Theory Op_Input_step

theory Op_Input_step
imports FreeAlg_step
theory Op_Input_step
imports FreeAlg_step
begin

(* The distributive law extracted from the newly defined operation on the final coalgebra: *)
(*DEFINE_rr*)
consts ρ_step :: "('a × 'a F) K_step => 'a ΣΣ_step F"

axiomatization where
  ρ_step_transfer[transfer_rule]:
    "(K_step_rel (rel_prod R (F_rel R)) ===> F_rel (ΣΣ_step_rel R)) ρ_step ρ_step"
(*DEFINE_ρ_END*)



end