WHYMON: A Runtime Monitoring Tool
with Explanations as Verdicts

Leonardo Lima@®), Jonathan Julidn Huerta y Munive®), and Dmitriy Traytel

Abstract. We present WHYMON, a runtime monitoring tool that produces expla-
nations as verdicts. Receiving as input a metric first-order temporal logic (MFOTL)
formula and a stream prefix of time-stamped data-carrying events, WHYMON
incrementally outputs explanations that describe why each variable assignment
satisfies or violates the formula. The tool includes a graphical user interface that
facilitates the exploration and understanding of these explanations. Additionally,
it incorporates a formally verified checker that can certify the explanations. In
this tool paper, we describe WHYMON’s architecture and its command line and
interactive user interfaces, and demonstrate its usefulness in a case study.

Keywords: runtime monitoring - explanations - metric first-order temporal logic -
formal verification - certification

1 Introduction

Formal verification tools like model checkers and runtime monitors play a crucial role
in ensuring the correctness of systems. The decision problems these tools solve are
computationally challenging, and the tools use complex, optimized algorithms to rise to
the challenge. Also, the tools’ inputs—the specifications—tend to be complex formulas
describing the desired behavior. Given this complexity, correctness is a major concern and
puts the burden on the tools and their developers to establish trust in their output [[10,/19].

To this end, model checkers output counterexamples to justify specification violations.
However, counterexamples, represented by lasso words, often violate the specification for
unexpected, vacuous reasons [15]. Vacuity often indicates an issue with the specification
and its detection helps model checker users to refine the specification.

In runtime verification (RV), instead of verifying that all traces of a system model sat-
isfy a given specification, one focuses on monitoring: checking the specification on a real
system’s particular execution trace, i.e., a sequence of data-carrying events. Runtime mon-
itoring is therefore sometimes called “model checking a trace” [4]. While this approach
only provides guarantees about the observed trace, it eliminates the need to model the sys-
tem and supports the specification language’s upgrade from propositional temporal logics
to first-order temporal logics or similarly expressive data-aware specification languages.

First-order runtime monitors output violating assignments to the specification’s free
variables, but usually do not justify them. Alas, they require users to trust both the
monitor’s implementation and to correctly specify the desired properties. We present
WHYMON |[2}|3]—a runtime monitor that explains its verdicts in great detail.

WHYMON’s underlying ideas originate from Basin et al. [5]’s proof-tree-based ap-
proach to explaining counterexamples produced by a linear temporal logic (LTL) model
checker. Their algorithm, implemented in the EXPLANATOR tool, constitutes an offline
LTL monitor which processes the counterexample lasso word and outputs a proof tree

https://orcid.org/0000-0003-1701-0435
https://orcid.org/0000-0003-3279-3685
https://orcid.org/0000-0001-7982-2768

2 L. Lima, J.J. Huerta y Munive, and D. Traytel

WHYMON i : WHYMON
el i |SyntaxValidator | GuI

e~ ‘ (ExpiToJsON) (JSONToTable |

(it J (evat] |1 (CheckExpl] i (it) ((Eval) -. (Update)

Checkerisabelle

I E
IL i Monitor g i | Front-endgreact
___________] o

Monitorgcami

Fig. 1: WHYMON’s system architecture.

recursively following the LTL specification’s structure and justifying each operator’s
satisfaction or violation. Lima et al. [[16]] developed the successor tool EXPLANATOR2
that generalized Basin et al. [5]]’s approach to online monitoring and metric temporal
logic (MTL) and augmented the proof tree computation with a visualization for interac-
tively exploring these explanations. Our work [17]], yielding WHYMON, marks the next
evolutionary step by supporting metric first-order temporal logic (MFOTL) [[7].

MFOTL monitors like MONPOLY [7,/8] and VERIMON [6}/18] compute and output
verdicts in the form of violating assignments of a given specification for every position
in the input event log. WHYMON provides a much more detailed verdict (in the form
of a proof tree) for every satisfying and violating assignment. As there is an infinite
number of assignments (for infinite domains), the main insight of our work [[17] is to note
that finitely many different proof trees suffice to explain the assignments. WHYMON
uses the partitioned decision tree (PDT) data structure to finitely partition the infinite
assignment space into sets of assignments that each have the same proof tree explanations.
WHYMON’s explanations are PDTs that store proof trees in their leaves.

