Experience Report: The Next 1100 Haskell Programmers

Jasmin Christian Blanchette =~ Lars Hupel

Tobias Nipkow

Lars Noschinski ~ Dmitriy Traytel

Fakultit fiir Informatik, Technische Universitit Miinchen, Germany

Abstract

We report on our experience teaching a Haskell-based functional
programming course to over 1100 students for two winter terms.
The syllabus was organized around selected material from various
sources. Throughout the terms, we emphasized correctness through
QuickCheck tests and proofs by induction. The submission archi-
tecture was coupled with automatic testing, giving students the pos-
sibility to correct mistakes before the deadline. To motivate the stu-
dents, we complemented the weekly assignments with an informal
competition and gave away trophies in a award ceremony.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.2 [Program-
ming Languages]: Language Classifications—Applicative (func-
tional) languages; K.3.2 [Computers and Education]: Computer
and Information Science Education—Computer science education

General Terms Algorithms, Languages, Reliability

Keywords Haskell, functional programming, induction, testing,
monads, education, competition, QuickCheck, SmallCheck

1. Introduction

This paper reports on a mandatory Haskell-based functional pro-
gramming course at the Technische Universitit Miinchen. In the
first iteration (winter semester of 2012-2013), there were 619 stu-
dents enrolled. In the following winter semester (2013-2014), there
were 553 students enrolled. The course ran for 15 weeks with
one 90-minute lecture and one 90-minute tutorial each week. The
weekly homework was graded, but the final grade was primarily
determined by the examination. To make the homework more at-
tractive, we coupled it with an informal programming competition.
The departmental course description does not prescribe a spe-
cific functional language but focuses on functional programming
in general. In the previous two years, the course had been based
on Standard ML. We have a strong ML background ourselves but
chose Haskell because of its simple syntax, large user community,
real-world appeal, variety of textbooks, and availability of Quick-
Check [3]. The one feature we could well have done without is lazy
evaluation; in fact, we wondered whether it would get in the way.
The course was mandatory for computer science (Informatik)
and information systems (Wirtschaftsinformatik) students. All had
learned Java in their first semester. The computer science students
had also taken courses on algorithms and data structures, discrete

[Copyright notice will appear here once ’preprint’ option is removed.]

mathematics, and linear algebra. The information systems students
had only had a basic calculus course and were taking discrete
mathematics in parallel.

The dramatis personae in addition to the students were lecturer
Tobias Nipkow, who designed the course, produced the slides,
and gave the lectures; Masters of TAs Lars Noschinski and Lars
Hupel, who directed a dozen teaching assistants (TAs) and took
care of the overall organization; furthermore the (Co)Masters of
Competition Jasmin Blanchette (M C) and Dmitriy Traytel (CoMC),
who selected competition problems and ranked the solutions.

2. Syllabus

The second iteration covered the following topics in order. (The
first iteration was similar, with a few exceptions discussed below.)
Each topic was the subject of one 90-minute lecture unless other-
wise specified.

1. Introduction to functional programming [0.5 lecture]

2. Basic Haskell: Bool, QuickCheck, Integer and Int, guarded
equations, recursion on numbers, Char, String, tuples

3. Lists: list comprehension, polymorphism, a glimpse of the Pre-
lude, basic type classes (Num, Eq, Ord), pattern matching, re-
cursion on lists (including accumulating parameters and non-
primitive recursion); scoping rules by example [1.5 lectures]

4. Proof by structural induction on lists

5. Higher-order functions: map, filter, foldr, A-abstractions,
extensionality, currying, more Prelude [2 lectures]

6. Type classes [0.5 lecture]

7. Algebraic datatypes: data by example, the general case, Boolean
formula case study, structural induction [1.5 lectures]

8. I/O, including files and web
9. Modules: module syntax, data abstraction, correctness proofs
10. Case study: Huffman coding
11. Lazy evaluation and infinite lists
12. Complexity and optimization
13. Case study: parser combinators

Most topics were presented together with examples or smaller
case studies, of which we have only mentioned Boolean formulas.
Moreover, two topics kept on recurring: tests (using QuickCheck)
and proofs (by induction).

From day one, examples and case studies in class were accom-
panied by properties suitable for QuickCheck. Rather than concen-
trate all inductive proofs in the lecture about induction, we dis-
tributed them over the entire course and appealed to them whenever
it was appropriate. A typical example: In a case study, a function
is first defined via map myg . map myf and then optimized to map
(myg . myf), justified by a proof of map (g . f) =map g . map f.

