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In his seminal work [5], Büchi envisioned weak monadic second-order logic of one successor
(WS1S) to become a “more conventional formalism [that] can be used in place of regular ex-
pressions [. . . ] for formalizing conditions on the behaviour of automata”. This vision became
truth—WS1S has been used to encode decision problems in hardware verification [1], network
verification [2], synthesis [6], as well as many others.

Equivalence of WS1S formulas is decidable, although the decision procedure’s complexity
is non-elementary [9]. Nevertheless, the MONA tool [7] shows that the daunting theoretical
complexity can often be overcome in practice by employing a multitude of smart optimizations.
Similarly to Büchi, MONA’s user manual [8] calls WS1S a “simple and natural notation” for
regular languages.

Traditionally, decision procedures for WS1S do not try to benefit themselves from the con-
ventional, simple, and natural logical notation. Instead, by exploiting the logic-automaton con-
nection, formulas are translated into finite automata which are then minimized. During the
translation all the rich algebraic formula structure including binders and high-level constructs
is lost. On the other hand, the subsequent minimization might have benefited from some sim-
plifications on the formula level.

Concerning the algebraic structure, regular expressions are situated somewhere in between
of WS1S formulas and finite automata. In earlier work [15], we propose a semantics-preserving
translation of WS1S formulas into regular expressions. Thereby, equivalence of WS1S formulas
is reduced to equivalence of regular expressions. To decide equivalence of regular expressions,
we employ a coalgebraic decision procedure based on a finality test and Brzozowski deriva-
tives [4]—the coalgebra structure on regular expressions [12].

In recent work [13], we go one step further by defining a coalgebra structure directly on
WS1S formulas. The main contributions are:

• We define a symbolic derivative operation for a WS1S formula.

• We define a finality test determining if a formula holds in the empty interpretation.

• Taking the two above notions together, we obtain a decision procedure for WS1S that
operates only on formulas.

• We formalize the newly defined notions in Isabelle/HOL [10] and formally verify that the
obtained algorithm indeed decides equivalence of WS1S formulas.

The obtained decision procedure can be considered an elegant toy—implementable only
with a few hundreds lines of Standard ML [14] and teachable in class. By no means it should be
evaluated against MONA’s thousands of lines of tricky performance optimizations. On the other
hand, we are confident that symbolic decision procedures must not hide behind automata-based
ones in terms of performance in general as witnessed by several successful examples [3, 11].
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