From the point of view of traditional runtime monitors for first-order temporal logics,
WHYMON offers some unique features even without considering explanations. Unlike
MONPOLY [7,8] or VERIMON [6,|18]], WHYMON is not restricted to the monitorable
fragment of MFOTL. In particular, WHYMON has no restrictions on the usage of nega-
tion, universal quantifiers and permits arbitrary free variable patterns in binary operators.
(WHYMON'’s only syntactic restriction is to disallow equalities between variables.)
Unlike DEJAVU [11}/12], WHYMON supports (bounded) future temporal operators.

In contrast to our earlier paper [[17] describing the theoretical underpinnings of
WHYMON, in particular, the proof system, the PDT data structure, and algorithms, this
tool paper focuses on WHYMON’s architecture (Section[2)) and uses the tool to introduce
MFOTL without the usual formalities (Section [3). We also describe WHYMON user
interfaces: its graphical user interface (GUI) for the interactive exploration of explana-
tions (Section[d), and its command line interface (CLI) for the efficient computation and
certification of explanations (Section[5). Finally, we carry out a case study in the area of
risk-based authentication (Section[6)) to demonstrate WHYMON’s usefulness in a realistic
setting. We refer to earlier papers [5}/16}|17]] for detailed discussions of related work.

2 Architecture

WHYMON’s architecture (Figure|[T) is subdivided into a CLI (WHYMONcy) and a GUI
(WHYMONGgy). The CLI’s main component is Monitorocami, which implements WHY-
MON’s monitoring algorithm in OCaml. It has the typical structure of an online monitor,

WHYMON: A Runtime Monitoring Tool with Explanations as Verdicts 3

with an Init function that initializes the monitor’s state and a step function Eval that
updates the monitor’s state based on the arrival of new events. The explanations output by
the monitor can be checked with the CheckExpl function from the Checkersapele compo-
nent. This component consists of OCaml code extracted from WHYMON’s explanation
checker [13]] whose correctness we formally verified using the Isabelle proof assistant.
The GUI’s main component Front-endgeact is @ web application [3]] written in Re-
act [[14]. This component interfaces Monitor s, the JavaScript version of Monitorgcami
obtained by transpilation using js_of_ocaml [20]. Monitor,s consists of Init and Eval,
which remain unchanged, and two additional functions: SyntaxValidator uses WHY-
MON’s parser (also written in OCaml) to validate the GUT’s inputs; Expl ToJSON con-
verts explanations to a JSON format that is recognized by the front-end. This information
is then presented by the Front-endgeact’s function JSSONToTable. Lastly, the Update
function maintains the Front-endgeact’s state updated and calls Monitor;s’s functions
according to the interactions coming from the GUI. Our GUI architecture is server-less:
the transpilation allows for all the computations to take place in the client’s browser.

3 Explainable Monitoring

We present the format and meaning of WHYMON’s inputs and outputs. We use the GUI to
present WHYMON’s specification language. Section] discusses the GUI in more detail.

An online monitor inputs a trace, i.e., a time-stamped sequence of data-carrying
events, and a specification, and outputs whether the specification is satisfied or violated
at every position in the sequence. WHYMON’s input traces consists of events and their
arguments of the form event _name (argl, ...,argN). A signature specifies possible
events and the types of their arguments using the format event_name (argl:typel,

., argN:typeN). WHYMON supports integers (int) and strings (string) as ar-
gument types. A trace is a sequence of time-points consisting of sets of events and a
time-stamp labeled with an “@”, e.g., @11 event1(5,some_string), event2(27).
The time-stamps of a trace may not decrease and must always eventually strictly increase.

WHYMON’s specification language is metric first-order temporal logic (MFOTL) [7]],
an expressive extension of LTL with real-time constraints and first-order quantification
over data. The atomic propositions in MFOTL are predicates, i.e., parametrized events
consisting of event names applied to a sequence of variables or constants. MFOTL opera-
tors, such as Boolean operators (e.g., and, or, not), temporal operators (e.g., since, until),
or quantifiers (exists, forall), combine atomic propositions and MFOTL formulas into
more complex MFOTL formulas. We visually present the meaning of some MFOTL oper-
ators in Figure[2] WHYMON accepts a standard selection of MFOTL operators, including
past and future temporal operators and derived operators such as always and eventually.
Readers can find a formal description of MFOTL’s syntax and semantics elsewhere [|17].