Much of the above material is uncontroversial and part of any
Haskell introduction, but some choices deserve some discussion.

2014/5/6

Induction. Against our expectations, induction was well under-
stood, as the examination confirmed (Section 5). What may have
helped is that we gave the students a rigid template for inductions.
‘We went as far as requiring them to prove equations / = r not by one
long chain of equalities but by two reductions / =t and r = ¢. This
avoids the strange effect of having to shift to reverse gear halfway
through the proof of / = r. It must be stressed that we considered
only structural induction, that we generally did not expect the stu-
dents to think up auxiliary lemmas themselves, and that apart from
extensionality and induction all reasoning was purely equational.

In Haskell, there is the additional complication that proofs by
structural induction establish the property only for finite objects.
Some authors restrict the scope of their lemmas to finite lists of de-
fined elements [15], while others prove reverse (reverse xs)
= xs without mentioning that it does not hold for partial or in-
finite lists [7]. Although some authors discuss finite partial ob-
jects and infinite objects [6, 15], we avoided them in our course—
undefinedness alone is a can of worms that we did not want to open.
Hence, we restricted ourselves to a total subset of Haskell in which
“fast and loose reasoning” [4] is sound.

Input/output and monads. In the first iteration, I/O was covered
toward the end of the course because it is connected with the
advanced topic of monads. As a result, for much of the course
many students may have had the impression that Haskell is only
a glorified pocket calculator. Therefore we moved I/O to an earlier
point in the course. At the same time we dropped monads, since the
majority had not grasped them. This was not entirely satisfactory,
because a minority of students had been excited by monads and
expressed their disappointment.

Abstraction functions. In the lecture on modules and data ab-
straction, we also showed how to prove correctness of data repre-
sentations (e.g., the representation of sets by lists). This requires
an abstraction function from the representation back to the abstract
type that must commute with all operations on the type. As the cor-
responding homework showed, we failed to convey this. In retro-
spect, it is outside the core functional programming syllabus, which
is why it is absent from all the textbooks. The topic still appeared
briefly in the lecture in the second iteration, but without exercises.

Laziness. Haskell’s lazy evaluation strategy and infinite objects
played only a very minor role and were introduced only toward
the end. Initially, we were worried that laziness might confuse
students when they accidentally stumble across it before it has been
introduced, but this was not reported as a problem by any of the
TAs. However, we could not give the students a good operational
model of the language without laziness: All they knew initially was
that equations were applied in some unspecified order. Even after
we had explained laziness, it remained unclear to many students
how exactly to determine what needs to be evaluated.

Complexity and optimization. Complexity considerations are se-
riously complicated by laziness. We found that the book by Bird [1]
offered the best explanation. For time complexity, he notes that as-
suming eager evaluation is easier and still gives an upper bound.
Therefore, we simply replaced lazy by eager evaluation for this lec-
ture. The principles then applied to most programming languages,
and one can cover key optimizations such as tail recursion.

Parser combinators. In the first iteration of the course, the lecture
on parser combinators had been given about two thirds into the
course, but many students had failed to grasp it. As a result we
moved it to the end of the course for the second iteration. This
means that it could not be covered by an exercise sheet and we
have no hard feedback on how well the parser combinators were
understood. It should be noted that this is the first time during their
studies that the students are exposed to the technicalities of parsing.

Ubung 2

3 2 a o B 10 12 1 1 1 S
Ubung 3

o 2 a o B 10 12 12 10 10 »
Ubung 5

o s 10 15 2
Ubung 6

o 2 a [8 10 12 14 16 3 2

Figure 1. Status page with exercise points (where blue bars denote
the student’s points and black markers denote the median of all
students)

100%
80%
60%
40%
B

0%

—2012-2013
---2013-2014

|

1 2 3 4 5 6 7 8 9 10 11 12 13 Sheet

Figure 2. Homework submissions relative to the number of en-
rolled students

3. Exercises

Each week we released an exercise sheet with group and homework
assignments. The main objective of the homework was to have the
students actually program in Haskell. The submission infrastruc-
ture periodically ran automatic tests, giving the students fast feed-
back and an opportunity to correct mistakes before the deadline.

