
A Formally Verified, Optimized Monitor for
Metric First-Order Dynamic Logic

Extended Report

David Basin, Thibault Dardinier, Lukas Heimes, Srd̄an Krstić ,
Martin Raszyk, Joshua Schneider , and Dmitriy Traytel

Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland

Abstract. Runtime monitors for rich specification languages are sophisticated
algorithms, especially when they are heavily optimized. To gain trust in them
and safely explore the space of possible optimizations, it is important to verify
the monitors themselves. We describe the development and correctness proof in
Isabelle/HOL of a monitor for metric first-order dynamic logic. This monitor
significantly extends previous work on formally verified monitors by supporting
aggregations, regular expressions (the dynamic part), and optimizations including
multi-way joins adopted from databases and a new sliding window algorithm.

1 Introduction

As the complexity of IT systems increases, so does the complexity and importance of
their verification. Research in runtime verification (RV) has developed well-established
formal techniques that can often be applied more easily than traditional formal methods
such as model checking. RV is based on dynamic analysis, trading off completeness for
efficiency. It is mechanized using monitors, which are algorithms that search sequences
of events, either offline from log files or online, for patterns indicating faults.

Monitors must be trusted when they are used as verifiers. This trust can be justified
by checking the monitors themselves for correctness [15, 16, 30, 35, 40, 41, 43, 44, 48].
Recently, a simplified version of the algorithm used in the MonPoly tool [7, 8] has been
formalized and proved correct in Isabelle/HOL [44] (Sect. 2). MonPoly and its formal
counterpart, called VeriMon, are both monitors for metric first-order temporal logic
(MFOTL). However, VeriMon only supports a restricted fragment of this logic and lacks
many optimizations that are necessary for an acceptable and competitive performance.

We present a formally verified monitor, VeriMon+, that substantially extends and
improves VeriMon. VeriMon+ closes all expressiveness gaps between MonPoly and Veri-
Mon. It supports aggregation operators like sum and average [6] similar to those found
in database query languages, arbitrary negations of closed formulas, the unbounded #
(Next) operator, and constraints involving terms (e.g., P(x)∧y= x+2). Due to space lim-
itations, our focus (Sect. 3) will be primarily on aggregations, our largest addition. More-
over, VeriMon+ exceeds MFOTL in expressiveness by featuring a significantly richer
specification language, metric first-order dynamic logic (MFODL). To our knowledge,
it is the first monitor for MFODL with past and bounded future operators (Sect. 4). This
logic combines MFOTL with regular expressions, similar to linear dynamic logic [21]
but enriched with metric constraints, aggregations, and first-order quantification.

https://orcid.org/0000-0001-8314-2589
https://orcid.org/0000-0001-8253-4513
https://orcid.org/0000-0001-7982-2768

2 Basin et al.

We have also implemented and proved correct several new optimizations. First,
to speed up the evaluation of conjunctions, we integrated an efficient algorithm for
multi-way joins [37, 38], which we generalized to include anti-joins (Sect. 5). Second,
we developed a specialized sliding window algorithm to evaluate the Since and Until
operators more efficiently (Sect. 6). VeriMon+ is executable via the generation of OCaml
code from Isabelle. To this end, we augmented the code generation setup for IEEE
floating point numbers in OCaml [49] with a linear ordering, which is needed for
efficient set and mapping data structures.

The result of our efforts is both a verified monitor and a tool for evaluating unverified
monitors. Since MFODL is extremely expressive, this gives us very wide scope. For
example, we discovered previously unknown bugs in MonPoly via differential testing
(Sect. 7), extending a previous case study [44]. As this experience suggests, and we firmly
believe, formal verification is the most reliable way to obtain correct, optimized monitors.

In sum, our main contribution is a verified monitor for MFODL with aggregations,
a highly expressive specification language that combines regular expressions and first-
order temporal logic. Our monitor includes optimizations that are novel in the context
of first-order monitoring. Our formalization is publicly available [19, 20].

Related work We refer to a recent book [4] for an introduction to runtime verifica-
tion. The main families of specification languages in this domain are extensions of
LTL [12, 25, 45], automata [3], stream expressions [18], and rule systems [22]. We
combine two expressive temporal logics and their corresponding monitoring algo-
rithms. MFOTL, implemented in MonPoly [6–8], supports first-order quantification
over parametrized events, but it cannot express all regular patterns. Metric dynamic logic
(MDL), implemented in Aerial [11], supports regular expressions, but it is not first-order.
VeriMon+ is based on VeriMon [44], which only supports a fragment of MFOTL and is
inefficient (Sect. 7). We refer to [44, Section 1] for an overview of related monitor formal-
izations. Relational database systems have been formalized by Malecha et al. [32] and by
Benzaken et al. [14]. These works use binary joins only, which are not worst-case optimal.

Another efficient first-order monitor, DejaVu [24], supports past-only first-order
temporal logic. It uses binary decision diagrams (BDDs) and does not restrict the use of
negation, unlike MonPoly, which uses finite tables. DejaVu’s performance is incompa-
rable to MonPoly’s and it is unclear whether multi-way joins can improve conjunctions
of BDDs. Aerial and VeriMon+ evaluate regular expressions using derivatives [2, 17],
which also have been used for timed regular expressions [46]. Quantified regular expres-
sions [1,33] extend regular expressions with data and aggregations. They can be evaluated
efficiently, but can neither express metric constraints nor future modalities directly.

2 A Verified Monitor for Metric First-Order Temporal Logic

VeriMon [44] is a formally verified monitor for a large fragment of MFOTL [7]. The
monitor takes an MFOTL formula, which may be open, and incrementally processes
an infinite stream of time-stamped events. It outputs for every stream position the set
of variable assignments that satisfy the formula. Thus, the monitor can be used to extract
data from the stream. Typically, one is interested in the violations of a property specified
as an MFOTL formula, which can be obtained by monitoring the negated formula.

A Formally Verified, Optimized Monitor for Metric First-Order Dynamic Logic 3

datatype data = Int int | Flt double | Str string
type_synonym db = (string×data list) set
datatype trm = V nat | C data | trm+ trm | . . .

type_synonym ts = nat
typedef trace = {s :: (db× ts) stream. trace s}
typedef I = {(a :: nat,b :: enat). a≤ b}

datatype frm = string(trm list) | trm≈ trm | trm≺ trm | trm� trm
| ¬ frm | ∃ frm | frm∨ frm | frm∧ frm | I frm |#I frm | frm SI frm | frm UI frm

fun etrm :: data list⇒ trm⇒ data where
etrm v (V x) = v ! x | etrm v (C x) = x | etrm v (t1 + t2) = etrm v t1 + etrm v t2 | . . .

fun sat :: trace⇒ data list⇒ nat⇒ frm⇒ bool where
sat σ v i (r(ts)) = ((r,map (etrm v) ts) ∈ Γ σ i) | sat σ v i (t1 ≈ t2) = (etrm v t1 = etrm v t2)
| sat σ v i (t1 ≺ t2) = (etrm v t1 < etrm v t2) | sat σ v i (t1 � t2) = (etrm v t1 ≤ etrm v t2)
| sat σ v i (¬ϕ) = (¬sat σ v i ϕ) | sat σ v i (∃ϕ) = (∃z. sat σ (z # v) i ϕ)
| sat σ v i (α∨β) = (sat σ v i α∨sat σ v i β) | sat σ v i (α∧β) = (sat σ v i α∧sat σ v i β)
| sat σ v i (I ϕ) = (case i of 0⇒ False | j+1⇒ T σ i−T σ j ∈I I∧ sat σ v j ϕ)
| sat σ v i (#I ϕ) = (T σ (i+1)−T σ i ∈I I∧ sat σ v (i+1) ϕ)
| sat σ v i (αSI β) = (∃ j≤ i. T σ i−T σ j ∈I I∧ sat σ v j β∧ (∀k ∈ { j <.. i}. sat σ v k α))
| sat σ v i (αUI β) = (∃ j≥ i. T σ j−T σ i ∈I I∧ sat σ v j β∧ (∀k ∈ {i ..< j}. sat σ v k α))

Fig. 1. Syntax and semantics of MFOTL as presented in [44], with additions in gray

We give an overview of MFOTL and VeriMon. We also cover some of the smaller
additions in our new monitor, VeriMon+, highlighted in gray. For readability, we liberally
use abbreviations and symbolic notation, departing mildly from Isabelle’s syntax.

Fig. 1 shows MFOTL’s syntax and semantics. Events have a name (string) and a list
of parameters of type data. In VeriMon+, data is a disjoint union of integers, double-
precision floats, and strings. Multiple events are grouped together into a database (db)
if they are considered to occur simultaneously. We call an infinite stream of databases,
augmented with their corresponding time-stamps, an event stream or trace. Time-stamps
(ts) are modeled as natural numbers (nat). We write T σ i to denote the time-stamp of
the ith database Γ σ i of the event stream σ. The predicate trace expresses that the time-
stamps are monotone, i.e., T σ i≤T σ (i+1) for all i≥ 0, and always eventually strictly
increasing, i.e., ∀t. ∃i. t < T σ i. Consecutive time-points i can have the same time-stamp.

Terms and formulas are represented by the datatypes trm and frm, respectively. Our
formalization uses de Bruijn indices for free and bound variables (constructor V). In ex-
amples, we prefer the standard named syntax (and omit V). The type I models nonempty,
possibly unbounded intervals over nat. We write n ∈I I for n’s membership in I, and
[a,b] for the unique interval satisfying n ∈I [a,b] iff a≤ n≤ b. The right bound b is of
type enat, i.e., either a natural number or infinity ∞ for an unbounded interval.