For each MFOTL operator in Figure 2] we display WHYMON’s verdicts as tables
that represent how the operator can be violated or satisfied at a time-point. The input
specification’s operators and predicates label the columns (at the top) and each operator
is followed to its right by its immediate subformulas. Each row represents a trace’s
time-point and displays the Boolean verdicts (% or @). Hovering over a Boolean verdict
displays the variable assignment for the corresponding subformula. Clicking a Boolean

4

L. Lima, J.J. Huerta y Munive, and D. Traytel

= pC =i 1€9) A pC) g0 A pC) a0 A PO a0
V) 9 9. 9 ©
(<} @ Qﬁo () W (<} ® (<} (<} & (<}
X Formula X Formula X Formula X Formula X Formula
1 -p(x) D\1 -pC 1 PO A q(x) D\1, 2 P0G A a(x) 2 pOG) A a(x)
- PG qC) > PG qC) > PG qC) = =
0,9 © o V] 9.0 o (<}
A\ i\) A\ &
X Formula X Formula X Formula X Formula X Formula
1 p(x) » q(x) 2 p(x) » q(x) p\1, 2 p(x) » q(x) 1 x=1 D\1 x =1
I x. pkx) 3 x. A pCx) 90 v ox. - pCx) g0 v x - pCd qC)
V) & V) oy O ® o |9 V) © © I 9 ©
X Formula X X X Formula
1 p(x) Q2 & 9 2 & 2 PO > q0)
© Other & Other
TS o[1,2] pCO o[1,2] pCO o[1,2] pCO o[1,2] €9} TS
1 (V] [x) 1
2 2
Y% O
2 X Formula X Formula [x) & 2
5 X Formula [x} 5
1 e[1,21 pCO DAL e[1,2] p(B
X Formula
D o[1,2] p(x)
D o[1,2] p(x)
s o[1,2] €9} 401,2] PG 401,2] pCO 401,21 pCO TS
1 (<} (<} 9 (<} 1
A\ &
2 X Formula X Formula 2
2 (V] [x) 2
D e[1,2] pCO D #[1,2] pCO & o
5 X Formula X Formula 5
1 401,21 pCO pD\1 401,21 pCO
TS S[1,2] €9} a0 S[1,2] €9} qC) S[1,2] €9} qC) Ts
0 (V] [x) 0
1 9 (<} (<} (<} 1
2 o V] (<} (<} 2
) & A\
5 X Formula X Formula X Formula 5
1 p(x) S[1,2] 9 2 p(x) S[1,2] a0 3 p(x) S[1,2] aCO

Fig.2: WHYMON’s presentation of MFOTL semantics by example.

WHYMON: A Runtime Monitoring Tool with Explanations as Verdicts 5

verdict highlights its justification in yellow (if the operator is unary), or yellow and teal (if
it is binary). Moreover, the corresponding formula column and its subformulas’ columns
are also highlighted in the same colors. Figure2Juses at most two predicates p(x) and q(x)
(where x is a variable) to represent each MFOTL operator. The traces used for Boolean
operators and quantifiers in Figure 2] have a single entry because their satisfactions or
violations depend only on the current time-point. We explain each table in Figure 2| next.
Negation (—) and equality (=): For both of these operators, Figure[2uses the one-time-
point trace “@0 p(1)”. This should be interpreted as saying that at time 7 = 0, the only
value that satisfies p is 1. Thus, the negation —p(x) is satisfied (9) by all other values for
x, written x € D\ {1} with D being x’s domain, because the subformula p(x) does not
hold for them. The negation is violated (&) for x € {1} because the subformula p(x) sat-
isfies it. Similarly, the formula x = 1 is satisfied for x € {1} and violated for x € D\ {1}.
WHYMON omits set parentheses to improve readability (e.g., D\ 1 instead of D\ {1}).
Conjunction (N) Figure 2| uses the trace “@0 p(1), p(2), q(1)” for p(x) Aq(x). In
this case, the conjunction is satisfied for x € {1} because both conjuncts satisfy it. In
contrast, the conjunction is violated in two ways: because the right conjunct violates it
when x € {2} and because the left conjunct violates it when x € D\ {1,2}.
Implication (—) The trace “@0 p(1), p(2), q(2)” is used for the formula p(x) —
q(x). Here, the implication is violated for x € {1} because the left side is satisfied and the
right side is violated. Conversely, it is satisfied either because the right side is satisfied
when x € {2}, or because the left side is violated when x € D\ {1,2}.
Exists (3) and forall (V): The assignment of 1 to x witnesses the satisfaction of 3x. p(x),
which stems from the satisfaction of its subformula p(x) when x € {1}, where the trace
is “@0 p(1)”. To violate an existential quantifier, all domain elements should violate its
immediate subformula. Accordingly, if we consider the trace “@0 p(2)”, the formula
o3 =3x. p(x) Aq(x) is violated for x € {2}, because the right conjunct is violated while
for x € D\ {2} (Other in Figure , the left conjunct is violated. Thus, the (immediate)
subformula is violated for all values of the domain, i.e., for all x € D. For the universal
quantifier, we consider the formula ¢y = Vx. p(x) — q(x) and the trace “@0 p(2),
q(2)”. As in the violation for ¢3, the explanation for the satisfaction of ¢y is split in two,
x € {2} and x € D\ {2}. Yet, ¢y overall is satisfied because for all values that x can have
(x € D), its (immediate) subformula is satisfied. In contrast, for the trace “@0 p(2)~,
@y is violated because when x € {2} the subformula is violated. Exploring violations or
satisfactions for quantifiers requires interaction in our tool due to the domain partitions.
We now turn to the temporal operators and include the time-stamp column (TS)
to track the real-time (metric) constraints. We focus on past operators; the future ones
behave dually. The operators include intervals [a, b] restricting the time-range where
their immediate subformulas must hold. WHYMON highlights the time-points in these
ranges (relative to the considered Boolean verdict) in (light) yellow.
Previous (@): The formula g = @, 2p(x) with the trace “@1 p(1) @2 @2 @5” is
satisfied for x € {1} at the second time-point (second row) because its (immediate)
subformula is satisfied at the previous time-point and that time-point lies within 1 to
2 units of time from 2. In contrast, ¢g is violated (i) if its subformula is violated at
the previous time-point within the interval, e.g., for x € D\ {1}; or (ii) if the interval is
located either before or after the previous time-point; or (iii) at the trace’s first time-point.