3.1 Assignments

A typical assignment sheet contained between three and five group
exercises and about as many homework exercises. The group exer-
cises were solved in 90-minute tutorial groups. There were 25 or
26 such groups, each with up to 24 students. Each exercise fo-
cused on a specific concept from the week’s lecture. Many were
programming exercises, but some required the students to write
QuickCheck tests, carry out proofs, or infer an expression’s type.

The homework assignments, to be solved individually, covered
the same topics in more depth, sometimes in combination. They
were optional, but in the first iteration of the course, the students
who collected at least 40% of the possible points were awarded a
bonus of 0.3 to the final grade, on a scale from 1.0 (=~ A*) to 5.0
(= F). In the end, 281 students claimed the bonus. Furthermore, the
(Co)MCs nominated one of the assignments to count as part of the
competition (Section 4).

Much to our regret, there were several unpleasing and time-
consuming incidents with plagiarism (Section 3.4). Thus, we de-
cided to drop the bonus system in the second iteration of the course.
As a countermeasure against the anticipated decrease in the num-
ber of homework submissions, we tried to motivate the students by
providing a graphical overview of their homework grades in com-
parison with the median value of all submissions on the web (Fig-
ure 1) and ensured quick grading of the homeworks by the TAs.
Still, the decrease was severe (Figure 2): In the first iteration, 75%
of the enrolled students submitted the first homework; the number
dropped and finally stayed below 40% after sheet 10. In the second
iteration, it started with 50% and stayed below 20% after sheet 8.

Most of the exercises were well understood by those who did
them, perhaps as they conformed closely to the lectures. A few
important exceptions are noted below.

A group problem consisted of registering the polymorphic func-
tion type a —> b as an instance of the Num type class, so that (f + g)
x == f x + g x and similarly for the other operations. Many students
did not understand what their task was, or why one would register

2014/5/6

functions as numbers; and even those who understood the question
had to realize that b must be an instance of Num and fight the prob-
lem’s higher-order nature. We had more success two weeks later
when we redid the exercise for a Fraction datatype and gently
explained why it makes sense to view fractions as numbers.

Less surprisingly, many students had issues with A-abstractions.
They tended to use As correctly with map and filter (although
many preferred list comprehensions when given the choice), but
other exercises revealed the limits of their understanding. One
exercise required implementing a function fixpoint eq f x that
repeatedly applies f to x until £ x ‘eg® f” x and then using this
function to solve concrete problems. Another exercise featured a
deterministic finite automaton represented as a tuple, where the &
component is represented by a Haskell function.

One difficulty we continually faced when designing exercises
is that the Internet provides too many answers. This was an issue
especially in the first few weeks, when little syntax has been in-
troduced. We did our best to come up with fresh ideas and, failing
that, obfuscated some old ideas.

3.2 Submission and Testing Infrastructure

The university provides a central system for managing student sub-
missions, but we built our own infrastructure so that we could
couple it with automatic testing. Our submission system combines
standard Unix tools and custom scripts. The students were given
a secure shell (ssh) account on the submission server. They had
to upload their submissions following a simple naming convention.
The system generated test reports every 15 minutes using Quick-
Check. Many students appear to have improved their submissions
iteratively based on the system’s feedback. The final reports were
made available to the TAs but had no direct effect on grading.

To increase the likelihood that the submissions compile with
the testing system, we provided a correctly named template file for
each assignment, including the necessary module declarations and
stub definitions f = undefined for the functions to implement.
Nonetheless, many students had problems with the naming scheme
(there are surprisingly many ways to spell “exercise”), causing their
submissions to be ignored. These problems went away after we
started providing a per-student graphical web page listing the status
of all their assignments and announced a stricter grading policy.

A few exercises required writing QuickCheck properties for a
function described textually. These properties had to take the func-
tion under test as argument, so that we could check them against se-
cret reference implementations. Since higher-order arguments had
not yet been introduced, we disguised the argument type using a
type synonym and put the boilerplate in the template file.

The test reports included the compilation status, the result of
each test, and enough information about the failed tests to identify
the errors. The tests themselves were not revealed, since they often
contained hints for a correct implementation. In cases where the
input of the test case did not coincide with the input of the tested
function, we had to explain this in the description or provide more
details using QuickCheck’s printTestCase function. Some care
was needed because the function under test can throw exceptions,
which are not caught by QuickCheck because of the lazy evalua-
tion of printTestCase’s argument. We used the Control.Spoon
package to suppress these exceptions.

To make the output more informative, we introduced an operator
==7 that compares the expected and actual results and reports
mismatches using printTestCase.