The functions etrm and sat (Fig. 1) define MFOTL’s semantics. Both take a variable
assignment v, which is a list of type data list whose ith element v ! i is the value assigned
to the variable with index i. The function etrm evaluates terms under a given assignment.
The expression sat σ v i ϕ is true iff the formula ϕ is satisfied by v at time-point i in
the trace σ. VeriMon+ adds arithmetic operators and type conversions to terms, as well
as the predicates ≺ and �. Their semantics on data is lifted from the corresponding
operations on integers, floats, and strings, whenever they are meaningful. The ordering
≤ on data is total: strings are compared lexicographically and Int i < Flt f < Str s.

VeriMon computes sets of satisfactions (i.e., satisfying assignments) by recursion
over the formula’s structure. It represents these sets as finite tables, to which it applies

4 Basin et al.

Tb · · · Ta · · · T1 T0

τ−b τ−a τ

∪
Tb
./
Rα

./
Rα
· · · ./

Rα

Ta
./
Rα

./
Rα
· · ·

T1
./
Rα

Rβ
∪
T0
./
Rα

τ−b τ−a τ

∪

./
Rα
· · · ./

Rα

Ta
./
Rα

./
Rα
· · ·

T1
./
Rα

T0
./
Rα

Rβ

τ′−b τ′−a τ τ′

∪

τ= τ′

τ 6= τ′

Fig. 2. Simplified state of a Since operator and its update

standard relational operations such as the natural join (./) and union. Tables are sets of
tuples, which are lists of optional data values; missing values are denoted by ⊥. This
representation allows us to use tuples with the same length across subformulas with
different free variables. The predicate wf_tuple defines the well-formed tuples for a given
length n and a set of variables V . We also refer to V as the columns of a tuple (or table).

definition wf_tuple :: nat⇒ nat set⇒ tuple⇒ bool where
wf_tuple n V v = (length v = n∧ (∀x < n. v ! x =⊥←→ x /∈ V))

The set of satisfactions may be infinite. VeriMon supports only a fragment of MFOTL
for which all computed tables are finite. The predicate safe (omitted) defines the mon-
itorable fragment [44]. It accepts only certain combinations of operators and constrains
the free variables of subformulas. Also, the intervals of all U operators must be bounded.

VeriMon’s interface consists of two functions init :: frm⇒ mstate and step :: db×
ts⇒mstate⇒ (nat× table) list×mstate. The former initializes the monitor’s state, and
the latter updates it with a new time-stamped database to report any new satisfactions.
We require that satisfactions are reported for every time-point and in order. Note that
a formula containing a future operator such as U cannot necessarily be evaluated at
time-point i after observing the ith database. Therefore, the output for several time-points
may become available at once, so step returns a list of pairs of time-points and tables.

We describe the evaluation of αS[a,b] β in more detail. This formula is equivalent to
the disjunction of αS[c,c]β for all c such that a≤ c≤ b. Suppose that the most recent time-
point is i with time-stamp τ. The monitor’s state for αS[a,b] β consists of a list of tables
Tc with the satisfactions of αS[c,c] β at time-point i, along with the corresponding time-
stamps τ− c. VeriMon also stores the satisfactions Tc (and time-stamps) for 0≤ c < a,
which are not yet in the interval. Fig. 2 (left) depicts a state, where we assume for simplic-
ity that we store a table for every time-stamp between τ−b and τ. (In reality, time-stamps
not in the trace do not have a corresponding entry in this list.) The state is updated for
every new time-point with time-stamp τ′, for which we already know the satisfactions
Rα and Rβ of the subformulas α and β. In Fig. 2, we distinguish whether τ′ equals τ (oth-
erwise τ′ > τ by monotonicity). The update consists of three steps: (1) remove tables that
fall out of the interval; (2) evaluate the conjunction of each remaining table with Rα using
a relational join; and (3) add the new tuples from Rβ, either by inserting them into the
most recent table T0 or by adding a new table, depending on whether τ′ equals τ. Finally,
we take the union of all tables within the interval to obtain the satisfactions of αS[a,b] β.

We summarize VeriMon’s correctness, which we also prove for VeriMon+. It relates
the monitor’s implementation to its specification verdicts :: frm⇒ (db× ts) list⇒ (nat×

A Formally Verified, Optimized Monitor for Metric First-Order Dynamic Logic 5

tuple) set, which defines the expected output on a stream prefix. The first result shows
that verdicts characterizes an MFOTL monitor, where prefix π σ means that π is a prefix
of σ, and map the v converts v to an assignment by mapping ⊥ to an unspecified value.

Lemma 1 ([44], Lemma 2). Suppose that safe ϕ is true. Then, verdicts ϕ is sound and
eventually complete, i.e., for all prefixes π of trace σ, time-points i, and tuples v,

(a) (i,v) ∈ verdicts ϕ π−→ sat σ (map the v) i ϕ, and
(b) i< length π∧wf_tuple(nfv ϕ)(fv ϕ) v∧(∀σ′. prefix π σ′−→ sat σ′ (map the v) i ϕ)
−→ (∃π′. prefix π′ σ∧ (i,v) ∈ verdicts ϕ π′).

Above, nfv ϕ is the smallest number larger than all free variables of ϕ, written fv ϕ.
The next result establishes the implementation’s correctness using the state invariant
wf_mstate :: frm⇒ (db× ts) list⇒ mstate⇒ bool (omitted). Let set convert lists into
sets, last_ts π be the last time-stamp in π, and π1 @π2 be the concatenation of π1 and π2.

Theorem 1 ([44], Theorem 1). The initialization init establishes the invariant and the
update step preserves the invariant and its output can be described in terms of verdicts:

(a) If safe ϕ, then wf_mstate ϕ [] (init ϕ).
(b) Let step (db, τ) mst = (A, mst′). If wf_mstate ϕ π mst and last_ts π ≤ τ, then

(
⋃
(i, V) ∈ set A. {(i, v) | v ∈ V}) = verdicts ϕ (π@ [(db, τ)])− verdicts ϕ π and

wf_mstate ϕ (π@ [(db, τ)]) mst′.

3 Aggregations

Basin et al. [6] extended MFOTL with a generic aggregation operator. This operator was
inspired by the group-by clause and aggregation functions of SQL. It first partitions the
satisfying assignments of its subformula into groups, and then computes a summary value,
such as count, sum, or average, for each group. We formalized the aggregation operator’s
semantics, added an evaluation algorithm to VeriMon+, and proved its correctness.

Consider the formula s← Sum x; x. P(g, x). The aggregation operator s← Sum x; x
has four parameters: a result variable (s), the aggregation type (Sum), an aggregation
term (first x), and a list of variables that are bound by the operator and thus excluded
from grouping (second x). When evaluated, the above formula yields a set of tuples (s,g).
There is one such tuple for every value of g with at least one P event that has g’s value
as its first parameter. The values of g partition the satisfactions of P(g, x) into groups.
For every group, the sum over the values of x in that group is assigned to the variable s.

We added the constructor nat← agg_op trm;nat. frm to frm. Consider the instance
y← Ω t;b. ϕ. The operator binds b variables simultaneously in the formula ϕ and in the
term t, over which we aggregate. In examples, we list the bound variables explicitly in-
stead of writing the number b. The remaining free variables (possibly none) of ϕ are used
for grouping. The variable y receives the result of the aggregation operation Ω= (ω,d),
where ω is one of Cnt (count), Min, Max, Sum, Avg (average), or Med (median). The
default value d, which we usually omit, determines the result for empty groups (e.g., 0 for
Cnt). The formula’s free variables are those of ϕ excluding the b bound variables, plus y.

6 Basin et al.

fun sat :: trace⇒ data list⇒ nat⇒ frm⇒ bool where . . .
| sat σ v i (y← Ω t;b. ϕ) =

(
let M = {(x,card∞ Z) | x Z.

Z = {z. length z = b∧ sat σ (z @ v) i ϕ∧ etrm (z @ v) t = x}∧Z 6= {}}
in (M = {} −→ fv ϕ⊆ {0 ..< b})∧ v ! y = agg_op Ω M)

fun eval_agg :: nat⇒ bool⇒ nat⇒ agg_op⇒ nat⇒ trm⇒ table⇒ table where
eval_agg n g0 y Ω b t R =

(
if g0∧R = {} then singleton_table n y (agg_op Ω {}) else

(λk. let G = {v ∈ R | drop b v = k}; M = (λx. (x,card∞ {v ∈G |meval_trm t v = x})) ‘
(meval_trm t) ‘G in k[y := Some (agg_op Ω M)]) ‘ (drop b) ‘ R

)
Fig. 3. Semantics and evaluation of the aggregation operator

Fig. 3 shows the semantics of the aggregation operator y←Ω t;b. ϕ. The assignment
v determines both a group and a candidate value v ! y for the aggregation’s result on
that group. The sat function checks whether the value is correct. First, it computes the
set M, which encodes a multiset in the form of pairs (x,c), where c is x’s multiplicity.
This multiset contains the values of the term t under all assignments z @ v that satisfy
ϕ, where z is an assignment to the bound variables. The expression card∞ Z stands for
the cardinality of Z when it is finite, and ∞ otherwise. Then, sat compares v ! y to the
result of the aggregation operation Ω on M, which is given by agg_op Ω M (omitted).

