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Abstract. Numerous models of probabilistic systems are studied in the litera-
ture. Coalgebra has been used to classify them into system types and compare
their expressiveness. In this work, we formalize the resulting hierarchy of proba-
bilistic system types in Isabelle/HOL by modeling the semantics of the different
systems as codatatypes. This approach yields simple and concise proofs, as bisim-
ilarity coincides with equality for codatatypes. On the way, we develop libraries
of bounded sets and discrete probability distributions and integrate them with the
facility for (co)datatype definitions.

1 Introduction

The framework of coalgebra provides a unified view on various ways of modeling
(probabilistic) systems [2, 20, 21, 24]. A system is represented as a function of type
σ⇒σ F that describes the possible evolutions of a state of type σ. Here, the functor
F (written postfix) determines the type of the system. For example, a non-deterministic
labeled transition system corresponds to a function σ⇒ (α⇒σ set), which returns the
set of the possible successor states for each label of type α. Similarly, a Markov chain
can be characterized by a function from a state to the probability distribution over the
successor states. More complicated types combine non-deterministic and probabilistic
aspects in different ways.

Bartels et al. [2] and Sokolova [21] compare the expressiveness of system types
found in the literature and arrange them in a hierarchy. They define a type of systems
to be at least as expressive as another if every system of the latter can be mapped to a
system of the former such that the mapping preserves and reflects bisimilarity, where
two systems are bisimilar iff they cannot be distinguished by finite observations [17].

In this paper, we formalize the probabilistic system types (§5) and their hierarchy
(§6) in Isabelle/HOL. The salient feature is that we model the system types as codata-
types (§2) rather than functions as done in the original proofs [21]. On codatatypes,
bisimilarity coincides with equality, which allows for convenient equational reasoning.
This makes the proofs simple and concise, i.e., highly automated and without lots of
technical clutter. Our formalization is publicly available [14].

To construct the codatatypes, we introduce new types to express non-deterministic
and probabilistic choice, namely bounded (non-empty) powerset (§3) and discrete prob-
ability distributions (§4). We integrate them with Isabelle’s new package for (co)data-
types [4, 6, 22]. Thus, we can define the codatatypes directly, which demonstrates the
versatility of the new package. Moreover, future formalizations [18, 25] benefit, too, as
recursion in (co)datatypes may now occur under discrete distributions and bounded sets.



Our work is more than just an exercise in formalization. We extend the original
hierarchy with additional standard system types and discover new interconnections by
considering systems extended with an additional label (§6.3). Moreover, the formaliza-
tion has revealed a flaw in the original hierarchy proof. We show that Vardi systems
(also known as concurrent Markov chains [23]) do not satisfy the assumptions required
in [21] and therefore must be (partially) dismissed from the hierarchy (§6.4).

2 Preliminaries: Codatatypes via Bounded Natural Functors

The flexibility of Isabelle’s (co)datatype package originates from a semantic criterion
that defines where (co)recursion may appear on the right-hand side of a (co)datatype
declaration (in contrast to syntactic criteria employed by most if not all other proof
assistants including past versions of Isabelle).

The core of the semantic criterion relies on the notion of a bounded natural functor
(BNF) [4, 22]. Here, we shortly introduce BNFs targeted at our application. A (unary)
BNF is a type expression α F with a type parameter α equipped with a polymorphic
map function mapF :: (α⇒ β)⇒α F⇒ β F, a polymorphic set function setF :: α F⇒
α set, and an infinite cardinal bound bdF on the number of elements returned by setF.
Additionally, these constants must satisfy certain properties (e.g., mapF is functorial,
i.e., preserves identities and composition, and setF is a natural transformation, i.e.,
commutes with mapF). For example, the type of (finite) lists α list forms a BNF with the
standard map function map and the function set returning the set of the list’s elements.

The semantic criterion allows (co)recursion to occur nested under BNFs. For exam-
ple, the (co)datatypes α tree and α ltree of finitely branching trees nest the (co)recursive
occurrences of α tree and α ltree under the BNF list:

datatype α tree = Node α (α tree list)
codatatype α ltree = Node α (α ltree list)

While only trees of finite depth inhabit the datatype α tree, the codatatype α ltree also
hosts trees of infinite depth. For example, the full binary tree z containing 0 everywhere
is defined by primitive corecursion [4]: primcorec z :: nat ltree where z=Node 0 [z, z].