We did not find any fully satisfactory way to handle very slow
and nonterminating functions. QuickCheck’s within combinator
fails if a single test iteration takes too long, but these failures are
confusing for correct code. Instead, we limited the test process’s
runtime, potentially leaving students with a truncated report.

3.3 Test Design

As regular users of the Isabelle proof assistant [10], we had a lot of
experience with Isabelle’s version of QuickCheck [2]. The tool is
run automatically on each conjectured lemma as it is entered by the
user to exhibit flaws, either in the lemma itself or in the underlying
specification (generally a functional-logic program). Typically, the
lemmas arise naturally as part of the formalization effort and are
not designed to reveal bugs in the specification.

We designed our Haskell tests to expose the most likely bugs
and capture the main properties of the function under test. We
usually also included a test against a reference implementation. We
soon found out that many bugs escaped the test suite because the
Haskell QuickCheck’s default setup is much less exhaustive than its
Isabelle namesake’s. For example, the Haskell random generator
tends to produce much larger integers than the Isabelle one; as a
result, random lists of integers rarely contain duplicates, which are
essential to test some classes of functions. Worse, for polymorphic
functions we did not realize immediately that type variables are
instantiated with the unit type () by default (a peculiar choice
to say the least). In contrast, Isabelle’s version of QuickCheck
supports random testing, exhaustive testing (cf. SmallCheck [12]),
and narrowing (cf. Lazy SmallCheck [12], Agsy [9]), the default
number of iterations is 250, and type variables are instantiated by
small types. The differences between the two QuickCheck versions
became painfully obvious with the competition exercises, as we
will see in Section 4.

Following these initial difficulties, the Masters of TAs were ap-
pointed Masters of Tests and put in charge of setting up the testing
framework properly. They immediately increased QuickCheck’s
number of iterations, decreased the maximum size parameter, and
regained control by defining custom generators and instantiating
type variables with small types. They also started using Small-
Check to reliably catch bugs exposed by small counterexamples.

3.4 Plagiarism Detection

We considered it important to detect and deter plagiarism in the first
year, both because individual bonuses should be earned individ-
ually and because learning functional programming requires doing
some programming on one’s own. Our policy was clear: Plagiarism
led to forfeiture of the bonus for all involved parties.

To identify pla-

giarists, we used RTFTTFT = & =
Moss [13] extended =R 2l
with a custom shell = e _ -
script to visual- _ ‘%; —
ize the results with =% 4 L \T .\ T

Graphviz [5]. The
resulting graph con-
nects pairs of sub-
missions with simi-
lar features, with thicker edges for stronger similarities. Figure 3
shows an anonymized excerpt of the output for week 3.

A noteworthy instance of unintended sharing is the complete
subgraph of thick edges in the middle of Figure 3. One of the
involved students has used Pastebin (http://pastebin.com/)
for his own purposes, without realizing that it would be indexed
by Google and picked up by other students.

Moss’s results are imprecise, with many false positives, so they
must be analyzed carefully. Functional programming often allows
short, canonical solutions. Unusual naming conventions, spacing,
or bugs are useful clues. One could have thought that the recent
German plagiarism scandals, which eventually cost two federal
ministers their Dr. title and minister position, would have cured the
country for some time. Sadly, we had to disqualify 29 students.

Figure 3. Plagiarism graph excerpt
featuring the Pastebin clique

2014/5/6

4. Competition

Our main inspiration for the programming competition has been
CADE’s Automated Theorem Prover System Competition [14],
organized by Geoff Sutcliffe since 1996. We have been entering
Isabelle since 2009 and have noticed the competition’s impact on
the theorem proving community. We were also moved by our late
colleague Piotr Rudnicki’s arguments in favor of contests [11]:

I am dismayed by the watering down of the curriculum
at CS departments which does not push the students to
their intellectual limits. This wastes a lot of talented people
who, under these conditions, have no chance to discover
how talented and capable they really are. The programming
contests attract a substantial fraction of the most talented
students that we have; I enjoy working with them and they
seem to enjoy doing it too.

The Heavenly Father, with his unique sense of humor,
has distributed the mental talents in a rather unpredictable
way. It is our role to discover these talents and make them
shine. If we do not do it, then we—the educators—will end
up in Hell. And I would rather not get there just for this
one reason.