We extended the safe predicate with sufficient conditions that describe when the
aggregation formula y← Ω t;b. ϕ has finitely many satisfactions. We require that ϕ
satisfies safe, that the variable y is not free in ϕ excluding the b bound variables, and that
all bound variables and the variables in t occur free in ϕ. We adopted the convention [6]
that an aggregation formula is not satisfied when M is empty, unless all free variables
of ϕ are bound by the operator. Otherwise, there would be infinitely many groups (and
hence, satisfactions) with the aggregate value agg_op Ω {}, assuming that ϕ is safe.

Fig. 3 also defines eval_agg, which evaluates the aggregation operator. It takes a table
R with ϕ’s satisfactions, and returns a table with the aggregation operator’s satisfactions.
The first argument n controls the length of the tuples in the tables (Sect. 2). The argument
g0 specifies whether all free variables of ϕ are bound by the operator. The remaining argu-
ments y, Ω, b, and t are those of the operator. We write f ‘ X for the image of X under f .

In eval_agg, we first check whether g0 ∧R = {} is true to handle the special case
mentioned above. (The expression singleton_table n y a is a table with a single tuple of
length n that assigns a to variable y.) Otherwise, we compute the aggregate value sep-
arately for each group k. The set of groups is obtained by discarding the first b values of
each tuple in R. To every group k, we apply the lambda-term to augment the tuple with the
aggregate value. The set G contains all tuples in the group. Note that these tuples extend
k with assignments to the b bound variables. Then, we compute the image of G under the
term t, which is evaluated by meval_trm :: trm⇒ tuple⇒ data (omitted). Finally, we
obtain the multiset M by counting how many tuples in G map to each value in the image.

4 Regular Expressions
VeriMon+ extends VeriMon’s language by generalizing MFOTL’s temporal operators
to regular expressions. The resulting metric first-order dynamic logic (MFODL) can be
seen [23, §3.16] as the “supremum” (in the sense of combining features) of metric dy-
namic logic (MDL) [11] and MFOTL [7]. Peycheva’s master’s thesis [39] develops a mon-
itor for past-only MFODL. We give the first formal definition of MFODL with past and

A Formally Verified, Optimized Monitor for Metric First-Order Dynamic Logic 7

datatype 'a re = ?nat | 'a? | 'a re+ 'a re | 'a re · 'a re | ('a re)∗

fun match :: (nat⇒ 'a⇒ bool)⇒ 'a re⇒ nat⊗nat where
match test (?k) = {(i, j) | j = i+ k}
| match test (x?) = {(i, i) | test i x}
| match test (r+ s) = match test r∪match test s
| match test (r · s) = match test r •match test s
| match test (r∗) = (match test r)∗

datatype frm = . . . | I (frm re) | I (frm re)

fun sat :: trace⇒ data list⇒ nat⇒ frm⇒ bool where . . .
| sat σ v i (I r) = (∃ j≤ i. T σ i−T σ j ∈I I∧ (j, i) ∈match (sat σ v) r)
| sat σ v i (I r) = (∃ j≥ i. T σ j−T σ i ∈I I∧ (i, j) ∈match (sat σ v) r)

 I α I (α? · ?)
α SI β I (β? · (? · α?)∗)
#I α I (? · α?)
α UI β I ((α? · ?)∗ · β?)

Fig. 4. Syntax and semantics of MFODL (left) and conversion of MFOTL into MFODL (right)

future operators. We also define a fragment whose formulas can be evaluated using finite
relations (Sect. 4.1). This fragment guides our evaluation algorithm’s design (Sect. 4.2).

Fig. 4 (left) defines the syntax and semantics of our variant of regular expressions.
The type re is parametrized by a type variable 'a, which is used in the _? constructor. The
semantics is given by match and assigns to each expression a binary relation (⊗) on nat-
ural numbers. Intuitively, a pair (i, j) is in the relation assigned to r when r matches the
portion of a trace from i to j. The trace notion is abstracted away in match via the argu-
ment test, which indicates whether a parameter of type 'a may advance past a given point.

In more detail, the wildcard operator ?k matches all pairs (i, j), where j = i+ k; we
write ? for the useful special case ?1. The test x? only matches pairs of the form (i, i) that
pass test i x. The semantics of alternation (+) as union (∪), concatenation (·) as relation
composition (•), and Kleene star (_∗) as reflexive-transitive closure (_∗) is standard.

Fig. 4 (left) also shows frm’s extension with two constructors that use regular expres-
sions. The regular expression’s parameter nests a recursive occurrence of frm, i.e., our
regular expressions’ leaves are formulas, which in turn may further nest regular expres-
sions, and so on. MDL’s syntax is often presented as a mutually recursive datatype [11].
Our nested formulation is beneficial because it lets us formalize regular expressions
independently, for use in different applications (e.g., monitors for MDL and MFODL).

In terms of their semantics, the two new operators naturally generalize the SI and UI
operators. The past match operator I r is satisfied at i if there is an earlier time-point j
subject to the same temporal constraint I as in the satisfaction of SI and moreover the
regular expression r matches from j to i. For the future match operator I r, the situation
is symmetric with the existentially quantified j being a future time-point. In both cases,
the test parameter of match is recursively instantiated with the satisfaction predicate sat.

We can embed MFOTL into MFODL by expressing the temporal operators using
semantically equivalent formulas built from regular expressions (Fig. 4, right). Thus, we
could in principle remove the operators , S, #, and U from frm and use regular expres-
sions instead. We prefer to keep these operators in frm as this allows us to optimize their
evaluation in a way that is not available for the more general match operators (Sect. 6).

We conclude MFODL’s introduction with an example. Many systems for user authen-
tication follow a policy like: “A user should not be able to authenticate after entering the
wrong password three times in a row within the last 10 minutes.” We write 7(u) for the

8 Basin et al.

datatype context = past | futu datatype mode = strict | lax

fun safe :: context⇒ mode⇒ frm re⇒ bool where
safe _ _ (?k) = True
| safe _ m ((¬ϕ)?) = (m = lax∧ safe ϕ)
| safe _ _ (ϕ?) = safe ϕ
| safe c m (r+ s) = ((m = lax∨ fv r = fv s)∧ safe c m r∧ safe c m s)
| safe futu m (r · s) = ((m = lax∨ fv r ⊆ fv s)∧ safe futu lax r∧ safe futu m s)
| safe past m (r · s) = ((m = lax∨ fv s⊆ fv r)∧ safe past m r∧ safe past lax s)
| safe c m (r∗) = (m = lax∧ safe c m r)

fun safe :: frm⇒ bool where . . .
| safe (I r) = safe past strict r | safe ([a,b] r) = safe futu strict r∧b < ∞

Fig. 5. Safety conditions for MFODL

event “User u entered the wrong password” and 3(u) for “User u has successfully authen-
ticated.” Additionally, we abbreviate ϕ? ·? by ϕ. (This abbreviation is only used when
ϕ appears in a regular expression position, e.g., as an argument of ·). Then the formula

3(u)∧ [0,600]
(
7(u) · (¬3(u))∗ · 7(u) · (¬3(u))∗ · 7(u) · (¬3(u))∗

)
expresses this policy’s violations: its satisfying assignments are precisely the users that
successfully authenticate after entering wrong credentials for three times in the last 600
seconds, without intermediate successful authentications. We can express this property in
MFOTL using three nested S operators, one for each of the 7(u) subformulas. Yet, it is un-
clear which intervals to put as arguments to S beyond the fact that they should sum up to
600. The rather impractical solution exploits that there are only finitely many ways to split
the intervals due to their bounds being natural numbers and constructs the disjunction of
all possible splits (180901 in this case). MFODL remediates this infeasible construction.

4.1 Finitely Evaluable Regular Expressions
Following MonPoly’s design [7], VeriMon+ represents all sets of satisfying assignments
with finite tables. The databases occurring in the trace are all finite, yet their combination
may not be. Therefore, MonPoly and VeriMon+ work with syntactic restrictions that
ensure that all sets that arise are finite. For example, negation must occur under a conjunc-
tion α∧¬β, where the free variables of β, written fv β, are contained in those of α. We
say that ¬β is guarded by α and compute α∧¬β as the anti-join (.) of the corresponding
tables. For disjunctions α∨β, we must have fv α= fv β. Similar restrictions also apply
to temporal operators: to evaluate αSI β and αUI β we require fv α⊆ fv β.

We derive a new sufficient criterion for match operators to have finitely many sat-
isfying assignments. To develop some intuition, we first consider several examples that
result in infinite tables. The first example is any expression with a Kleene star as the
topmost operator. The formula ϕ= [0,b] (r∗) is satisfied at all points i for all assignments
v (regardless of r’s free variables) since 0 ∈I I and any (i, i) matches r∗. Thus, when
we evaluate ϕ at i, we can choose i as the witness for the existential quantifier in the
definition of sat. It follows that Kleene stars must be guarded by a finite table.