Users can register custom types as BNFs by supplying the required constants and
discharging the proof obligations for the BNF properties. Newly registered BNFs can
then participate in further (co)datatype declarations. For example, after registering Isa-
belle’s type of finite sets α fset as a BNF, we can define unordered finitely branching
trees of potentially infinite depth: codatatype α lftree = Node α (α lftree fset).

In general, BNFs can have arbitrary arity and may depend on additional dead type
variables that are ignored by the map function. For example, the sum and product types
are binary BNFs, while the function type α⇒β is a unary BNF with the dead variable
α (BNFs thereby disallow recursion through negative positions [10]). Compositions of
BNF are again BNFs. We say that a BNF α F induces a codatatype CF

codatatype CF = CtrF (CF F)

with a single bijective constructor CtrF :: CF F⇒CF, its inverse destructor DtrF ::
CF⇒CF F and the associated coiterator unfoldF defined by primitive corecursion:
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primcorec unfoldF :: (α⇒α F)⇒α⇒CF where
DtrF (unfoldF s a) = mapF (unfoldF s) (s a)

Finally, induced codatatypes are equipped with a coinduction rule for proving equal-
ity by exhibiting a bisimulation relation witness R:

R x y ∀x y. R x y−→ relF R (DtrF x) (DtrF y)
(x :: CF) = (y :: CF)

where the relator relF :: (α⇒β⇒bool)⇒α F⇒β F⇒bool lifts binary relations over
elements to binary relations over the functor F. It is defined for each BNF canonically
in terms of mapF and setF (where π1 and π2 denote the standard product projections):

relF R x y = ∃z. setF z⊆ {(x, y) | R x y} ∧mapF π1 z = x ∧mapF π2 z = y (1)

3 Bounded Powerset

In this and the next section we define three new types and register them as BNFs. We
start with the simpler two: bounded sets and non-empty bounded sets, with which we
will model non-determinism on a state space. Our new type and its BNF structure gener-
alize the existing BNFs for finite sets α fset and countable sets α cset in Isabelle/HOL’s
library. Note that Isabelle’s standard type of unbounded sets α set is not a BNF, due to
the absence of a cardinal bound on the number of elements contained in a set.

As for bounded sets, we cannot directly express the dependence of a type on a
cardinal bound constant within the simply typed logic of Isabelle. A standard trick [11]
is to let the type depend on a type κ (and thereby on κ’s cardinality) instead. We obtain
the following type definitions for the type α setκ of strictly κ-bounded sets:

typedef α setκ = {A :: α set | |A| <o |UNIV :: κ set|+c ℵ0}

The operators |− |, <o, +c and the constant ℵ0 = |UNIV :: nat set| are part of Isabelle’s
library of cardinals [5]—their exact definition is irrelevant; they encode the intuition
that α setκ contains all sets of strictly smaller cardinality than κ if κ is an infinite type
(in which case |UNIV :: κ set|+c ℵ0 =o |UNIV :: κ set|) and all finite sets otherwise
(since |UNIV :: κ set|+c ℵ0 =o ℵ0 for finite κ). In other words: If we instantiate κ with a
finite or countable type, then α setκ is isomorphic to α fset, and if we instantiate κ with
the cardinal successor of ℵ0 [5], then α setκ is isomorphic to α cset.

It is easy to define the map and set function for α setκ using the Lifting tool [15]:

lift-definition mapset :: (α⇒β)⇒α setκ⇒β setκ is image
lift-definition setset :: α setκ⇒α set is id

The map function only acts on the element type α, which implies that κ will be a
dead type variable of the following BNF structure. The bound for the set size in the
above typedef command serves as bound for the BNF, too.

bnf α setκ map: mapset set: setset bd: |UNIV :: κ set|+c ℵ0
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To finish the registration of α setκ as a BNF, the bnf command requires the user to
discharge the following proof obligations. (The proofs of these properties are straight-
forward generalizations of the ones for α fset.)

mapset id = id mapset ( f ◦g) = mapset f ◦mapset g

|setset X| ≤o |UNIV :: κ set|+c ℵ0 setset ◦mapset f = image f ◦ setset
(∀x ∈ setset X. f x = g x)−→mapset f X = mapset g X

relset R �•�• relset S v relset (R �•�• S)

The first five being easy to discharge, the last proof obligation requires some expla-
nation: v denotes implication lifted to binary predicates and �•�• denotes the relational
composition of binary predicates. With this definition the last proof obligation is equiv-
alent to what in categorical jargon is called weak pullback preservation. We can show
that bounded sets preserve weak pullbacks iff the bound on the number of elements is
infinite or ≤ 2. In our case, the bound is infinite due to the addition of ℵ0, therefore
α setκ is a BNF. This corrects an earlier claim that α setκ is a BNF for all κ [22].