6 L. Lima, J.J. Huerta y Munive, and D. Traytel

Signature Formula Trace
e i - ? Q g 0 0
valid valid valid

Signature Trace

attempt(u:int, c:string) 4 attempt(6, NO)
7 attempt(@, US)
18 attempt(6, BR)

Formula 21 attempt(2, NO)
30 attempt(1l, NO)
Ju. attempt(u,cl) A
¢[1,30] Cattempt(u,c2) A
¢[1,30] attempt(u,c3))

Fig.3: WHYMON’s input mode with a signature, a trace and a specification.

Once (4): Using the same trace as in the previous case, the formula pg = #(; 5 p(x) is
satisfied if its subformula has been satisfied at some point in the past within the interval,
e.g., for x € {1}. Yet, ¢4 is violated when: (i) the interval has not yet started; or (ii) the
subformula is violated at every time-point within the interval, e.g., when x € D\ {1}.

Since (S): The trace “@1 q(1), q(2) @1 p(1), p(3) @2 p(1), p(2), p(3) @5” satisfies the
formula s = p(x))1 2) q(x) whenever there is a sequence of satisfactions of p(x) up to
the current time-point since a satisfaction of g(x) inside the interval. This is the case for
x € {1} at time-point 2 in Figure[2] Conversely, ¢s is violated when: (i) p(x) is violated
at every time-point from (including) the last violation of ¢(x), e.g., for x € {2}; or (ii)
q(x) is violated at every time-point inside the interval. Note that a single p(x)-violation
outside the interval, e.g., between the current time-point and the interval also suffices.
The formula ¢ is violated (as ¢4) when the interval is before the trace’s first time-point.

4 Graphical User Interface

We now describe our GUI’s key features and outline the usual workflow involved in the
interactive exploration of explanations with an example shown in Figures [3]and 4]

Consider an authentication system that records login attempts, including details such
as user ID and IP address. Based on the IP address, we can derive the corresponding coun-
try. To detect unusual authentication behavior, we use the three_attempts MFOTL policy
of Figure[3] It specifies a single user attempting to log in thrice, possibly from different
countries, in intervals between 1 and 30 seconds. Figure3]also includes a signature and a
corresponding synthetic trace, where user IDs are integers and country codes are strings.

WHYMON’s GUI operates in two modes. Initially, users provide the inputs—the
signature, the formula, and the trace (Figure @—and the GUI validates them. The GUI
includes a live syntax checker and a built-in syntax highlighting. These features help to
ensure conformity with WHYMON’s syntax and with the signature.

If the inputs are valid, users can switch to the GUI's monitoring mode (Figure [4)
using the RUN button. In this mode, users can see a table whose rows corresponds to the
log’s time-points as seen in Figure [2]but with the first three columns omitted: TP (for
time-points), TS (for time-stamps) and Values. The Values column has buttons indicating
the presence of Boolean verdicts (4, A or both) for WHYMON’s “explained” time-
points (rows). Whenever clicked, these buttons present a (possibly nested) dropdown
menu with the possible variable assignments for the formula’s free variables.