The union of two finite tables is finite only if the tables have the same columns
(assuming an infinite domain data). This explains the requirement for the subformulas
of ∨ to have the same variables, but a similar requirement is needed for the + of regular

A Formally Verified, Optimized Monitor for Metric First-Order Dynamic Logic 9

Tb · · · Ta · · · T1 T0

τ−b τ−a τ

∪
δR
Tb

δR · · · δR δR
Ta

δR · · · δR
T1

εn
R
∪
δR
T0

τ−b τ−a τ

∪

δR · · · δR δR
Ta

δR · · · δR
T1

δR
T0

εn
R

τ′−b τ′−a τ τ′

∪

τ= τ′

τ 6= τ′

Fig. 6. Simplified state of a past match operator and its update

expressions. Perhaps more surprisingly, concatenation can also hide a union: consider
ϕ = [0,b] (r · s∗) and assume that s matches (j, i) for some j < i. By the semantics of
concatenation, we can split the satisfactions of ϕ into those that use s∗’s matching pair
(i, i) (i.e., the satisfying assignments of I r at i) and those that do not. To combine
these assignments it seems necessary to take the union of the satisfaction of ϕ and I r,
which in turn requires these formulas to have the same free variables, or equivalently
fv s ⊆ fv r (overloading notation to apply fv to regular expression). The future match
operator behaves symmetrically, requiring the side condition fv r ⊆ fv s for [0,b] (r∗ · s).

MonPoly also allows the left subformula of S and U to be negated: (¬α)SI β and
(¬α)UI β. Hence, we should support the MFODL variants I (β? · (? · (¬α)?)∗) and

I (((¬α)? · ?)∗ · β?), but also generalize these patterns to flexibly support negated tests.
Our solution to these issues comprises the predicates shown in Fig. 5. The safe pred-

icate on regular expressions is parametrized by two flags: context distinguishing whether
the expression occurs under a past or a future match operator and mode determining
whether the tests may be negated and other safety conditions relaxed. The most interest-
ing cases are those for concatenation. There, in addition to the fv side conditions, only
one argument is checked recursively in the same mode as the overall expression. The
other argument is checked using the lax mode, in which side conditions are skipped, ex-
cept for the requirement that (possibly negated) formulas under the test operators are safe.
The context parameter dictates which argument keeps, and which changes, the mode.

4.2 Evaluation Algorithm

The evaluation algorithm’s structure for the past match operator I r (Fig. 6) closely
resembles the evaluation of αSI β (Fig. 2). What is different is the data that is stored for
each time-stamp and the way we update it. For S, each stored table Tc corresponds to the
satisfactions of αS[c,c] β. For I r, each Tc is a mapping from a regular expression s to the
table denoting the satisfactions of [c,c] s. (We represent mappings here by plain functions
for readability.) Clearly, this mapping’s domain must be finite. We restrict it to the finite
set ∆(r) of right partial derivatives [2, 11] of the overall regular expression r, which cor-
respond to the states of a non-deterministic automaton that matches r from right to left.

Partial derivatives allow us to extend satisfactions of [c,c] s for s∈ ∆(r) at time-point
i to satisfactions of [c+(τi+1−τi),c+(τi+1−τi)] s for s ∈ ∆(r) at time-point i+1. The Since
operator’s counterpart of this extension is the join with Rα, the new satisfactions of α,
which is performed for all Tcs for every update. Here, the extension function δR inputs
a function R assigning the new satisfactions for all tests occurring in r (possibly with

10 Basin et al.

fun εlax :: table⇒ (frm⇒ table)
⇒ frm re⇒ table where

εlax X R (?k) = (if k = 0 then X else {})
| εlax X R ((¬ϕ)?) = X .R ϕ
| εlax X R (ϕ?) = X ./ R ϕ
| εlax X R (r+ s) = εlax X R r∪εlax X R s
| εlax X R (r · s) = εlax X R r ./ εlax X R s
| εlax X R (r∗) = X

fun εstrict :: nat⇒ (frm⇒ table)
⇒ frm re⇒ table where

εstrict n R (?k) =
(if k = 0 then {

n︷ ︸︸ ︷
(⊥, . . . ,⊥)} else {})

| εstrict n R (ϕ?) = R ϕ
| εstrict n R (r+ s) = εstrict n R r∪εstrict n R s
| εstrict n R (r · s) = εlax (εstrict n R r) R s

fun δ :: (frm re⇒ frm re)⇒ (frm⇒ table)⇒ (frm re⇒ table)⇒ frm re⇒ table where
δ κ R T (?k) = (if k = 0 then {} else T (κ (?k−1)))
| δ κ R T (ϕ?) = {}
| δ κ R T (r+ s) = δ κ R T r∪δ κ R T s
| δ κ R T (r · s) = δ (λt. κ (r · t)) R T s∪εlax (δ κ R T r) R s
| δ κ R T (r∗) = δ (λt. κ (r∗ · t)) R T r

Fig. 7. The core evaluation functions for MFODL

a negation stripped) and updates the mapping Tc. It is defined as δR T = (λs. δ id R T s)
where δ is defined recursively on the structure of regular expressions as shown in Fig. 7.
The first parameter of δ uses continuation passing style. It builds up a regular expression
context that we use when evaluating the leaves. It is thus guaranteed that if we apply δ
to any regular expression s ∈ ∆(r), all calls to T will apply T to some s′ ∈ ∆(r).

The function δ uses the recursive function εlax in its definition. This function com-
putes the assignments that give rise to matches of the form (i, i) under the assumption
that a guard (in form of the table X) is given. For δ, the recursive call acts as εlax’s guard.

The function εstrict is used to update the state with satisfying assignments at the newly
added time-point (Fig. 6). It is only specified for expressions satisfying safe past strict
and uses εlax for subexpressions that only satisfy safe past lax. The recursive structure
of εstrict and εlax follows the one of safe past. We write εn

R = (λr. εstrict n R r) and use
∪ to denote the pointwise union of mappings in Fig. 6. The Since operator’s counterpart
of this update is the addition of the satisfactions for the subformula β (Fig. 2).

The above description just sketches our evaluation algorithm and our formalization
provides full details. Our proofs establish the monitor’s overall correctness, which
amounts to the same statement as Thm. 1 but now covers the syntax and semantics
extended with the match operators (and aggregations). In particular, the formalization
also includes the future match operators for which the evaluation uses similar ideas
(partial derivatives), but in a symmetric fashion following the definition of safe future.

5 Multi-Way Join

The natural join ./ is a central operation in first-order monitors. Not only is it used to
evaluate conjunctions; temporal operators also crucially rely on it. Despite this opera-
tion’s importance, both MonPoly and VeriMon naively compute A ./ B as nested unions:⋃

v ∈ A.
⋃

w ∈ B. djoin1(v, w)e, where join1 joins two tuples v and w if possible, and d_e
converts the optional result into a set. In this section, we describe a recent development
from database theory that we formalize and extend to optimize the computation of joins.

Ngo et al. [36] and Veldhuizen [47] have developed worst-case optimal multi-way
join algorithms that compute the natural join of multiple tables. Here, optimality means

A Formally Verified, Optimized Monitor for Metric First-Order Dynamic Logic 11

type_synonym atable = nat set× table type_synonym query = atable set

fun ↓ :: atable⇒ nat set⇒ atable where (U, A) ↓ V = (U ∩V, {v ↓ V | v ∈ A})
fun ↓ :: query⇒ nat set⇒ query where Q ↓ V = {(U, A) ↓ V | (U, A) ∈ Q}
fun extend :: nat set⇒ query⇒ nat set× tuple⇒ query where

extend V Q (T, t) = {(U, {v ∈ A | ∀i ∈ T ∩U. t ! i = v ! i}) ↓ V | (U, A) ∈ Q}
fun generic_join :: nat set⇒ query⇒ query⇒ table where

generic_join V Qpos Qneg = if |V| ≤ 1 then (
⋂
(_,X) ∈ Qpos. X)− (

⋃
(_,Y) ∈ Qneg. Y) else

let (I, J) = getIJ V Qpos Qneg;
QI

pos = {(V, X) ∈ Qpos | V ∩ I 6= {}} ↓ I; QI
neg = {(U, X) ∈ Qneg | U ⊆ I};

AI = generic_join I QI
pos QI

neg;
QJ

pos = {(V, X) ∈ Qpos | V ∩ J 6= {}}; QJ
neg = Qneg−QI

neg;
R = {(t, generic_join J (extend J QJ

pos (I, t)) (extend J QJ
neg (I, t)) | t ∈ AI}

in (
⋃
(t, A) ∈ R. {the (join1(v, t)) | v ∈ A})

Fig. 8. Multi-way join algorithm

that the algorithm never constructs an intermediate result that is larger than the maximum
size of all input tables and the overall output. This strictly improves over any evaluation
plan using binary joins: There are tables A, B, and C such that the size of A ./ B ./C is lin-
ear in |A|= |B|= |C|, but any plan constructs a quadratic intermediate result from the bi-
nary join it evaluates first [38, Fig. 2]. The key idea of the multi-way join is to build the re-
sult table column-wise, adding one or more columns at a time, while taking all tables that
refer to the currently added columns into account. All intermediate results are restrictions
of the overall result to the processed columns, and thus not larger than the overall result.

Fig. 8 shows our formalization of the multi-way join algorithm following Ngo et al.’s
unified presentation [38] but generalizing it to support anti-joins .; these additions
are highlighted in gray. A query is a set of atables, i.e., tables annotated with the
columns (represented by nat) they have. The main function, generic_join, takes as input
a set of columns V and two queries Qpos and Qneg. It computes the multi-way join of
Qpos while subtracting the tuples of tables in Qneg. For example, generic_join {a,b,c,d}
{({a,b},A), ({b,c},B), ({c,d},C)} {({d}, D), ({a,c},E)} computes A ./ B ./C .D.E.