Similarly to α setκ, we define (and prove being a BNF) the type α setκ1 of nonempty
strictly κ-bounded sets which will be used to model Markov decision processes.

typedef α setκ1 = {A :: α set | A 6=∅ ∧ |A| <o |UNIV :: κ set|+c ℵ0}

4 Probability Mass Functions

We introduce a type of probability mass functions (pmf ) on a type α, representing dis-
tributions of discrete random variables on α. There are two views on a pmf: (1) as a
non-negative real-valued function which sums up to 1, and (2) as a discrete probability
measure which has a countable set S which has probability 1. Both views are available
in our formalization. In this paper, however, we only present the measure view, as we
lift all presented definitions from the existing formalization of measure theory [13].

A measure M :: α measure consists of a σ-algebra of measurable sets sets M and a
measure function µ M that is non-negative and countably-additive on sets M. A proba-
bility distribution M assigns 1 to the whole space (µ M UNIV= 1). It is discrete iff every
set is measurable (sets M = UNIV) and there exists a countable set S with µ M S = 1.

typedef α pmf = {M :: α measure |
µ M UNIV = 1 ∧ sets M = UNIV ∧ (∃S . countable S ∧ µ M S = 1)}

The command typedef generates a representation function measurepmf :: α pmf⇒
α measure. By declaring it as a coercion function, we can omit it in most cases. In par-
ticular, we write µ p A for µ (measurepmf p) A. So, the probability mass of a value x is
the measure of its singleton set {x}. We lift the support set from the measure definition:

lift-definition setpmf :: α pmf⇒α set is λM. {x | µ M {x} 6= 0}
Next, we lift the monadic operators bindpmf and returnpmf from the Giry monad on

measure spaces [8] to pmfs. The map function mappmf is then defined in a standard way
as a combination of these monadic operators.

lift-definition bindpmf :: α pmf⇒ (α⇒β pmf)⇒β pmf is bind
lift-definition returnpmf :: α⇒α pmf is return (count-space UNIV)
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definition mappmf :: (α⇒β)⇒α pmf⇒β pmf where
mappmf f M = bindpmf M (λx. returnpmf ( f x))

When working with general measure spaces, all functions must be shown to be measur-
able. In our restricted discrete setting all function are trivially measurable, hence char-
acteristic theorems about bindpmf and returnpmf carry no measurability assumptions:

bindpmf (bindpmf M f ) g = bindpmf M (λx. bindpmf ( f x) g)
bindpmf (returnpmf x) f = f x
bindpmf M returnpmf = M

The behavior of bindpmf and returnpmf under setpmf is as expected:

setpmf (bindpmf M f ) =
⋃

x∈setpmf M setpmf ( f x)
setpmf (returnpmf x) = {x}
(∀x ∈ setpmf M. f x = g x)−→ bindpmf M f = bindpmf M g

Another standard construction in probability theory is the conditional probabil-
ity Pr(X ∈ A | X ∈ B) = Pr(X ∈ A∧ X ∈ B)/Pr(X ∈ B), i.e. the probability that the
random variable X has a result in A under the assumption that X is in B. This re-
quires that X being in B has positive probability. In Isabelle’s measure theory, the func-
tion uniform-measure expresses a conditional probability. It returns a probability space
when the measure of the set B is positive. Clearly, lifting uniform-measure to pmfs
works only if we restrict B to such sets. Therefore, we fix a pmf p and a set B with the
assumption setpmf p∩B 6=∅, which is equivalent to µ p B 6= 0.

lift-definition condpmf :: α pmf is uniform-measure (measurepmf p) B

Whenever setpmf p∩B 6=∅ holds we will from now on write condpmf p B. We then have
µ (condpmf p B) A= µ p (A∩ B) / µ p B and hence setpmf (condpmf p B)= setpmf p∩B.