For our own contest, each week we selected one of the pro-
gramming assignments as a competition problem. We also fixed a
criterion for ranking the correct entries. By enclosing their solu-
tions within special tags, students became competitors. Each week,
rank i € {1,...,20} brought in 21 — i points. The five students cu-
mulating the most points were promised “tasteful” trophies.

Once the entries had been tested and ranked, we published the
names of the top 20 students on the competitions’ web pages' and
updated the cumulative top 20. To avoid legal issues regarding
privacy, we inserted a notice in the assignment sheets, making it
clear that the competition is an opt-in. The list of winners was
followed by a discussion of the most remarkable solutions, written
by the MC, the CoMC, or the Masters of TAs, in ironic self-
important third-person style.

An unexpected side effect of the competition is that it provided
a channel to introduce more advanced concepts, such as higher-
order functions, before they were seen in class. The criteria were
designed to raise the students’ awareness of engineering trade-offs,
including performance and scalability, even though these topics
were beyond the scope of the course.

As is to be expected, participation went down as the session
progressed. We tended to lose those students who were not in the
cumulative top 20, which is the reason why we extended it to a top
30 in the second iteration. The optional exercises attracted only the
hard core. We have the testimony of a student who, after gather-
ing enough points to secure the grade bonus, skipped the manda-
tory exercises to focus on the competition. Thus, our experience
corroborates Rudnicki’s: Contests motivate talented students, who
otherwise might not get the stimuli they need to perform.

The (Co)MCs revealed the last competition week’s results in an
award ceremony during the last lecture, handing out the trophies
and presenting characteristic code snippets from each winner.

Because of the various ranking criteria, and also because stu-
dents knew that their solutions could turn up on the web page, the
competition triggered much more diversity than usual assignments.
Ranking the solutions was fascinating. Each week, we had plenty
of material for the web page. The page was read by many students,
including some who were not even taking the course. A summary
of selected competition problems and solutions follows, originating
from the first iteration of the course unless indicated otherwise.

lwww21.in.tum.de/teaching/info2/WS1213/wettbewerb.html
www2l.in.tum.de/teaching/info2/WS1314/wettbewerb.html

Week 1: Sum of Two Maxima’s Squares (434 Entrants)

Task: Write a function that adds the squares of the two largest of its
arguments x, y, z. Criterion: Token count (lower is better).

The task and criterion were modeled after a similar Scheme
exercise by Jacques Haguel. By having to keep the token count low,
students are encouraged to focus on the general case.

The winner’s solution had 13 tokens (excluding the left-hand
side and counting ‘max‘ as one):

max x y ~ 2 + min x y ‘max‘ z ~ 2

Here the concision was attained at the expense of simplicity, to the
point that we felt the need to verify the solution with Isabelle. Lists
appeared in several of the top 20 solutions:

sum $ tail $§ (°2) ‘map‘ sort [x, y, z]
sum [x * x | x <- tail (sort [x, y, z])]

A few competitors exploited the explicit application operator $ to
save on parentheses (f $ g x == f (g x)). Using only syntaxes
and functions seen in class, a 25-token solution was possible:

X*X+y*xy+zx*xz-a*a
where a = min x (min y z)

The median solution had a 3-way case distinction. There were
plenty of 6-way distinctions, and one entry even featured a cor-
rect 10-way distinction using < and ==, complete with 64 needless
parentheses, totaling 248 tokens. This provided the ideal context
for the MC to quote Donald Knuth [8, p. 56] on the competition’s
web site: “The ability to handle lots of cases is Computer Science’s
strength and weakness. We are good at dealing with such complex-
ity, but we sometimes don’t try for unity when there is unity.”

To count tokens, we initially used a fast-and-frugal Perl script.
However, many students asked us to make the program available,
so we replaced it by a bullet-proof Haskell solution based on Niklas
Broberg’s lexical analyzer (Language . Haskell.Exts.Lexer).

Week 5: Quasi-subsequences (206 Entrants)

Task: Write a function that tests whether a list [xj,...,%,] is a
quasi-subsequence of a list ys, meaning that it is either a subse-
quence of ys or that there exists an index k such that [x;,...,x;_|,
Xk+ls--->Xp] is a subsequence of ys. Criterion: Speed.

Thomas Genet shared this example with us. The problem state-
ment mentioned that the MC’s solution took 0.4 s for quasiSubseq
[1..N] (IN]++[2..N—1] ++ [1]) with N =50000.