The algorithm proceeds by recursion on V . The base case in which V is empty or
a singleton set is evaluated directly using intersections and unions. We first describe the
recursive structure of the original algorithm [38], obtained by ignoring the highlighted
anti-join additions in Fig. 8. The algorithm is parametrized by the getIJ function, which
partitions V into two nonempty sets I and J that each determine the number of columns
and the order in which they are added. Ngo et al. [38] show how different multi-way
join algorithms [36, 47] can be obtained by using specific instances of getIJ. We use a
heuristic to pick first the column i that maximizes the number of tuples in Qpos it affects
(by setting I = {i}). The partitioning only affects performance, not correctness.

Once I and J are fixed, the algorithm constructs a reduced query QI
pos by focusing

on tables that have a column in I. Furthermore, it restricts their columns to I via the
overloaded notation _ ↓ I, which denotes the restriction of tuples (by setting the optional
data values for columns outside I to ⊥ [44]), annotated tables, and queries (Fig. 8).

Next, QI
pos is evaluated recursively, yielding table AI with columns I. We now con-

sider tables that have a column in J. This yields a second reduced query QJ
pos, which

12 Basin et al.

is, however, not restricted to J. Keeping the columns I in QJ
pos allows us to focus on

tuples in QJ
pos that match some t ∈ AI , i.e., coincide with t for all values in columns I.

The function extend performs this matching. For each tuple t ∈ AI , it creates the query
extend J QJ

pos (I, t) consisting of tables from QJ
pos restricted to t-matching tuples (in

database terminology this is a semi-join) further restricted to columns J. These queries
are again solved recursively, each resulting in a table At with columns J. The final step
consists of merging the tuples t with At. Since t and A have disjoint columns I and J, the
function call join1 (v, t) will return some result (which we extract via the) for all v ∈ A.

We extend the algorithm to support anti-joins by introducing a second query Qneg,
which we think of as being negated. It is not possible to split Qneg’s tables column-wise.
Instead, our generalization processes tables with columns U from Qneg once the positive
query has accumulated a superset of U as its columns. This is an improvement over the
naive strategy of computing Qpos first and only then removing tuples from it.

The correctness of generic_join relies on several side conditions, e.g., no input table
may have zero columns and V must be the union of the columns in the positive query. A
wrapper function mwjoin takes care of these corner cases, e.g., by computing V from Qpos
and Qneg. We omit mwjoin’s straightforward definition, but show its correctness property
(which only differs from generic_join’s correctness by having fewer assumptions):

Qpos 6= {}∧ (∀(V, A) ∈ Qpos∪Qneg. (∀v ∈ A. wf_tuple n V v)∧ (∀x ∈ V. x < n))−→
z ∈mwjoin Qpos Qneg ←→ wf_tuple n (

⋃
(V, _) ∈ Qpos. V) z∧

(∀(V, A) ∈ Qpos. z ↓ V ∈ A)∧ (∀(U, B) ∈ Qneg. z ↓ U /∈ B)

In words: whenever Qpos is nonempty and all tables in Qpos and Qneg fit their declared
columns, a tuple z belongs to the output of mwjoin iff it has the correct columns and
matches all positive tables from Qpos and does not match any negative ones from Qneg.

The multi-way join algorithm is integrated in VeriMon+ by adding a new constructor
Ands :: frm list⇒ frm to the formula datatype. At least one of the subformulas of Ands
must be non-negated, and the columns of the negative subformulas must be a subset of the
positive ones. Since MonPoly’s parser, which we reuse in VeriMon+, generates formulas
with binary conjunctions, we have defined a semantics-preserving preprocessing function
convert_multiway (omitted), which rewrites nested binary conjunctions into Ands.

6 Sliding Window Algorithm

To evaluate the temporal operators S and U, VeriMon computes the union of tables
that are associated with time-stamps within the operator’s interval. These sets of time-
stamps often overlap between consecutive monitor steps. The sliding window algorithm
(SWA) [9] is an efficient algorithm for combining the elements of overlapping sequences
with an associative operator. It improves over the naive approach that recomputes the com-
bination (here, the union) from scratch for every sequence. MonPoly uses SWA for the
special cases �I β= TT SI β and ♦I β= TT UI β, where TT = ∃x. x≈ x. However, SWA
was not designed for the evaluation of arbitrary S and U operators. For these, the tables in
the sequence must be joined with the left subformula’s results in every monitor step. In
a separate work [26, 27], we formally verified SWA’s functional correctness (but not its
optimality) and extended it with a join operation to support arbitrary S and U operators.

A Formally Verified, Optimized Monitor for Metric First-Order Dynamic Logic 13

locale msaux = fixes valid_msaux :: args ⇒ ts ⇒ 'msaux ⇒ mslist ⇒ bool
and init_msaux :: args ⇒ 'msaux
and add_new_ts :: args ⇒ ts ⇒ 'msaux ⇒ 'msaux
and join_msaux :: args ⇒ table ⇒ 'msaux ⇒ 'msaux
and add_new_table :: args ⇒ table ⇒ 'msaux ⇒ 'msaux
and result_msaux :: args ⇒ 'msaux ⇒ table

Fig. 9. The locale for evaluating the Since operator (assumptions omitted)

SWA is overly general: it supports any associative operator, not just the union of
tables. We conjecture that the generic SWA algorithm is not optimal in the special case
needed for S and U. To optimize the evaluation of the S and U operators in VeriMon+, we
abstracted the individual steps of their evaluation in one locale for each of them (Sect. 6.1).
We then instantiated the locales with specialized sliding window algorithms (Sect. 6.2).
Due to space limitations, we only describe the optimization for the Since operator here.

6.1 Integration into the Monitor

Recall the evaluation of Since in VeriMon (Sect. 2). First, VeriMon updates the operator’s
state with a new time-stamp τ′ and the satisfactions Rα and Rβ for the subformulas α
and β. Second, it evaluates the state to obtain the satisfactions for αSI β.

Let mslist denote the type of the S operator’s state in VeriMon. In VeriMon+, we de-
fine a locale msaux that abstracts the update and evaluation of an optimized state 'msaux
and relates the optimized state to VeriMon’s original mslist state (Fig. 9). We provide
additional constant arguments for evaluating the S operator in a record args. It consists
of the S operator’s interval, the arguments to wf_tuple characterizing the satisfactions
of the two subformulas, and a Boolean value denoting whether the left subformula
occurs negated. The predicate valid_msaux relates an optimized state to VeriMon’s
state with respect to the given args and a current time-stamp. The function init_msaux
returns an initial optimized state. The next three functions add_new_ts, join_msaux,
and add_new_table correspond to the three steps in which VeriMon’s state is updated
(Sect. 2), except that now they act on the optimized state. Finally, result_msaux evaluates
the optimized state to obtain the satisfactions of the S operator at the current time-point.
The omitted locale assumptions state that all operations preserve valid_msaux and that
result_msaux returns the union computed on any VeriMon state related by valid_msaux.

6.2 The Specialized Algorithm

VeriMon’s state for the S operator consists of a list of tables Tc with the satisfactions
of formulas αS[c,c] β, along with the corresponding time-stamps. VeriMon stores the
satisfactions Tc (and time-stamps) for all c that do not exceed the interval’s upper bound.

In our optimized state, we partition the list of tables Tc into a list data_prev for time-
stamps that are not yet in the interval and a list data_in for time-stamps that are already
in the interval. The state also contains a mapping tuple_in that assigns to each tuple
occurring in some table Tc in the interval the latest time-stamp in the interval for which
this tuple occurs in the respective table. Finally, the state contains a mapping tuple_since
that assigns to each tuple occurring in some table Tc in the entire state the earliest
time-stamp for which this tuple occurs in the respective table. (For efficiency, we delete

14 Basin et al.

ts db step data_prev data_in tuple_in tuple_since

init_msaux [] [] {} {}
1 {Q(a),Q(b),

Q(c)}
add_new_table [(1,{a,b,c})] [] {} {a 7→ 1,b 7→ 1,

c 7→ 1}
2 {P(b),P(c)} join_msaux [(1,{a,b,c})] [] {} {b 7→ 1,c 7→ 1}

add_new_table [(1,{a,b,c}),
(2,{})]

[] {} {b 7→ 1,c 7→ 1}

3 {P(b),P(c),
Q(a),Q(b)}

add_new_ts [(2,{})] [(1,{a,b,c})] {b 7→ 1,
c 7→ 1}

{b 7→ 1,c 7→ 1}

add_new_table [(2,{}),
(3,{a,b})]

[(1,{a,b,c})] {b 7→ 1,
c 7→ 1}

{a 7→ 3,b 7→ 1,
c 7→ 1}

7 {P(a)} add_new_ts [] [(3,{a,b})] {a 7→ 3,
b 7→ 3}

{a 7→ 3,b 7→ 1,
c 7→ 1}

join_msaux [] [(3,{a,b})] {a 7→ 3} {a 7→ 3}
add_new_table [(7,{})] [(3,{a,b})] {a 7→ 3} {a 7→ 3}

Fig. 10. An example of updating the optimized state for the formula P(x)S[2,4] Q(x)

tuples from tuple_since lazily, i.e., only at defined garbage collection points, such that the
mapping may even contain tuples from some Tc that already has fallen out of the interval.)

The state is initialized via init_msaux to consist of empty lists and empty mappings.
The function add_new_ts drops tables from data_in that fall out of the interval based on a
newly received time-stamp. It also removes those tuples from tuple_in whose latest occur-
rence (which is stored in this mapping) has fallen out of the interval. Then it moves tables
that newly enter the interval from data_prev to data_in, and updates the tuples from
these moved tables in tuple_in to the most recent time-stamp τ for which they now occur
in the interval, but only if tuple_since maps the tuple to a time-stamp that is at most τ.