Probability Mass Functions as a BNF We now prove that α pmf is a BNF such that the
codatatypes for the probabilistic systems can recurse through α pmf. To that end, we
define the relator relpmf on pmfs and prove that setpmf, mappmf, and relpmf satisfy the
BNF properties. The definition of relpmf R p q is canonical as in (1). The existentially
quantified z corresponds to a matrix of non-negative reals with a row and a column for
each element in the support of p and q, respectively, such that (i) summing over a row
i or a column j yields the mass of p or q concentrated in i or j, and (ii) positive entries
are only at cells (i, j) for which R i j holds. We call such a matrix an R-lifting matrix
for p and q.

With the lemmas about bindpmf, returnpmf, setpmf and the definition of mappmf we
immediately derive the functorial BNF properties for pmfs with the cardinal bound ℵ0.
Only distributivity with composition has interesting proof, i.e., relpmf R �•�• relpmf S v
relpmf (R �•�• S). That is, given an R-lifting matrix z1 for pmfs p and q and an S -lifting
matrix z2 for q and r, we have to construct an (R �•�• S)-lifting matrix z for p and r.
In the course of this work, we have formalized a series of three different constructions
for z, each of which made the previous proof simpler and more concise. The steps
are recorded in the changesets (mentioned below) of the Isabelle repository at http:
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//isabelle.in.tum.de/repos/isabelle. This process illustrates how pmfs provide
abstraction and lead to shorter proofs.

Initially, we followed Sokolova’s construction [21]. She defines the matrix z as the
sum of matrices z j over j∈ setpmf q where each z j is an T j-lifting matrix for the jth col-
umn of z1 and the jth row of z2 (we ignore that the rows and columns do not sum to 1)
where T j i k = R i j ∧ S j k. An iterative algorithm constructs the matrix z j by walking
on a path from the upper left corner to the lower right and setting each entry to the max-
imum such that neither the row sum nor the column sum is exceeded. If the row sum is
matched after setting the entry, the path continues down, if the column sum is matched,
it goes to the left, if both are matched, it goes diagonally to the right and down. Her proof
that z is an (R�•�• S)-lifting matrix for p and r requires five pages on paper [21, Lemmas
3.5.5, 3.5.6]. Our HOL formalization of a recursive version of the algorithm and the
proof of the distributivity property is arduous and takes 577 lines (4999a616336c). By
switching from real-valued functions to pmfs and using mappmf in the construction of z
from the z j, we were able to shorten the proof to 406 lines (43e07797269b). Still, most
of the proof script dealt with showing the equality of different summations.

Next, we realized that taking a path through the matrix and setting the entries to
maximum values was needlessly convoluted. Instead, we fill the ith row of z j by dis-
tributing z1’s value at (i, j) over the columns according to the jth row of z2. This elim-
inates all the inductions and several bijections between the support sets and natural
numbers, which were needed for the recursion. This is the proof by Jonsson et al. [16]
formalized in 101 lines (922d31f5c3f5, 922d31f5c3f5). Zanella [26] has previously
formalized this proof for CertiCrypt using Audebaud’s and Mohring’s library [1]. His
proof script needs 337 lines of Coq.

Finally, we noted that the distribution over the columns and the summation over the
z j yields a conditional probability. So, we now define z simply as

z= bindpmf z1 (λ(i, j). bindpmf (condpmf z2 {( j′, k) | j′= j}) (λ(_, k). returnpmf(i, k)))

Thus, only one conjunct is shown with summations, namely of mappmf π1 z = p. The
others are discharged by reasoning with the laws about setpmf, bindpmf, condpmf, and
returnpmf. The following law is particularly useful. It generalizes the law of total prob-
ability, which states Pr(A) = ∑n Pr(A | Bn) ·Pr(Bn) for a countably indexed partition B.
Note that bindpmf expresses the sum and R relates the events of a and b.

relset R (setpmf a) (setpmf b)

∀x ∈ setpmf a. ∀y ∈ setpmf b. R x y−→ µ a {x | R x y}= µ b {y | R x y}
bindpmf b (λy. condpmf a {x | R x y}) = a

(2)

Here, the set relator relset R A B denotes (∀a∈A.∃b∈B. R a b) ∧ (∀b∈B.∃a∈A. R a b).
(Using the same notation for bounded and unbounded sets, this characterization also
holds for the relator of bounded sets.) We use this law to show mappmf π2 z= r. Observe
that mappmf π2 z = mappmf π2 (bindpmf q (λy. condpmf z2 {(y′,z) | y′ = y})). Applying
the law to the right-hand side yields mappmf π2 z2, which equals r by assumption.

