructors are common in Isabelle
formalizations. A final example provided to us by Christian Urban in a private com-
munication justifies this. It is taken from a formalisation of some parts of UNIX. The
example consideres the following type declarations:

type_synonym α t_sprocess = α list× t_process option

type_synonym α t_sfile = α list× t_file option

type_synonym α t_ssocket = α list× t_socket option

type_synonym α t_smsg = α list× t_msg option

datatype t_event_s =
Open_s (t_event_s t_sprocess) (t_event_s t_sfile) t_open_flags
| CloseFFd_s (t_event_s t_sprocess) (t_event_s t_sfile)
| CloseSFd_s (t_event_s t_sprocess) (t_event_s t_ssocket)
| UnLink_s (t_event_s t_sprocess) (t_event_s t_sfile)
| Rmdir_s (t_event_s t_sprocess) (t_event_s t_sfile)
|Mkdir_s (t_event_s t_sprocess) (t_event_s t_sfile)
| Truncate_s (t_event_s t_sprocess) (t_event_s t_sfile)
| FTruncate_s (t_event_s t_sprocess) (t_event_s t_sfile)
| ReadFile_s (t_event_s t_sprocess) (t_event_s t_sfile)
|WriteFile_s (t_event_s t_sprocess) (t_event_s t_sfile)
| Execve_s (t_event_s t_sprocess) (t_event_s t_sfile)
| CreateMsg_s (t_event_s t_sprocess)
| SendMsg_s (t_event_s t_sprocess) (t_event_s t_smsg)
| RecvMsg_s (t_event_s t_sprocess) (t_event_s t_smsg)
| RemoveMsg_s (t_event_s t_sprocess) (t_event_s t_smsg)

Hereby, all undeclared types are either type synonyms without arguments or non-
recursive datatype and therefore not interesting when considering nested recursion. The
depth of nesting is only one for the above datatype, but the time the old datatype package
requires to process the declaration is beyond one hour. In contrast, the new datatype
package processes the example in less then 75 seconds.
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