The function join_msaux only modifies the mappings tuple_since and tuple_in by
removing tuples that are not matched by any tuple in the given table Rα. The function
add_new_table appends the new table Rβ to data_prev (or directly data_in, if 0 ∈I I),
adds the tuples from Rβ that were not in tuple_since to that mapping, and, if 0 ∈I I,
updates the tuples from Rβ in the mapping tuple_in to the current time-stamp. Finally,
result_msaux returns the keys of the mapping tuple_in, in particular without computing
any unions. In other words, tuple_in contains precisely the tuples that are in the interval
and have not been removed by joins. Crucially, and unlike in VeriMon’s state, the join
operation does not change the tables Tc in our optimized state. This functionality is
implemented more efficiently by filtering the two mappings tuple_since and tuple_in.

Example. Fig. 10 shows how the optimized state for the formula P(x)S[2,4] Q(x) is up-
dated. In total, four time-points are processed. The first two columns show the time-stamp
and database for each time-point. The other columns show the state after applying the step
named in the third column. Each step corresponds to a function in the msaux locale. The
satisfactions {},{},{b,c},{a} returned by result_msaux can be read off from the map-
ping tuple_in after each time-point’s last step. We omit steps that do not change the state.

The first row shows the initial state. For the first time-point, the steps add_new_ts
with time-stamp 1 and join_msaux with the table {} (as there are no P events) do not

A Formally Verified, Optimized Monitor for Metric First-Order Dynamic Logic 15

change the initial state. Then, add_new_table appends the table {a,b,c} with the param-
eters of the Q events to data_prev (as 0 6∈I [2,4]) and adds its elements to tuple_since.

For the second time-point, VeriMon+ applies add_new_ts with time-stamp 2. Again
this step has no effect: data_prev’s first entry is not moved to data_in as the differ-
ence 2− 1 to the current time-stamp is not in [2,4]. Next, join_msaux with the table
{b,c} (from the P events) removes a from tuple_since, but not from data_prev. Finally,
add_new_table appends the table {} (as there are no Q events) to data_prev.

For the third time-point, add_new_ts moves data_prev’s first entry to data_in be-
cause the time-stamp difference 3−1 is in [2,4]. The values b,c of that entry are added
to tuple_in because tuple_since maps them to a time-stamp≤ 1. Note that a is not added,
as it is not contained in tuple_since. The join_msaux step with the table {b,c} does not
change the state. The add_new_table step appends {a,b} to data_prev. Now, a is added
to tuple_since, whereas b is already contained in tuple_since and its value is not updated.

When the fourth time-point is processed, the first two observed time-stamps fall out
of the interval and add_new_ts discards their entries from data_prev and data_in, and
their values from tuple_in but not from tuple_since. As before, the last table {a,b} in
data_prev is moved to data_in and its elements are added to tuple_in. As time has pro-
gressed by more than the upper bound of the interval [2,4], join_msaux triggers garbage
collection, which removes the key c from tuple_since. The join operation further removes
b from tuple_in and tuple_since. Finally, add_new_table appends {} to data_prev.

7 Evaluation
We perform two kinds of experiments. First, we carry out differential testing [34] of Veri-
Mon+ against three (unverified) state-of-the-art monitors: MonPoly [8], Aerial [10], and
Hydra [42]. Second, we compare VeriMon+’s performance to these monitors on represen-
tative formulas. VeriMon+ reuses MonPoly’s log and formulas parsers and user interface.
The verified monitor’s code extracted from Isabelle is integrated with these unverified
components in about 170 lines of unverified OCaml code. Our implementation and our ex-
periments are available [5]. Of the above monitors, only VeriMon+ supports full MFODL.
MonPoly supports a monitorable fragment of MFOTL with bounded future operators
and aggregations. Aerial and Hydra support the propositional fragment of MFODL.

Differential testing To validate the results produced by unverified monitors, we generate
random stream prefixes and formulas, invoke the monitors, and compare their results to
VeriMon+’s. For this purpose, we developed a random stream and formula generator. It
takes as parameters the formula size (in terms of number of operators) and the number of
free variables that occur in the formula. The generator can be configured to generate for-
mulas within the fragments of MFODL supported by the different monitors we evaluate.

Our tests uncovered several classes of inputs where MonPoly’s output deviated from
VeriMon+’s. Here, we show one example and refer to Appendix A for a comprehen-
sive overview. Namely, formulas of the form m← Ω x; x. �I α, where fv α = {x,y},
Ω ∈ {Min,Max}, and 0 /∈I I, were evaluated in MonPoly using a specialized algorithm,
which incorrectly updated the satisfactions of α when they fell out of the interval I.

Aerial’s and Hydra’s output mostly coincided with VeriMon+’s. However, we noticed
that Hydra’s output is not as eager as it could be at the end of the stream prefix. For ex-
ample, [1,1] (? · (TT∨ [1,1] ?)?) is satisfied at time-point 0 of the prefix ({},0),({},1)

16 Basin et al.

Formula Star(10) Star(30) Top Alt
Monitor MonPoly VeriMon+ VeriMon MonPoly VeriMon+ VeriMon MonPoly VeriMon+ Aerial Hydra VeriMon+

E
ve

nt
ra

te
50 0.0/6.2 0.1/9.3 0.2/9.5 0.1/6.4 0.2/12.0 3.0/12.4 0.2/8.9 6.0/10.4 0.3/5.8 0.2/3.2 2.1/8.6

100 0.1/7.0 0.2/12.0 0.9/16.5 0.1/7.0 0.3/13.4 10.7/24.2 0.3/10.0 29.9/12.6 0.4/5.8 0.2/3.2 3.4/8.6
200 0.5/9.1 0.3/12.1 6.2/47.4 0.4/9.2 0.7/18.7 50.1/48.5 0.9/9.9 to 0.6/6.0 0.2/3.1 7.2/8.8
500 6.0/9.8 1.3/16.3 so 2.5/12.9 1.9/32.5 so 2.9/13.5 to 1.1/6.3 0.2/3.2 18.0/8.7

1000 38.0/12.8 2.5/22.2 so 11.6/17.9 5.2/58.0 so 10.9/22.4 to 1.7/6.4 0.3/3.1 34.1/8.8
2000 to 5.9/36.5 so to 11.9/106.7 so 22.0/34.2 to 3.1/6.3 0.4/3.2 to
4000 to 15.0/65.0 so to 22.8/206.0 so 50.8/62.1 to 5.0/6.5 0.6/3.3 to

Star(N) ≡ (�[0,N] P(x,y)∧Q(x,z))∧♦[0,N] R(x,w) Alt ≡ [10,10] (P? · ? · Q? · ?)∗

Top ≡ (m←Max s;v. (s← Cnt id; id.�P(id,v)))∧ (m← Cnt id; id.�P(id,v))

Fig. 11. Time (s) / memory (MB) usage of the monitors (to = timeout of 60s, so = stack overflow)

due to the existence of time-point 1, where TT can be evaluated. The subformula [1,1] ?
cannot be evaluated at time-point 1. This prevents Hydra from outputting this verdict at 0.

Performance evaluation To assess VeriMon+’s performance, we selected four formulas,
shown in Fig. 11, which exercise the optimizations (multi-way join and sliding window)
and the language features (aggregations and regular expressions) we have introduced. The
formula Star(N) is derived from the star conjunctive query, commonly used as a bench-
mark for joins [13]. We use it to evaluate our multi-way join (for N = 10) and sliding
window (for N = 30) implementations. The formula Top is a commonly used aggrega-
tion query, which computes the most frequently occurring value of the event P’s second
parameter. Finally, Alt checks if events P and Q alternate over the last 10 time units.

We generate random stream prefixes with a time span of 60 time units containing
events P, Q, and R, each with two integer parameters sampled uniformly at random from
the set {1,2, . . . ,109}. Our stream generator is parametrized by the event rate (i.e., by
the number of events with the same time-stamp). Since VeriMon+ reuses MonPoly’s
formula and log parsing infrastructure, there is an additional (conceptually unnecessary)
overhead caused by converting the data structures to match the appropriate interfaces.
In cases where the monitoring task is easy, this becomes the bottleneck and MonPoly
performs better than VeriMon+. To make the monitoring task difficult for Star(10), we
sample the value of the first parameter of each event (the common variable x) using the
Zipf distribution. Thus, some parameter values occur frequently. This results in large
intermediate tables, which are problematic for binary joins.

Fig. 11 shows that VeriMon+ outperforms MonPoly on the Star(N) formulas. The
results confirm the feasibility of monitoring aggregations and regular expressions with
VeriMon+. Specialized algorithms remain more performant on problems in their domain.

8 Conclusion

We have presented a verified monitor, competitive with the state-of-the-art, for the expres-
sive specification language metric first-order dynamic logic. Our formalization comprises
roughly 15000 lines of Isabelle code, distributed over the four features we presented:
regular expressions (2000), terms and aggregations (750), multi-way join (3300), and the
sliding window algorithm (3000). Isabelle extracts a 7500 line OCaml program from our
formalization. This code includes efficient libraries representing sets and mappings via
red–black trees introduced transparently into the formalization via the Containers frame-
work [31]. We also use and extend a formalization of IEEE floating point numbers [49].