In the end, our proof is just 46 lines, which includes 18 lines for the proof of equa-
tion 2 (224741ede5ae). This confirms in our eyes that our pmf library is well designed.
Also, we argue that the proof has gained in clarity from the reduction in size. We elim-
inated most of the technical transformations of sums and express them more abstractly.
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Fig. 1: Two labeled Markov chains (the dotted lines represent a bisimulation relation)
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(c) Segala system

Fig. 2: Three probabilistic automata with non-deterministic and probabilistic choice

5 Probabilistic Systems

Probabilistic Systems as Probabilistic Automata First, we review the approach of mod-
eling probabilistic systems as probabilistic automata. These automata fall into differ-
ent classes depending on whether they make use of probabilistic and non-deterministic
choice, where labels are placed, and whether transitions generate output for the envi-
ronment or receive input from it.

Labeled Markov chains are a very simple class of probabilistic automata. Here each
state has a label and specifies a probability distribution over the successor states. Fig-
ure 1 shows two labeled Markov chains. In our figures, � or4 denote labels and num-
bers between 0 and 1 denote probabilities. The Markov chain on the right stores in the
state only whether the system has reached the label4. In contrast, the one on the left
additionally records in its states how many steps have been taken to reach4.

When modeling systems with probabilistic automata, we usually care only about the
labels, not the states. In that respect, both Markov chains produce the same observations
with the same probabilities. Thus, it is sensible to consider the two chains as being
equivalent. Bisimulation captures this equivalence by identifying states which cannot
be distinguished by observing the labels in any behavior originating from these states.
For labeled Markov chains, a bisimulation relation is an equivalence relation R on the
states such that whenever s and t are related by R, then their labels are the same and for
all equivalence classes C of R, the probabilities of going to C from s and t are the same.

7



In Figure 1, the dotted lines show a bisimulation relation between the two chains. We
say that labeled Markov chains on the same state space are bisimilar if the initial states
are related in some bisimulation relation.

Combining non-deterministic and probabilistic choice, we get more complicated
models. Figure 2 shows three examples. In a Markov decision process, each state has
a label, but it may choose non-deterministically a distribution of the successor states.
Graphically, the transition edges split after having taken the non-deterministic choice. In
a simple Segala system, the label is attached to the non-deterministic transitions rather
than the states. So, the transition generates the label instead of the state. And in a Segala
system, the label is attached to the probabilistic choice rather than the non-deterministic
one. For these more complicated systems, the definition of bisimulation is analogous to
Markov chains, but more involved.

Coalgebraic View on Probabilistic Systems Next, we switch perspective and outline
the coalgebraic approach to modeling probabilistic systems [2,21,24]. We recollect the
basic coalgebraic vocabulary (an in-depth introduction can be found elsewhere [20])
and show how these notions are reflected in Isabelle/HOL.

Given a functor F, an F-coalgebra is defined as a pair (A, s) with the carrier set A
and the structural mapping s : A→ F A. In our typed environment of HOL, we restrict
our attention to bounded natural functors and require the carrier set of a coalgebra to
be the universe of a certain type σ. Therefore, for us a coalgebra is just a function
s :: σ⇒σ F for a BNF σ F. Intuitively, a coalgebra s :: σ⇒σ F describes a transition
system whose states are in σ and each state x ::σ evolves into s x ::σ F. For example, if
σ F = σ pmf, then s x :: σ pmf is a discrete probability distribution over the next states
and s taken as a whole denotes an unlabeled Markov chain.

Bisimilarity can be defined uniformly on coalgebras [12]: states x and y of two
systems s1 and s2 are F-bisimilar (written x s1∼s2

F y) iff there exists a relation R ::
α⇒β⇒bool (called bisimulation) that relates x and y and for all related pairs of states
x and y their evolutions s1 x and s2 y are related by relF R :: α F⇒β F⇒bool. Formally:

x s1∼s2
F y = ∃R. R x y ∧ (∀x y. R x y−→ relF R (s1 x) (s2 y))

It turns out that this generic notion coincides with the known concrete bisimilarity no-
tions for all systems F that we consider [2, 21]. We should note that for σ F = σ pmf
all states of all systems are bisimilar: ∀s1 s2 x y. x s1∼s2

pmf y—the bisimulation relation
witness is R = λx y. True. This fact corresponds to the intuition that bisimilarity can
only distinguish states through observations along their evolutions, while an unlabeled
Markov chain does not produce anything observable. For labeled Markov chains and
other systems bisimilarity is a more interesting concept.