WHYMON: A Runtime Monitoring Tool with Explanations as Verdicts 7

i TS Values 3 attempt(u, c1) 41,30] A attempt(u, c2) 401,30] attempt(u, c3)
4 o

7 o

18 o

o cl @ 3 u Formula

30 o

a7 o

AU BRNO 6 #[1,30] attempt(u, c3)

Fig.4: WHYMON’s monitoring mode exploring a satisfaction at time-point 5.

WHYMON is an online monitor. The GUI accounts for that with an input field for new
events. Adding the new time-point @47 attempt(6, AU) to the trace extends the GUI’s
output to indicate that unusual behavior was detected at time-point 5 (Figure[d). In par-
ticular, the three_attempts policy is satisfied for the variable assignment (cj,cz,c¢3) =
(AU,BR,NO). After selecting this variable assignment via the dropdown menu, we explore
the associated Boolean verdict in the “Ju” column (corresponding to the topmost opera-
tor). Clicking this Boolean verdict makes the GUI uncover and highlight its justification.
The satisfaction relies on the first A and we can hover over the Boolean verdict () to
see the witness u = 6. The first A is satisfied because user 6 attempted to authenticate
from Australia (AU) at time-point 5 and the right conjunct holds because the first #; 3]
holds. The latter relies on the satisfaction of the second A, which occurred at time-point 2.
Similarly, the second A is satisfied because user 6 attempted to authenticate from Brazil
(BR) at time-point 2 and the right conjunct is satisfied. This satisfaction (of the second
4130 occurred due to a prior attempt by user 6 from Norway (NO) at time-point 0.

5 Command Line Interface

WHYMON includes a CLI that takes as inputs a signature file, a formula file and a trace
file (in the same formats as the GUI). If no trace file is given, the CLI reads events from
the standard input. There are three execution modes: unverified (default), verified
and light. In the unverified mode, WHYMON outputs an explanation for each time-
point in the trace. In the verified mode, the CLI additionally checks the validity of each
explanation with its formally verified checker and includes the result of the check in the
output (e.g., Checker output: true). The light mode helps to detect explanations
for violations. Specifically, it filters out explanations that only contain satisfactions and
for the remaining ones it replaces the proof trees for satisfactions in PDTs with true
(while keeping the proof trees for violations unchanged). The CLI prints the verdicts to
the standard output or to a file, where each explanation is preceded by the corresponding
time-stamp:time-point pair (e.g., 3:0). The CLI executes compiled OCaml, which is
orders of magnitude faster than the transpiled JavaScript used by the GUI.

6 Case Study

Risk-based authentication (RBA) monitors users authentication contexts (containing
information about, e.g., their geolocation). Upon the detection of unusual behavior, the
authentication fails and users are asked to re-authenticate using more secure methods
(e.g., two-factor authentication) or their access is blocked. The goal is to mitigate attacks
based on stolen or leaked passwords [9L21]]. Traditionally, RBA calculates a risk score
based on the login attempt’s feature. RBA developers employ various statistical or
machine learning methods to compute this score and block a percentage of attackers

8 L. Lima, J.J. Huerta y Munive, and D. Traytel

@0 attempt(0,US) changed_to(u,c) = attempt(u,c)
: A3 (@) travels(u,c’,c)) A @not_since_at(u,c’))
@28096 attempt(2,AU) def
@35332 attempt (5, N0) travels(u,cy,cp) = attempt(u,c)) A —~attempt(u,c;)
: Aat_country(u,c1) Uy, 1) attempt(u,c2)
@271368 attempt(5,R0)
@271794 attempt(30,US)

d
at_country(u,c) 9y, attempt(u,c’) — attempt(u,c)
not_since_at(u,c) « (—Fec. attempt(u,¢)) Sjo 4 attempt(u,c’)
Fig. 5: Trace excerpt with an account takeover and the policy definition to find it.

with them. The deployment of these methods reverberates in the login attempts that the
rest of the users need to perform. For instance, the RBA algorithm might ask the average
legitimate user for re-authentication every second login attempt to block 99.5% of naive
attackers [9], i.e., attackers that try to sign in from an IP address different from those
typically associated with the account. However, determining whether the RBA model
has correctly classified a new account takeover attempt can be time-consuming due to
obfuscation from multiplied probabilities. Moreover, debugging these models entails
accepting the presence of statistical uncertainty. To complement RBA with a more certain
analysis, we propose using an MFOTL specification to predict takeovers for the simplest
kinds of attackers. We use WHYMON on a subset of an RBA dataset to provide an
explanation of an account’s behavior that justifies classifying the attempt as a takeover.

