Friends with Benefits

Implementing Foundational Corecursion in Isabelle/HOL
(Extended Abstract)

Jasmin Christian Blanchette!?, Aymeric Bouzy>, Andreas Lochbihler,
Andrei Popescu’, and Dmitriy Traytel*

! Inria & LORIA, Nancy, France
2 Max-Planck-Institut fiir Informatik, Saarbriicken, Germany
3 Laboratoire d’informatique, Ecole polytechnique, Palaiseau, France
4 Institute of Information Security, ETH Ziirich, Switzerland
5 School of Science and Technology, Middlesex University, UK

Abstract. We describe AmiCo, a tool that extends Isabelle/HOL with flexible
function definitions well beyond primitive corecursion. All definitions are certi-
fied by the assistant’s inference kernel to guard against inconsistencies. A central
notion is that of friends: functions that preserve the productivity of their argu-
ments and that may occur in corecursive call contexts. As new friends are regis-
tered, corecursion benefits by becoming more expressive.

1 Introduction

Codatatypes and corecursion [8, 10, 15] are emerging as a major methodology for pro-
gramming with infinite objects. Unlike in traditional lazy functional programming, co-
datatypes support fotal (co)programming [1, 3, 19], where the defined functions have
a straightforward set-theoretic semantics and productivity is guaranteed. The proof as-
sistants Agda [7], Coq [4], and Matita [2] have been supporting and promoting this
methodology for years.

By contrast, proof assistants based on higher-order logic (HOL), such as HOL4 [16],
HOL Light [11], and Isabelle/HOL [13, 14], have traditionally provided only datatypes.
Isabelle/HOL is the first of these systems to offer codatatypes. It took two years, and
about 24 000 lines of Standard ML, to move from an understanding of the mathemat-
ics [18] to an implementation that automates the process of checking high-level user
specifications and producing the necessary corecursion and coinduction theorems [5].

There are important differences between Isabelle/HOL and type theory systems
such as Coq in the way they currently handle corecursion. Consider the codatatype
of streams given by

codatatype a stream = (hd: @) < (tl: a stream)
where <1 is the constructor and hd, tl are the selectors. In Coq, a definition such as

corec natsFrom : nat — nat stream where
natsFrom n = n <0 natsFrom (n+1)



which introduces the functionn — n<in+1<1n+2 < ---, is accepted after a syntactic
check that detects the <i-guardedness of the corecursive call. In Isabelle, this check is
replaced by a deeper analysis. The primcorec command [5] transforms a user spec-
ification into a blueprint object: the coalgebra b = An. (n, n+ 1). Then natsFrom is
defined as corecCsiream b, Where coreCetream 1S the fixed primitive corecursive combinator
associated with the codatatype a stream. Finally, the user specification is is derived as
a theorem from the characteristic equation of the corecursor.

Unlike in type theories, where (co)datatypes and (co)recursion are built-in, the HOL
philosophy is to reduce every new construction to the core logic. This usually requires a
lot of implementation work but guarantees that definitions introduce no inconsistencies.
Isabelle’s approach is admittedly more bureaucratic than Coq’s, but for end users the
net effect is the same: They obtain their specification as a theorem.

Since codatatypes, corecursion, and coinduction are derived concepts, there is no
a priori restriction on the expressiveness of user specifications other than the expres-
siveness of HOL itself. Consider a variation of the function natsFrom, where addOne :
nat — nat stream — nat stream is a function that adds one to each element of a stream:

corec natsFrom : nat — nat stream where
natsFrom n = n < addOne (natsFrom n)

Coq’s syntactic check rejects this definition, because it does not know what to do about
addOne. After all, addOne could explore the tail of its argument or beyond, hence
blocking productivity and leading to underspecification or even an inconsistency.

Isabelle’s additional bookkeeping allows for more nuances. Suppose addOne has
been defined corecursively:

corec addOne : nat stream — nat stream where
addOne n = (hd n+ 1) <t addOne (tl n)

When analyzing addOne’s specification, the corec command synthesizes its definition
as a blueprint . This definition can then be proved to be friendly, hence acceptable in
corecursive call contexts when defining other functions. Functions with friendly defini-
tions are called friendly, or friends. Intuitively, a function is friendly if it consumes at
most one constructor before producing at least one.

In previous work [6], we presented the category theory underlying friends, including
its connection to relational parametricity. We now introduce a tool, AmiCo, that auto-
mates the process of applying and incrementally improving corecursion by synthesizing
and manipulating friends.

To demonstrate AmiCo’s expressive power and convenience, we used it to formal-
ize seven case studies in Isabelle, featuring a variety of codatatypes. Most of these are a
good fit for our friend-based approach; a few required ingenuity and suggest directions
for future work. The most convincing example relies on self-friendship, a concept in-
troduced by Blanchette et al.; until now, no realistic applications were known of such
“narcissist” definitions.