The last important notion is that of a final F-coalgebra: an F-coalgebra for which
there exists an unique morphism from any other coalgebra. In our context, the final co-
algebra for a BNF F is the destructor DtrF :: CF⇒CF F of the codatatype CF induced by
F (states of the final coalgebra are of type CF) and the finality is witnessed by the coiter-
ator unfoldF mapping a coalgebra s ::σ⇒σ F to the (unique) function unfoldF s ::σ⇒
CF satisfying the characteristic equation of a coalgebra morphism: DtrF ◦unfoldF s =
mapF (unfoldF s)◦ s. The similarity of the coinduction rule for CF to the definition of
bisimilarity is not a coincidence: codatatypes are quotients modulo bisimilarity.
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Name BNF Induced Codatatype

Markov chain σ pmf MC
Labeled Markov chain α×σ pmf α LMC
Labeled Markov decision process α×σ pmf setκ1 α LMDPκ

Deterministic automaton α⇒σ option α DLTS
Non-deterministic automaton∗ (α×σ) setκ α LTSκ

Reactive system α⇒σ pmf option α React
Generative system (α×σ) pmf option α Gen
Stratified system σ pmf+(α×σ) option α Str
Alternating system σ pmf+(α×σ) setκ α Altκ

Simple Segala system (α×σ pmf) setκ α SSegκ

Segala system (α×σ) pmf setκ α Segκ

Bundle system (α×σ) setκ pmf α Bunκ

Pnueli-Zuck system (α×σ) setκ1 pmf setκ2 α PZκ1, κ2

Most general system (α×σ+σ) setκ1 pmf setκ2 α MGκ1, κ2

∗ The type (α×σ) setκ is isomorphic to the more standard α⇒σ setκ for α set≤ κ.

Table 1: List of formalized probabilistic systems

Modeled Systems Table 1 lists the systems we consider and their BNFs. (The stan-
dard type datatype α option = None | Some α is another BNF.) This list contains all
the systems from the original probabilistic hierarchy [21], except for Vardi systems,
which must be treated separately (§6.4). Moreover, popular systems—labeled Markov
chains and Markov decision processes—are new additions. The third column assigns a
name to the induced codatatype (e.g., for labeled Markov decision processes, we write
codatatype α LMDPκ = CtrLMDP (α×α LMDPκ pmf setκ1) in Isabelle).

6 The Formalized Hierarchy

How can one compare the expressiveness of the different probabilistic system types? A
natural criterion [21] is to exhibit a mapping between the types of systems that preserves
and reflects bisimilarity as a witness for an increase in expressiveness along the map-
ping. Figure 3 shows our formalized hierarchy where arrows represent such mappings.
New systems, not analyzed by Sokolova [21], are highlighted with a gray background.
Some arrows are annotated with necessary conditions on the bounds of the involved
bounded set types. We refer to our formalization [14] for the definitions of all mappings.

Below, we first sketch our proof of the preservation and reflection of bisimilarity
abstractly for any mapping. Then we present our formal Isabelle proof for one particular
pair of system types and compare our formalized hierarchy with the original [21].

6.1 The Abstract Proof

Formally, for two types of systems given as BNFs F and G, we consider G to be at least
as expressive as F, if there is a mapping G_of_F ::σ F⇒σ G that preserves and reflects
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α MGκ1, κ2α option PZκ1, κ2

α option Bunκ α option Segκ

α Altκ
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α Bunκ α Segκ

α Gen α SSegκ
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α Strα LMDPκ

α LMC α Reactα LTSκ MC

α DLTS

κ≤κ1 κ≤κ2

κ≤κ1 κ≤κ2

α set≤κ

α set≤κ

Fig. 3: Probabilistic hierarchy

bisimilarity, i.e., satisfies

x s1∼s2
F y ←→ x (G_of_F◦s1)∼(G_of_F◦s2)

G y (3)

for all F-coalgebras s1, s2 :: σ⇒σ F and states x, y :: σ. Note that by composing the
F-coalgebras with G_of_F we obtain G-coalgebras: G_of_F◦ s1, G_of_F◦ s2 ::σ⇒σ G.