To rank the solutions, we ran some additional QuickCheck tests,
filtering out 43 incorrect solutions from the 143 that compiled and
passed all the official tests. Then we tried various examples, includ-
ing the one above with different Ns, and eliminated solutions that
reached the generous timeout. Some examples had a huge xs and
a short ys. This produced 20 winners, whom we listed on the web
site. The algorithms varied greatly and were difficult to understand.
One of the TAs, Manuel Eberl, contributed an automaton-based so-
Iution. The MC'’s solution had a dynamic programming flavor.

The story does not end here. Having noticed more bugs in the
process, we speculated that some of the top 20 entries might be in-
correct. Prompted to action by Meta-Master Nipkow, we rechecked
all 20 solutions using Isabelle’s implementation of QuickCheck and
found flaws in 6 of them. We did not penalize their authors but took
a second look at Haskell’s testing capabilities (cf. Section 3.2).

Week 6: Email Address Anonymizer (163 Entrants)

Task: Write a function that replaces all email addresses in a text
by an anonymized version (e.g., p——.q--__@f_____.c__). Criterion:
Closeness to the official definition of email address.

The task idea came from Koen Claessen. The statement sug-
gested a simple definition of email addresses, which is what most

2014/5/6

students implemented, but pointed to RFCs 5321 and 5322 for a
more precise definition. Our goal was to see how students react to
unclear requirements. Of course, the RFCs partly contradicted each
other, and it was not clear whether the domains had to be validated
against the rules specified in earlier RFCs. It was also left to the
student’s imagination how to locate email addresses in the text.

This task was, by far, the most despised by the students. It was
also the most difficult to rank to be fair to those who invested many
hours in it but failed some simple test we had design to rank the
solutions. We revised the ranks upward to comfort the more vocal
participants, turning the top 20 into a top 45.

Weeks 8-9: Boolean Solver (Optional, 14 Entrants)

Task: Write a Boolean satisfiability (SAT) solver. Criterion: Speed.
To avoid repeating the week 6 debacle, we suggested five opti-
mizations to a DPLL algorithm that would be evaluated in turn:

1. Eliminate pure positive variables.

2. Select short clauses before long ones.

3. Select frequent literals before infrequent ones.
4. Use a dedicated algorithm for Horn formulas.
5. Use a dedicated algorithm for 2CNF.

Obvious variants of these optimizations would be invoked to break
ties. The Meta-Master promised a Ph.D. degree for polynomial
solutions (to no avail).

For the evaluation, we needed to devise problems that can be
solved fast if and only if the heuristic is implemented. Showing the
absence of an optimization turned out to be much more difficult
than we had anticipated, because the various optimizations interact
in complicated ways, and the exact mixture varied from solution
to solution. To make matters worse, often the optimizations were
implemented in a naive way that slowed down the solver (e.g.,
reprocessing the entire problem each time a literal is selected to
detect whether an optimization has become applicable).

Unlike for previous weeks, this problem gave no homework
points. In exchange, it was worth double (40 points), and the stu-
dents had two weeks to complete it. Also, we did not provide any
QuickCheck tests, leaving it to the students to think up their own
(“just like in real life””). There were 14 submissions to rank, as well
two noncompetitive entries by TA Eberl and one by the (Co)MCs.
We found bugs in 8 of the submissions, but gave these incorrect
solutions some consolation points to help populate the week’s “top
20.” The two best solutions implemented optimizations 1 to 4 and
pure negative literal elimination, but neither 2CNF nor dual-Horn.

Week 13: Programmatic Art (Optional, 10 Entrants)

Task: Write a program that generates a pixel or vector graphic in
some standard format. Criteria: Aesthetics and technique.

There were no constraints con-
cerning the subject of the picture or
its generation. While the imprecision
had annoyed the students in the email
anonymizer assignment, here it was
perceived as a most welcome artis-
tic freedom. The creations’ visual
nature was a perfect match for the
award ceremony, where the weekly
and final results were presented.

The students were asked to turn
in both the program and a gener-
ated picture. The Meta-Master and
the Masters of TAs rated the aesthet-
ics on a scale from 1 to 10. The re-

Figure 4. The winning
“Mondrian” entry

maining 10 points were issued by the (Co)MCs for “technique,”
mostly as a safeguard against cheaters.