A Formally Verified, Optimized Monitor for Metric First-Order Dynamic Logic 17

We have made additional contributions from the algorithmic perspective. Our mon-
itor is the first monitoring algorithm for MFODL with aggregations. Moreover, our
specialized sliding window algorithm improves over the existing generic algorithm [9].
Our usage of multi-way joins in the context of first-order monitoring is also novel, as is
our extension of the multi-way join algorithm to handle anti-joins. It would be interesting
to investigate the optimality of this extension and further consider a multi-way-like
evaluation of an arbitrary Boolean combination of finite tables.

Our focus was on extending the verified monitor’s specification language and im-
proving its algorithms. As next steps, we plan to further improve performance by refining
our algorithms to imperative data structures following Lammich’s methodology [28, 29].

Acknowledgment We thank the anonymous IJCAR reviewers for their helpful comments.
This research is supported by the US Air Force grant “Monitoring at Any Cost” (FA9550-
17-1-0306) and by the Swiss National Science Foundation grant “Big Data Monitoring”
(167162). The authors are listed in alphabetical order.

References

1. Alur, R., Fisman, D., Raghothaman, M.: Regular programming for quantitative properties
of data streams. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 15–40. Springer
(2016), https://doi.org/10.1007/978-3-662-49498-1_2

2. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton con-
structions. Theor. Comput. Sci. 155(2), 291–319 (1996), https://doi.org/10.1016/
0304-3975(95)00182-4

3. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.E.: Quantified event
automata: Towards expressive and efficient runtime monitors. In: Giannakopoulou, D., Méry,
D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer (2012), https://doi.org/10.
1007/978-3-642-32759-9_9

4. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification – Introductory and
Advanced Topics, LNCS, vol. 10457. Springer (2018), https://doi.org/10.1007/
978-3-319-75632-5

5. Basin, D., Dardinier, T., Heimes, L., Krstić, S., Raszyk, M., Schneider, J., Traytel, D.:
VeriMon+: Implementation and case study associated with this paper. (2020), https:
//bitbucket.org/jshs/monpoly/downloads/verimonplus.zip

6. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-order
properties with aggregations. Formal Methods Syst. Des. 46(3), 262–285 (2015), https:
//doi.org/10.1007/s10703-015-0222-7

7. Basin, D., Klaedtke, F., Müller, S., Zălinescu, E.: Monitoring metric first-order temporal
properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/2699444

8. Basin, D., Klaedtke, F., Zălinescu, E.: The MonPoly monitoring tool. In: Reger, G., Havelund,
K. (eds.) RV-CuBES 2017. Kalpa Publications in Computing, vol. 3, pp. 19–28. EasyChair
(2017)

9. Basin, D., Klaedtke, F., Zălinescu, E.: Greedily computing associative aggregations on sliding
windows. Information Processing Letters 115(2), 186–192 (2015), https://doi.org/10.
1016/j.ipl.2014.09.009

10. Basin, D., Krstić, S., Traytel, D.: AERIAL: almost event-rate independent algorithms for
monitoring metric regular properties. In: Reger, G., Havelund, K. (eds.) RV-CuBES 2017.
Kalpa Publications in Computing, vol. 3, pp. 29–36. EasyChair (2017)

https://doi.org/10.1007/978-3-662-49498-1_2
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
https://bitbucket.org/jshs/monpoly/downloads/verimonplus.zip
https://bitbucket.org/jshs/monpoly/downloads/verimonplus.zip
https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1007/s10703-015-0222-7
https://doi.org/10.1145/2699444
https://doi.org/10.1016/j.ipl.2014.09.009
https://doi.org/10.1016/j.ipl.2014.09.009

18 Basin et al.

11. Basin, D.A., Bhatt, B.N., Krstic, S., Traytel, D.: Almost event-rate independent monitor-
ing. Formal Methods Syst. Des. 54(3), 449–478 (2019), https://doi.org/10.1007/
s10703-018-00328-3

12. Bauer, A., Küster, J., Vegliach, G.: From propositional to first-order monitoring. In: Legay,
A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer (2013), https:
//doi.org/10.1007/978-3-642-40787-1_4

13. Beame, P., Koutris, P., Suciu, D.: Communication steps for parallel query processing. J. ACM
64(6), 40:1–40:58 (2017). https://doi.org/10.1145/3125644

14. Benzaken, V., Contejean, E., Keller, C., Martins, E.: A Coq formalisation of SQL’s execution
engines. In: Avigad, J., Mahboubi, A. (eds.) ITP 2018. LNCS, vol. 10895, pp. 88–107.
Springer (2018), https://doi.org/10.1007/978-3-319-94821-8_6

15. Blech, J.O., Falcone, Y., Becker, K.: Towards certified runtime verification. In: Aoki, T.,
Taguchi, K. (eds.) ICFEM 2012. LNCS, vol. 7635, pp. 494–509. Springer (2012), https:
//doi.org/10.1007/978-3-642-34281-3_34

16. Bohrer, B., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: verified controller
executables from verified cyber-physical system models. In: Foster, J.S., Grossman, D. (eds.)
PLDI 2018. pp. 617–630. ACM (2018), https://doi.org/10.1145/3192366.3192406

17. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964), https:
//doi.org/10.1145/321239.321249

18. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma, H.B.,
Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous systems. In: TIME 2005.
pp. 166–174. IEEE Computer Society (2005), https://doi.org/10.1109/TIME.2005.
26

19. Dardinier, T.: Formalization of multiway-join algorithms. Archive of Formal Proofs (2019),
https://isa-afp.org/entries/Generic_Join.html

20. Dardinier, T., Heimes, L., Raszyk, M., Schneider, J., Traytel, D.: Formalization of an opti-
mized monitoring algorithm for metric first-order dynamic logic with aggregations. Archive of
Formal Proofs (2020), https://isa-afp.org/entries/MFODL_Monitor_Optimized.
html

21. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces.
In: Rossi, F. (ed.) IJCAI 2013. pp. 854–860. IJCAI/AAAI (2013)

22. Havelund, K.: Rule-based runtime verification revisited. STTT 17(2), 143–170 (2015), https:
//doi.org/10.1007/s10009-014-0309-2

23. Havelund, K., Leucker, M., Reger, G., Stolz, V.: A shared challenge in behavioural specifica-
tion (Dagstuhl Seminar 17462). Dagstuhl Reports 7(11), 59–85 (2017), https://doi.org/
10.4230/DagRep.7.11.59

24. Havelund, K., Peled, D.: Efficient runtime verification of first-order temporal properties. In:
Gallardo, M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp. 26–47. Springer (2018),
https://doi.org/10.1007/978-3-319-94111-0_2

25. Havelund, K., Rosu, G.: Synthesizing monitors for safety properties. In: Katoen, J., Stevens,
P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer (2002), https://doi.org/
10.1007/3-540-46002-0_24

26. Heimes, L.: Extending and optimizing a verified monitor for metric first-order temporal logic.
Bachelor’s thesis, Department of Computer Science, ETH Zürich (2019)

27. Heimes, L., Schneider, J., Traytel, D.: Formalization of an algorithm for greedily computing
associative aggregations on sliding windows. Archive of Formal Proofs (2020), https:
//isa-afp.org/entries/Sliding_Window_Algorithm.html

28. Lammich, P.: Generating verified LLVM from Isabelle/HOL. In: Harrison, J., O’Leary, J.,
Tolmach, A. (eds.) ITP 2019. LIPIcs, vol. 141, pp. 22:1–22:19. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik (2019), https://doi.org/10.4230/LIPIcs.ITP.2019.22

https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/s10703-018-00328-3
https://doi.org/10.1007/978-3-642-40787-1_4
https://doi.org/10.1007/978-3-642-40787-1_4
https://doi.org/10.1145/3125644
https://doi.org/10.1007/978-3-319-94821-8_6
https://doi.org/10.1007/978-3-642-34281-3_34
https://doi.org/10.1007/978-3-642-34281-3_34
https://doi.org/10.1145/3192366.3192406
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://doi.org/10.1109/TIME.2005.26
https://doi.org/10.1109/TIME.2005.26
https://isa-afp.org/entries/Generic_Join.html
https://isa-afp.org/entries/MFODL_Monitor_Optimized.html
https://isa-afp.org/entries/MFODL_Monitor_Optimized.html
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.1007/s10009-014-0309-2
https://doi.org/10.4230/DagRep.7.11.59
https://doi.org/10.4230/DagRep.7.11.59
https://doi.org/10.1007/978-3-319-94111-0_2
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/3-540-46002-0_24
https://isa-afp.org/entries/Sliding_Window_Algorithm.html
https://isa-afp.org/entries/Sliding_Window_Algorithm.html
https://doi.org/10.4230/LIPIcs.ITP.2019.22

A Formally Verified, Optimized Monitor for Metric First-Order Dynamic Logic 19

29. Lammich, P.: Refinement to imperative HOL. J. Autom. Reasoning 62(4), 481–503 (2019),
https://doi.org/10.1007/s10817-017-9437-1

30. Laurent, J., Goodloe, A., Pike, L.: Assuring the guardians. In: Bartocci, E., Majumdar, R.
(eds.) RV 2015. LNCS, vol. 9333, pp. 87–101. Springer (2015), https://doi.org/10.
1007/978-3-319-23820-3_6

31. Lochbihler, A.: Light-weight containers for Isabelle: Efficient, extensible, nestable. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 116–132. Springer
(2013), https://doi.org/10.1007/978-3-642-39634-2_11