For any mapping G_of_F :: σ F⇒σ G, we prove equation 3 in four steps starting
from the right-hand side:

x (G_of_F◦s1)∼(G_of_F◦s2)
G y 1←→ unfoldG (G_of_F◦ s1) x = unfoldG (G_of_F◦ s2) y

2←→ G_of_F (unfoldF s1 x) = G_of_F (unfoldF s2 y)
3←→ unfoldF s1 x = unfoldF s2 y
1←→ x s1∼s2

F y

where G_of_F :: CF⇒CG abbreviates unfoldG (G_of_F ◦DtrF). The first and the last
step (labeled with a 1) are both instances of the general fact that for any BNF F, bisim-
ilarity is equivalent to equality on the induced codatatype CF. Formally, x s1∼s2

F y←→
unfoldF s1 x = unfoldF s2 y.

In step 2 we perform equational reasoning. The diagram in Figure 4 illustrates the
situation. Essentially it shows three commutative diagrams for the characteristic prop-
erty of the coiterators unfoldF and unfoldG: one for the F-coalgebra s in the lower left
rectangle; one for the G-coalgebra G_of_F◦ s using the outermost arrows; and one for
the G-coalgebra G_of_F◦DtrF in the upper rectangle.

To make the overall diagram commute, the mapping G_of_F has to be a natural
transformation, i.e., commute with the map functions for F and G (lower right rectan-
gle). Once this is ensured we can deduce unfoldG (G_of_F ◦ s) = G_of_F ◦ unfoldF s
(leftmost “triangle”) and use this equation as a rewrite rule.

10
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Fig. 4: Bisimilarity preservation and reflection via codatatypes

Step 3 holds universally iff G_of_F is injective (note that unfoldF is surjective, since,
e.g., unfoldF DtrF = id). In principle, injectivity of G_of_F can be further reduced to
injectivity of G_of_F, which yields the nice abstract characterization from the original
hierarchy [2, 21]: if G_of_F is an injective natural transformation then it preserves and
reflects bisimilarity. Instead of formalizing the reduction of injectivity of G_of_F to the
injectivity of G_of_F (which must be done for all concrete instances of G_of_F), we
found it easier to prove the injectivity of G_of_F directly by coinduction. Likewise,
instead of chasing the above commutative diagram, we also prove directly the equation
unfoldG (G_of_F◦ s) = G_of_F◦unfoldF s by coinduction.

6.2 A Concrete Example

We consider a particular instantiation for the BNFs F and G: simple Segala systems (F=
(α×σ pmf) setκ) and Segala systems (G = (α×σ) pmf setκ) and define the mapping
G_of_F sseg = mapset (λ(a, p).mappmf (λs. (a, s)) p) sseg.

Next, we formally prove the properties of G_of_F outlined in the previous section
by straightforward coinductions. We start with the detailed manual proof of the com-
mutation property (leftmost “triangle” in Figure 4).

The proof shown in Figure 5 gives a flavor of the proof obligations that arise with
coinduction. The coinduction method instantiates the free variable R from the coin-
duction rule for α Segκ with the canonical bisimulation witness λseg seg′. ∃x. seg =
unfoldG (G_of_F ◦ s) x ∧ seg′ = (G_of_F ◦ unfoldF s) x and performs some mini-
mal postprocessing [4]. We are left to prove that DtrG (unfoldG (G_of_F ◦ s) x) and
DtrG (unfoldG (G_of_F ◦ s) x) are related by the bisimulation witness lifted to the
α Segκ-inducing BNF via its relator. This subgoal is easy to discharge by unfolding
and resolution. All the used theorems with a dot in their name are generated by the
primrec and bnf commands. The theorem unfoldF.simps is the characteristic property
of the coiterator; theorems rel-map (two theorems) and rel-refl follow from the BNF
properties and are given below for α pmf:

relpmf R (mappmf f p) q = relpmf (λx y. R ( f x) y) p q
(∀x. R x x)−→ relpmf R p prelpmf R p (mappmf g q) = relpmf (λx y. R x (g y)) p q

11



lemma unfoldG (G_of_F◦ s) = G_of_F◦unfoldF s
proof (rule ext)

fix x
show unfoldG (G_of_F◦ s) x = (G_of_F◦unfoldF s) x
proof (coinduction arbitrary: x)

fix x
show relset (relpmf (relprod (=) (λseg seg′. ∃x. seg = unfoldG (G_of_F◦ s) x ∧

seg′ = (G_of_F◦unfoldF s) x)))
(DtrG (unfoldG (G_of_F◦ s) x)) (DtrG ((G_of_F◦unfoldF s) x))

unfolding unfoldG.simps unfoldF.simps bset.rel-map pmf.rel-map
o-def split-beta map-prod-def rel-prod-apply id-apply fst-conv snd-conv

by (rule bset.rel-refl pmf.rel-refl conjI exI refl)+
qed

qed

Fig. 5: Isar proof of the commutation property from simple Segala to Segala systems