We consider a dataset for RBA []1,21] based on information provided by the Nor-
wegian telecommunications company, Telenor Digital. The dataset is synthetic to protect
user anonymity but it preserves the statistical properties of the original one. It includes
around 31.3 million login attempts of 3.3 million users spanning over more than a year.
Each attempt event contains the time-stamp, the User ID, IP address, and other informa-
tion (e.g., country). The events also include a Boolean label denoting whether the attempt
was deemed an account takeover by the company’s security incident response team.

We use the dataset’s takeover information and observe that 97% of the attacks are
from naive attackers. Hence, we create a trace from the dataset whose events only contain
the user ID u and the country c of the attempt. The trace only has one kind of event with
the format @7 attempt(u,c), where 7 is the time-stamp in milliseconds. For the sake
of presentation, we trim the 1 GB dataset to a subsegment where an account takeover
occurs. The subsegment comprises a trace with 150 time-points. We also decrease the
trace’s time-stamps by the least time-stamp (so that the trace starts with time-stamp 0)
and rename user IDs to be smaller integers. An excerpt is shown in Figure [5| where our
takeover of interest is greyed out (at time-stamp 271368) with User ID u = 5.

Figure 5| shows the definition of the MFOTL formula “changed_to” that catches
naive attackers in general and the takeover at 7 = 271368 in particular. Formally, a user u
has just changed to country ¢ (according to the trace) if currently there is a login-attempt
of u from c¢ and if there is a country ¢’ such that the user traveled from ¢’ to ¢, and the
user has not attempted to log in since their last attempt from ¢’. We model the fact that a
user traveled from country c; to country ¢, by stating that the user made an attempt from
country ¢ at some point in the past and the user remained at country c¢; until they did
a login-attempt from country c¢;. To distinguish the countries, travels also asserts that

WHYMON: A Runtime Monitoring Tool with Explanations as Verdicts 9

there is no attempt from country ¢, at the same time as another attempt from country c.
Finally, a user u remains at a country c if every login attempt that the user makes is from
c. In terms of RBA, we expect that if a legitimate user travels to another country, they will
be asked for re-authentication once with our changed_to policy. Afterwards, they would
not be asked again until they travel again. The time parameter ¢ represents how far in the
past the runtime monitoring algorithm looks for a change of country. That is, setting ¢ to
60 days means that if the user has not attempted to log in for more than two months, any
new attempt from a different country would violate changed_to. Approximately 48.3%
of users attempted to log in at most one time per month and 22.4% attempted to do so
daily [21]]. For our subsegment trace, we set ¢ to 151 200 ms (2.52 minutes).
WHYMON successfully finds the takeover attempt against user 5 at time 7 = 271368
as seen in Figure[f] Vertical dots represent the 35 omitted rows in the image. It also shows
the pop-over after hovering on the attempt from Romania (RO) and, in the last column,
the greyed out satisfaction of the first conjunct (4 jtravels(u, c,c)) under changed_to’s
existential quantifier. This is a “once” operator whose arguments are shown further
in Figure [/| We edit the image to also include the pop-ups when hovering over the
first and second conjunct arguments of 4. These reveal that user 5 was in Norway
(countryl = NO) at time-point 32. The until part of the subformula travels is satisfied
as (Figure[8). The figure shows that user 5 remained in Norway from time-point 33 to
time-point 70, until performing the attempt from Romania (at time-point 71). Finally,
Figure [9] depicts the not_since_at part of the formula. It shows that the user did not
have any login attempt since its last attempt from Norway until the point just before the
attempt from Romania. Therefore, the user suspiciously changed countries in a timespan
of less than 2.6 minutes which justifies classifying this attempt as an account takeover.

Reflection WHYMON was useful to refine our specification changed_to as, originally,
our candidate for the left subformula of not_since_at was —at_country. However, all
negations in Figure |8 were violated (@) because the left part of at_country was violated,
which made at_country vacuously true. After noticing this issue, we realized that we
never meant that the user had to remain at the previous country, but rather that the user
did not attempt to log in to the system. WHYMON also helped us with syntactic issues
since forgetting the parenthesis around 0[0,,]travels(u, c,c) or the operator U, resulted in
unexpected explanations, e.g., ones pointing to the future instead of the past. Moreover,
changed_to helped us discover an anomaly in the RBA dataset noticeable in Figure [6}
there are many suspicious change of countries from user u = 2. We then noticed that this
user appeared approximately in 45% of all dataset entries. We suspect that this is either
an overflow error in the dataset generation or a legitimate administrative account.