32. Malecha, J.G., Morrisett, G., Shinnar, A., Wisnesky, R.: Toward a verified relational database
management system. In: Hermenegildo, M.V., Palsberg, J. (eds.) POPL 2010. pp. 237–248.
ACM (2010), https://doi.org/10.1145/1706299.1706329

33. Mamouras, K., Raghothaman, M., Alur, R., Ives, Z.G., Khanna, S.: StreamQRE: modular
specification and efficient evaluation of quantitative queries over streaming data. In: Cohen, A.,
Vechev, M.T. (eds.) PLDI 2017. pp. 693–708. ACM (2017), https://doi.org/10.1145/
3062341.3062369

34. McKeeman, W.M.: Differential testing for software. Digital Technical Journal 10(1), 100–107
(1998)

35. Mitsch, S., Platzer, A.: Modelplex: verified runtime validation of verified cyber-physical
system models. Formal Methods Syst. Des. 49(1-2), 33–74 (2016), https://doi.org/10.
1007/s10703-016-0241-z

36. Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-case optimal join algorithms: [extended
abstract]. In: Benedikt, M., Krötzsch, M., Lenzerini, M. (eds.) PODS 2012. pp. 37–48. ACM
(2012), https://doi.org/10.1145/2213556.2213565

37. Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-case optimal join algorithms. J. ACM 65(3),
16:1–16:40 (2018), https://doi.org/10.1145/3180143

38. Ngo, H.Q., Ré, C., Rudra, A.: Skew strikes back: new developments in the theory of join
algorithms. SIGMOD Record 42(4), 5–16 (2013), https://doi.org/10.1145/2590989.
2590991

39. Peycheva, G.: Real-time verification of datacenter security policies via online log analysis.
Master’s thesis, ETH Zürich (2018)

40. Pike, L., Niller, S., Wegmann, N.: Runtime verification for ultra-critical systems. In: Khurshid,
S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 310–324. Springer (2011), https://doi.
org/10.1007/978-3-642-29860-8_23

41. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Experience report: a do-it-yourself high-
assurance compiler. In: Thiemann, P., Findler, R.B. (eds.) ICFP 2012. pp. 335–340. ACM
(2012), https://doi.org/10.1145/2364527.2364553

42. Raszyk, M., Basin, D., Krstić, S., Traytel, D.: Multi-head monitoring of metric temporal logic.
In: Chen, Y., Cheng, C., Esparza, J. (eds.) ATVA 2019. vol. 11781, pp. 151–170. Springer
(2019), https://doi.org/10.1007/978-3-030-31784-3_9

43. Rizaldi, A., Keinholz, J., Huber, M., Feldle, J., Immler, F., Althoff, M., Hilgendorf, E., Nipkow,
T.: Formalising and monitoring traffic rules for autonomous vehicles in Isabelle/HOL. In:
Polikarpova, N., Schneider, S. (eds.) iFM 2017. LNCS, vol. 10510, pp. 50–66. Springer
(2017), https://doi.org/10.1007/978-3-319-66845-1_4

44. Schneider, J., Basin, D., Krstić, S., Traytel, D.: A formally verified monitor for metric first-
order temporal logic. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp.
310–328. Springer (2019), https://doi.org/10.1007/978-3-030-32079-9_18

45. Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications. Electr.
Notes Theor. Comput. Sci. 113, 145–162 (2005), https://doi.org/10.1016/j.entcs.
2004.01.029

https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/978-3-319-23820-3_6
https://doi.org/10.1007/978-3-319-23820-3_6
https://doi.org/10.1007/978-3-642-39634-2_11
https://doi.org/10.1145/1706299.1706329
https://doi.org/10.1145/3062341.3062369
https://doi.org/10.1145/3062341.3062369
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1007/s10703-016-0241-z
https://doi.org/10.1145/2213556.2213565
https://doi.org/10.1145/3180143
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1007/978-3-642-29860-8_23
https://doi.org/10.1007/978-3-642-29860-8_23
https://doi.org/10.1145/2364527.2364553
https://doi.org/10.1007/978-3-030-31784-3_9
https://doi.org/10.1007/978-3-319-66845-1_4
https://doi.org/10.1007/978-3-030-32079-9_18
https://doi.org/10.1016/j.entcs.2004.01.029
https://doi.org/10.1016/j.entcs.2004.01.029

20 Basin et al.

46. Ulus, D.: Montre: A tool for monitoring timed regular expressions. In: Majumdar, R., Kuncak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 329–335. Springer (2017), https://doi.org/
10.1007/978-3-319-63387-9_16

47. Veldhuizen, T.L.: Triejoin: A simple, worst-case optimal join algorithm. In: Schweikardt, N.,
Christophides, V., Leroy, V. (eds.) ICDT 2014. pp. 96–106. OpenProceedings.org (2014),
https://doi.org/10.5441/002/icdt.2014.13

48. Völlinger, K.: Verifying the output of a distributed algorithm using certification. In: Lahiri,
S.K., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 424–430. Springer (2017), https:
//doi.org/10.1007/978-3-319-67531-2_29

49. Yu, L.: A formal model of IEEE floating point arithmetic. Archive of Formal Proofs (2013),
https://isa-afp.org/entries/IEEE_Floating_Point.html

A Problems Discovered through Differential Testing

Our differential tests uncovered classes of inputs where MonPoly’s and Hydra’s output de-
viates from VeriMon+’s. We inspected the code and proposed improvements that resolve
these differences. The MonPoly development branch1 now includes our improvements.

The first class comes from the way MonPoly monitors formulas of the form (¬α)U[0,1]
(♦[0,1] β), where α and β are Boolean formulas. On the stream prefix ({α},0), ({α},1),
({β},2), the satisfaction (0,v) at time-point 0 can be output as soon as time-point 2
is received. However, MonPoly’s output is delayed by one time point with respect to
VeriMon+’s. Indeed, MonPoly alone exhibits this inconsistency when comparing its
output for the above formula for α= ¬TT with the output for the equivalent formula
♦[0,1](♦[0,1] β), for which MonPoly’s output is not delayed.

The second class of problematic inputs comes from monitoring formulas of the
form (¬♦[0,2]α)U[0,1] β on the stream prefix ({β},0),({β},1),({β},2). In this case, even
though the formula is satisfied at every time-point of the prefix, MonPoly does not output
any satisfactions. The satisfactions are (cumulatively) output once MonPoly receives
two consecutive time-points with time-stamps more than one time unit apart.

The third class of inputs involves aggregation operators. Namely, when monitoring
formulas of the form (s← Sum x; x. α(x))∨β(s), where α and β have integer parameters,
both MonPoly and VeriMon+ yield the same satisfaction (0,{0,1}) at time-point 0 on a
prefix of a stream ({β(1)},0), Value 0 is the default variable assignment for s when
the Sum operator is applied to a subformula with no satisfying assignments. However, the
two values (0 and 1) were not printed in the same order by the two monitors since Mon-
Poly uses a floating point 0 as the default value for the Sum operator even when it aggre-
gates integer values. After inspecting MonPoly’s code we have also found similar issues
with other aggregation operators. For instance, the median operator was not well-defined
for strings: Taking the median of a set containing an even number of strings resulted in
a runtime failure in MonPoly. In the case of aggregation operators, most inconsistencies
found were caused by minor differences in their definitions. Nevertheless, our differential
testing discovered these corner cases and guided our subsequent code inspection.

The fourth class of inputs are formulas of the form m← Ω x; x. �I α(x,y), where
Ω∈ {Min,Max} and 0 /∈I I. MonPoly implements a custom algorithm for such formulas
that incorrectly updates the assignments for α(x,y) when they fall out of the interval I.

1 https://bitbucket.org/monpoly/monpoly/src/develop, revision d7f8a0b49

https://doi.org/10.1007/978-3-319-63387-9_16
https://doi.org/10.1007/978-3-319-63387-9_16
https://doi.org/10.5441/002/icdt.2014.13
https://doi.org/10.1007/978-3-319-67531-2_29
https://doi.org/10.1007/978-3-319-67531-2_29
https://isa-afp.org/entries/IEEE_Floating_Point.html
https://bitbucket.org/monpoly/monpoly/src/develop

A Formally Verified, Optimized Monitor for Metric First-Order Dynamic Logic 21

The fifth class of inputs reveals that MonPoly does not properly validate input for-
mulas. MonPoly’s algorithm assumes that all intervals in the temporal operators are
nonempty; however, its parser also accepts and (incorrectly) monitors formulas with
empty intervals. For instance, it outputs erroneous satisfactions for the formula αS[0,0) β.

Lastly, Hydra does not output satisfactions as eagerly as it could when reaching the
end of the stream prefix. For example, [1,1] (? · (TT∨ [1,1] ?)?) is satisfied at time-
point 0 of the stream prefix ({},0),({},1) due to the existence of time-point 1, where
TT can be evaluated. The subformula [1,1] ?, which cannot be evaluated at time-point 1,
prevents Hydra from outputting this verdict at 0.

	A Formally Verified, Optimized Monitor for Metric First-Order Dynamic Logic
	1 Introduction
	2 A Verified Monitor for Metric First-Order Temporal Logic
	3 Aggregations
	4 Regular Expressions
	4.1 Finitely Evaluable Regular Expressions
	4.2 Evaluation Algorithm

	5 Multi-Way Join
	6 Sliding Window Algorithm
	6.1 Integration into the Monitor
	6.2 The Specialized Algorithm

	7 Evaluation
	8 Conclusion
	A Problems Discovered through Differential Testing