At the low level, the corecursion state summarizes what the system knows at a given
point, including the set of available friends and a corecursor up fo friends. Polymor-
phism complicates the picture, because some friends may only be available for specific



instances of a polymorphic codatatype. To each corecursor corresponds a coinduction
principle up to friends and a uniqueness theorem that can be used to reason about co-
recursive functions.

All of the constructions and theorems derived from first principles, without requir-
ing new axioms or extensions of the logic. This foundational approach prevents the
introduction of inconsistencies, such as those that have affected the termination and
productivity checkers of Agda [17] and Coq [9].

The user interacts with our tool via proof assistant commands. The corec command
defines a function f by extracting a blueprint b from a user’s specification, defining f us-
ing b and some corecursor, and deriving the original specification from the characteristic
property of the corecursor. Specifying the friend option to corec additionally regis-
ters the function under definition as a friend, enriching the corecursor state. Moreover,
corec supports mixed recursion—corecursion specifications, exploiting existing proof
assistant infrastructure for terminating (well-founded) recursion [12]. Semantic proof
obligations that must be discharged, notably termination, are either proved automati-
cally or presented to the user. Another command, friend_of_corec, registers existing
functions as friendly. Friend registration is an instance of term inferences directed by
logical relations, combined with parametricity proofs.

AmiCo is a significant piece of engineering, at about 7 000 lines of Standard ML
code. The tool is available as part of the development version of Isabelle and is sched-
uled for inclusion in the next official release.

We refer to our conference submission for details.®

References

[1] Abbott, M., Altenkirch, T., Ghani, N.: Containers: Constructing strictly positive types.
Theor. Comput. Sci. 342(1), 3-27 (2005)

[2] Asperti, A., Ricciotti, W., Coen, C.S., Tassi, E.: The Matita interactive theorem prover.
In: Bjgrner, N., Sofronie-Stokkermans, V. (eds.) CADE-23. LNCS, vol. 6803, pp. 64—69.
Springer (2011)

[3] Atkey, R., McBride, C.: Productive coprogramming with guarded recursion. In: Morrisett,
G., Uustalu, T. (eds.) ICFP 2013. pp. 197-208. ACM (2013)

[4] Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development. Coq’ Art:
The Calculus of Inductive Constructions. Springer (2004)

[5] Blanchette, J.C., Holzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.: Truly modu-
lar (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol.
8558, pp. 93-110. Springer (2014)

[6] Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion: a proof
assistant perspective. In: ICFP 2015. pp. 192-204 (2015)

[7] Bove, A., Dybjer, P., Norell, U.: A brief overview of Agda—A functional language with
dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 73-78. Springer (2009)

[8] Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: Programming and reasoning with
guarded recursion for coinductive types. In: Pitts, A.M. (ed.) FoSSaCS 2015. LNCS, vol.
9034, pp. 407-421. Springer (2015)

6 http://www.loria.fr/~jablanch/amico.pdf


http://www.loria.fr/~jablanch/amico.pdf

(9]

(10]

(1]
[12]

[13]
[14]

[15]
[16]
[17]

(18]

[19]

Dénes, M.: [Cog-Club] Propositional extensionality is inconsistent in Coq (2013), archived
at https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html
Giménez, E.: An application of co-inductive types in coq: Verification of the alternating
bit protocol. In: Berardi, S., Coppo, M. (eds.) TYPES ’95. LNCS, vol. 1158, pp. 135-152.
Springer (1996)

Harrison, J.: HOL Light: A tutorial introduction. In: FMCAD °96. LNCS, vol. 1166, pp.
265-269. Springer (1996)

Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U., Shankar, N.
(eds.) IICAR 2006. LNCS, vol. 4130, pp. 589-603. Springer (2006)

Nipkow, T., Klein, G.: Concrete Semantics: With Isabelle/HOL. Springer (2014)

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer (2002)

Rutten, J.J.M.M.: Universal coalgebra: A theory of systems. Theor. Comput. Sci. 249, 3—-80
(2000)

Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muiioz, C., Tahar,
S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28-32. Springer (2008)

Traytel, D.: [Agda] Agda’s copatterns incompatible with initial algebras (2014), archived
at https://lists.chalmers.se/pipermail/agda/2014/006759.html

Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional (co)datatypes for
higher-order logic—Category theory applied to theorem proving. In: LICS 2012, pp. 596—
605. IEEE (2012)

Turner, D.A.: Elementary strong functional programming. In: Hartel, P.H., Plasmeijer, M.J.
(eds.) FPLE *95. LNCS, vol. 1022, pp. 1-13. Springer (1995)


https://sympa.inria.fr/sympa/arc/coq-club/2013-12/msg00119.html
https://lists.chalmers.se/pipermail/agda/2014/006759.html

	Friends with Benefits
	1 Introduction