Two students “misunderstood” the exercise: one handed in
a generated ASCII-art text file, another used Network.Curl.
Download to retrieve Vincent van Gogh’s “Starry Night” from
Google. The latter secured the top score for aesthetics but was pun-
ished with a 2 for technique. The winner had been visibly inspired
by Piet Mondrian’s famous “Compositions” (Figure 4). His ran-
domized solution could generate arbitrarily many fake Mondrians.

We ran this challenge again in the second iteration. Interestingly
enough, a fair share of competitors produced animations, whereas
in the first iteration, only static images were submitted. Both times,
fractals (like the Mandelbrot set) were popular among the students.

Weeks 11-12 (2nd iter.): Othello (Optional, 18 Entrants)

Task: Write a player based on artificial intelligence for Othello.
Criterion: Ranking in a tournament between all contestants.

According to the students, this was one of the most time-
consuming tasks, or—from a different viewpoint—one of the most
enjoyable tasks to invest time in. The task was inspired by Tjark
Weber. The contestants were allowed to turn in up to three different
programs. Most provided only one implementation, but alternated
some parameters (e.g., different values of depth for the game tree
search). This was also the first and only exercise where students
had to adhere to a specified module interface, where we specified
some abstract types. There were 36 working programs in total. We
ran all possible pairs of them with a timeout of 20 minutes per
player per game. The evaluation of all 1260 games in the tourna-
ment took a few days on a cluster of 8 dual-core workstations. We
were surprised to see that there was little to no correlation between
the total running time of each player and their ranking—there were
both extremely fast and good solutions (the third place obtained
90% of the points of the second place but took only 2% of the
time), as well as slow and bad solutions.

5. Examination

The final grades were based on a two-hour examination. Students
were allowed to bring one hand-written “cheat sheet.” They needed
40% to pass. The results were then translated to a 1.0 to 5.0 scale.
The 0.3 homework bonus was awarded only to those who had
passed the examination. No bonus was applied in the second iter-
ation. The correlation between homework points and examination
points is shown in Figure 5.

The problems were similar to the group exercises but avoided
more advanced or mundane topics (e.g., modules and data abstrac-
tion). The examination was designed so that the best students could
finish in one hour. Perhaps because we had no previous experience
in teaching Haskell, the marking revealed many surprises. Our im-
pressions are summarized below for seven problems:

40 1

30 +

20 |

E— Linear regression

10

Examination points

o - - - Examination passing score

100 200 300

Exercise points

Figure 5. Correlation between points in the exercises and in the
examination (second iteration)

2014/5/6

1. Infer the types of given expressions. Many students who under-
stood types and type inference in practice had problems apply-
ing their knowledge in a more abstract context. They often for-
got to instantiate type variables or to remove the argument type
when applying a function. For example filter not :: [Bool]
-> [Bool] was often typed as [a] -> [a] oreven (a ->Bool)
-> [a] -> [a]. Tellingly, one of the best students lost 2.5 of 5
points here, while answering all the other questions correctly.

2. Implement the same simple function using recursion, using
a list comprehension, and using higher-order functions (e.g.,
map, filter). The definitions based on a list comprehension
were usually correct. The corresponding map—filter version
proved more challenging. The recursive definitions were mostly
correct but sometimes lacked a case.

3. Implement a function that lifts a variable renaming function to a
logical formula datatype. The datatype featured both a directly
recursive constructor (for logical negation) and recursive con-
structors through lists (for n-ary conjunctions and disjunctions).
The recursion through the list, using map (rename £), confused
many (although it had been covered in several exercises). Some
solutions managed to change the shape of the formula, rewrit-
ing n-ary expressions into nested binary expressions. The pat-
tern matching syntax was also not universally understood, and
the constructors were often missing in the right-hand sides.

4. Prove map f (concat xss) = concat (map (map f) xss).
The proof by induction posed little problems. Presumably the
students had the induction template on their cheat sheet. Quite
a few followed the template too slavishly, claiming to be doing
an induction on xs instead of xss. Another common mistake was
to take xss = [[1] as the base case.

5. Choose two test functions from a given set that together consti-
tute a complete test suite for a given function operating on lists.
There were seven tests to choose from: tests for the [, [x], and
X @ xs cases, a distributivity law, a length law, and two properties
about the result list’s content. Obvious solutions were [] with x
: xs or [x] with distributivity, but there were many other com-
binations, most of which we discovered while marking. For ex-
ample, the length law implies the [] case, and the [x] and x : xs
cases together imply the [] case. Of all people, we should have
been alert to the dangers of axiomatic specifications. It would
have been easy to use Isabelle to prove or refute each of the
21 possible answers before sending the examination to press.