Unfortunately, we could not evaluate WHYMON’s performance for larger values of
t in changed_to. The GUI struggles with complex specifications on traces with more
than 500 time-points. Meanwhile, the CLI processed a 51 minutes prefix of the trace in
48 minutes for = 151200 ms on an Apple M1 Chip with 16GB of RAM. Nonetheless,
WHYMON proved helpful during the design of our specification when experimenting
with short traces. We can use more efficient monitors like MONPOLY to detect violations
at scale. We thus expect that to achieve explainable RV we should study combinations
of more efficient runtime monitors (e.g. MONPOLY) for analyzing large traces with
explainable monitors (e.g. WHYMON) for fragments of these traces.

10 L. Lima, J.J. Huerta y Munive, and D. Traytel

TP TS Values A attenmpt(usr,) 3 A 4[0,151200]
31 11633 9O
32 10012 @v

33 120788 9@

69 264934 Qv
70 266958 QO v

T 271368 QO v

72 2nmea [Nogineny country usr Formula
73 erasee

@RrO RO 5 attempt(usr, D
74 281710 e

@ Other »
75 om213 5
76 286779 Qv © Other

77 203518 Qv

Fig. 6: First part of changed_to(u, ¢) for user u = 5 and country ¢ = RO at T = 271368.

4[0,151200] A attempt(usr, D) attempt(usr,)
country usr countryl Formula
RO B NO attempt(usr,) A -attempt(usr, 2
country usr countryl Formula
attempt(usr,) A -attempt(usr,) A ¢ attempt(
RO 5 NO) attempt(usr,) U[0,151201] attempt(D)

Fig. 7: Once part of changed_to(u, c) for user u = 5 and country ¢ = RO at T = 271368.

U[0,151201] v - attempt(usr,) attempt(usr,) attempt(

v country usr countryl Formula

RO 5 No attempt(

Fig. 8: Until part of changed_to(u,c) for user u = 5 and country ¢ = RO at T = 271368.

o[0,x) 5[0,151200] . attempt(usr,) attempt(

Fig. 9: Since part of changed_to(u, ¢) for user u = 5 and country ¢ = RO at T = 271368.

WHYMON: A Runtime Monitoring Tool with Explanations as Verdicts 11

Acknowledgements The research and development of WHYMON are supported by a
Novo Nordisk Fonden start package grant (NNF200C0063462).

References

11.

12.

13.

14.

15.

16.

17.

18.

. Login Data Set for Risk-Based Authentication (2022), https://www.kaggle.com/datasets/

dasgroup/rba-dataset

. WHYMON’s GitHub repository (2024), https://github.com/runtime-monitoring/whymon
. WHYMON’s GUI (2024), https://runtime-monitoring.github.io/whymon
. Basin, D.: The Cyber Security Body of Knowledge v1.1.0, 2021, chap. Formal Methods for

Security. University of Bristol (2021), https://www.cybok.org/, kA Version 1.0.0

. Basin, D.A., Bhatt, B.N., Traytel, D.: Optimal proofs for linear temporal logic on lasso words.

In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 37-55. Springer (2018).
https://doi.org/10.1007/978-3-030-01090-4_3

. Basin, D.A., Dardinier, T., Hauser, N., Heimes, L., Huerta y Munive, J.J., Kaletsch, N., Krsti¢,

S., Marsicano, E., Raszyk, M., Schneider, J., Tirore, D.L., Traytel, D., Zingg, S.: VeriMon: A
formally verified monitoring tool. In: Seidl, H., Liu, Z., Pasareanu, C.S. (eds.) ICTAC 2022.
LNCS, vol. 13572, pp. 1-6. Springer (2022). https://doi.org/10.1007/978-3-031-17715-6_1

. Basin, D.A., Klaedtke, F., Miiller, S., Zalinescu, E.: Monitoring metric first-order temporal

properties. J. ACM 62(2), 15:1-15:45 (2015). https://doi.org/10.1145/2699444

. Basin, D.A., Klaedtke, F., Zalinescu, E.: The MonPoly monitoring tool. In: Reger, G.,

Havelund, K. (eds.) RV-CuBES 2017. Kalpa Publications in Computing, vol. 3, pp. 19-28.
EasyChair (2017). https://doi.org/10.29007/89HS

. Freeman, D., Jain, S., Diirmuth, M., Biggio, B., Giacinto, G.: Who are you?