6. Evaluate given expressions step by step. The order of evaluation
was not understood by all. We were downright shocked by some
of the answers provided for (\x -> (\y -> (1 +2) +x)) 4 5.
We were not prepared to see monstrosities such as (\4 -> (\5
=> (1 +2) +4)) as the end result.

7. Write an 1/O program that reads the user’s input line by line
and prints the total number of vowels seen so far. The monadic
solutions were surprisingly good, perhaps due to the students’
familiarity with imperative programming. The main difficulty
was to keep track of the cumulative vowel count. Many so-
lutions simply printed the count of each line instead. Another
common mistake was to use the monadic syntax <- instead of
let to bind nonmonadic values.

Some statistics: 552 (493 in the second iteration) students regis-
tered for the exams. 432 (379) students took the examination. 334
(262) passed it. 39 (11) secured the top grade (1.0), with at least 47
out of 50 (38.5 out of 40) points. Five (one) had a perfect score. The
higher results in the first iteration can be explained by the bonus,
which undoubtedly led to more motivation for doing homework and
better preparation for the examination. In total, this amounted to a
difference in passing rate of 8 percentage points.

6. Conclusion

Teaching functional programming using Haskell has been an enjoy-
able experience overall. As is usually the case for functional pro-
gramming, the feedback from students was mixed. If we have failed
to convince some of them of the value of functional programming,
we have also received many testimonies of students who have “seen
the light,” and some of the serious competitors told us the course
had been the most fun so far.

For future years, we plan to either leave out some of the more
advanced material or enhance its presentation. Type inference is
one topic we downplayed so far; it should be possible to present it
more rigorously without needing inference trees. On the infrastruc-
ture side, we developed tool support for simple proofs by induction,
in the form of a lightweight proof assistant and will integrate it into
our homework submission system in the upcoming third iteration.

Acknowledgments

We thank all the people involved in giving the course, including the
TAs and our colleagues from the Chair for Logic and Verification.
We also thank Koen Claessen and Philip Wadler for sharing their
slides with us. Finally, Mark Summerfield and the anonymous
reviewers suggested many textual improvements to this paper.

References

[1] R. Bird. Introduction to Functional Programming using Haskell.
Prentice Hall, 1998. Second edition.

[2] L. Bulwahn. The new Quickcheck for Isabelle—Random, exhaustive
and symbolic testing under one roof. In C. Hawblitzel and D. Miller,
editors, CPP 2012, volume 7679 of LNCS, pages 92—108. Springer,
2012.

[3] K. Claessen and J. Hughes. QuickCheck: A lightweight tool for
random testing of Haskell programs. In ICFP ’00, pages 268-279.
ACM, 2000.

[4] N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and
loose reasoning is morally correct. In J. G. Morrisett and S. L. P.
Jones, editors, POPL 2006, pages 206-217. ACM, 2006.

[5] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and
G. Woodhull. Graphviz—Open source graph drawing tools. In
Graph Drawing, pages 483-484, 2001.

[6] P. Hudak. The Haskell School of Expression. Cambridge University
Press, 2000.

[7]1 G. Hutton. Programming in Haskell. Cambridge University Press,
2007.

[8] D. E. Knuth, T. L. Larrabee, and P. M. Roberts. Mathematical
Writing. Mathematical Association of America, 1989.

[9] F. Lindblad. Property directed generation of first-order test data. In
M. Morazén, editor, TFP 2007, pages 105-123. Intellect, 2008.

[10] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[11] P. Rudnicki. Why I do it? http://webdocs.cs.ualberta.ca/
~piotr/ProgContest/why.txt. Accessed 25 Feb. 2013.

[12] C. Runciman, M. Naylor, and F. Lindblad. SmallCheck and Lazy
SmallCheck: Automatic exhaustive testing for small values. In
A. Gill, editor, Haskell 2008, pages 37-48. ACM, 2008.

[13] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: Local
algorithms for document fingerprinting. In A. Y. Halevy, Z. G. Ives,
and A. Doan, editors, SIGMOD Conference, pages 76-85. ACM,
2003.

[14] G. Sutcliffe and C. B. Suttner. The state of CASC. Al Commun., 19
(1):35-48, 2006.

[15] S. Thompson. Haskell, the craft of functional programming. Addison
Wesley, 2011. Third edition.

2014/5/6