A statistical approach to measuring user authenticity. In: NDSS 2016. The Inter-
net Society (2016), http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/
who-are-you-statistical-approach-measuring-user-authenticity.pdf

. Goodloe, A.E., Havelund, K.: High-integrity runtime verification. Computer 57(4), 37-45

(2024). https://doi.org/10.1109/MC.2023.3322902

Havelund, K., Peled, D., Ulus, D.: DejaVu: A monitoring tool for first-order temporal logic. In:
MT@CPSWeek 2018. pp. 12-13. IEEE (2018). https://doi.org/10.1109/MT-CPS.2018.00013
Havelund, K., Peled, D., Ulus, D.: First-order temporal logic monitoring with bdds. Formal
Methods Syst. Des. 56(1), 1-21 (2020). https://doi.org/10.1007/S10703-018-00327-4
Herasimau, A., Huerta y Munive, J.J., Lima, L., Raszyk, M., Traytel, D.: A verified proof
checker for metric first-order temporal logic. Archive of Formal Proofs (April 2024), https:
/lisa-afp.org/entries/MFOTL_Checker.html, Formal proof development

Hunt, P, O’Shannessy, P., Smith, D., Coatta, T.: React: Facebook’s functional turn on writing
JavaScript. ACM Queue 14(4), 40 (2016). https://doi.org/10.1145/2984629.2994373
Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int. J. Softw.
Tools Technol. Transf. 4(2), 224-233 (2003). https://doi.org/10.1007/S100090100062
Lima, L., Herasimau, A., Raszyk, M., Traytel, D., Yuan, S.: Explainable online monitoring of
metric temporal logic. In: Sankaranarayanan, S., Sharygina, N. (eds.) TACAS 2023. LNCS,
vol. 13994, pp. 473—-491. Springer (2023). https://doi.org/10.1007/978-3-031-30820-8_28
Lima, L., Huerta y Munive, J.J., Traytel, D.: Explainable online monitoring of metric first-
order temporal logic. In: Finkbeiner, B., Kovics, L. (eds.) TACAS 2024. LNCS, vol. 14570,
pp. 288-307. Springer (2024). https://doi.org/10.1007/978-3-031-57246-3_16

Schneider, J., Basin, D.A., Krstié, S., Traytel, D.: A formally verified monitor for metric
first-order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757,
pp. 310-328. Springer (2019). https://doi.org/10.1007/978-3-030-32079-9_18

https://www.kaggle.com/datasets/dasgroup/rba-dataset
https://www.kaggle.com/datasets/dasgroup/rba-dataset
https://github.com/runtime-monitoring/whymon
https://runtime-monitoring.github.io/whymon
https://www.cybok.org/
https://doi.org/10.1007/978-3-030-01090-4_3
https://doi.org/10.1007/978-3-031-17715-6_1
https://doi.org/10.1145/2699444
https://doi.org/10.29007/89HS
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/who-are-you-statistical-approach-measuring-user-authenticity.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/who-are-you-statistical-approach-measuring-user-authenticity.pdf
https://doi.org/10.1109/MC.2023.3322902
https://doi.org/10.1109/MT-CPS.2018.00013
https://doi.org/10.1007/S10703-018-00327-4
https://isa-afp.org/entries/MFOTL_Checker.html
https://isa-afp.org/entries/MFOTL_Checker.html
https://doi.org/10.1145/2984629.2994373
https://doi.org/10.1007/S100090100062
https://doi.org/10.1007/978-3-031-30820-8_28
https://doi.org/10.1007/978-3-031-57246-3_16
https://doi.org/10.1007/978-3-030-32079-9_18

12

19.

20.

21.

L. Lima, J.J. Huerta y Munive, and D. Traytel

Seisenberger, M., ter Beek, M.H., Fan, X., Ferrari, A., Haxthausen, A.E., James, P., Lawrence,
A., Luttik, B., van de Pol, J., Wimmer, S.: Safe and secure future ai-driven railway technologies:
Challenges for formal methods in railway. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022.
LNCS, vol. 13704, pp. 246-268. Springer (2022). https://doi.org/10.1007/978-3-031-19762-
820

Vouillon, J., Balat, V.: From bytecode to JavaScript: the Js_of_ocaml compiler. Softw. Pract.
Exp. 44(8), 951-972 (2014). https://doi.org/10.1002/spe.2187

Wiefling, S., Jgrgensen, P.R., Thunem, S., Iacono, L.L.: Pump up password security! evaluating
and enhancing risk-based authentication on a real-world large-scale online service. ACM
Trans. Priv. Secur. 26(1), 6:1-6:36 (2023). https://doi.org/10.1145/3546069

https://doi.org/10.1007/978-3-031-19762-8_20
https://doi.org/10.1007/978-3-031-19762-8_20
https://doi.org/10.1002/spe.2187
https://doi.org/10.1145/3546069

	WhyMon: A Runtime Monitoring Tool with Explanations as Verdicts