The proof can be automated by registering the appropriate rules as simplification and
introduction rules. Furthermore, it can be seen as a proof template: we have to perform
the same reasoning for all concrete mappings that we consider and the only part that is
changing is the relator. Fortunately, the Eisbach proof method language [19] helps us to
avoid repeating the proof by creating a dedicated proof method, where we replace the
manual unfolding and rule steps by fastforce. The proof then collapses to a one-liner.

method-definition commute-prover =
rule ext,
match conclusion in u1 s1 x = ( f ◦u2 s2) x for f u1 u2 s1 s2 x⇒

(coinduction arbitrary: x, fastforce)

lemma unfoldG (G_of_F◦ s) = G_of_F◦unfoldF s by commute-prover

We treat the injectivity of G_of_F and the fact that bisimilarity coincides with equal-
ity on codatatypes for F and G in a similar fashion. As before, we omit some essential
simplification and introduction rules given as arguments to fastforce that make the fol-
lowing degree of automation possible.

method-definition inj-prover =
rule injI,
match conclusion in x = y for x y⇒ (coinduction arbitrary: x y, fastforce)

lemma inj G_of_F by inj-prover

method-definition∼-alt-prover =
intro iffI, elim exE conjE,
match conclusion in u1 s1 x = u2 s2 y for u1 u2 s1 s2 x y⇒

(coinduction arbitrary: x y, fastforce), fastforce

lemma x s1∼s2
F y←→ unfoldF s1 x = unfoldF s2 y by ∼-alt-prover

lemma x s1∼s2
G y←→ unfoldG s1 x = unfoldG s2 y by ∼-alt-prover

12



Overall, for each of the 14 considered probabilistic system types we prove the al-
ternative bisimilarity characterization by ∼ -alt-prover and for each of the 22 map-
pings (there are 25 arrows in Figure 3, but e.g., the mapping from α option SSegκ to
α option Segκ is the same as the one from α SSegκ to α Segκ) we prove two statements
by a one-liner with one of our dedicated methods: commute-prover and inj-prover. Fi-
nally, we state the 25 bisimilarity preservation and reflection properties (equation 3)
and prove all of them by equational reasoning (i.e., one line of unfolding). The whole
hierarchy is formalized in 450 lines (including the codatatype declarations).

6.3 Comparison to the Original Hierarchy

Our formalized hierarchy differs structurally from the original hierarchy [21] in three
aspects. First, ours omits the Vardi systems (also known as concurrent Markov chains)
for reasons we outline in a separate section (§6.4). Conversely, we have added two
popular types of systems, namely labeled Markov chains and Markov decision pro-
cesses. Furthermore, we observe that the Most General systems α MGκ1, κ2 , specifically
introduced in the original hierarchy in order to have a top element, are isomorphic to
Pnuelli-Zuck systems extended with a single additional label (which we model by using
α option instead of just α, i.e., α option PZκ1, κ2 ). In other words, no new structurally dif-
ferent probabilistic system is needed to get a top element if one allows additional labels.
Following up on this idea, we investigated adding new labels to various other systems in
the hierarchy. As a result, Alternating systems α Altκ are placed below label-extended
simple Segala systems α option SSegκ and Bundle systems α option Bunκ, instead of
just below the top element α MGκ1, κ2 as in the original hierarchy.

Our usage of codatatypes (final coalgebras) caters for highly automatable proofs.
However, the resulting conciseness comes at a price: final coalgebras need to exist.
Concretely, this means that all our systems must be BNFs, in particular bounded and
weak pullback preserving. In contrast, the original hierarchy does not require a bound-
edness assumption (basically allowing to use α set instead of α setκ) and requires for
each mapping only the system functor of the mapping’s domain to preserve weak pull-
backs. While we acknowledge the latter as a limitation of our approach, we point out
that the boundedness assumption is not a restriction in the setting of the hierarchy, since
the mappings are polymorphic in the type κ used as the bound. That is, for any concrete
system with unbounded non-determinism (α set) expressible in HOL we can find an
isomorphic bounded one, and the mapping will show how to transform this bounded
system into one that is higher in the hierarchy.1 In contrast, the bounds being part of the
types is in some sense more precise—for example, we see that there are two ways of
embedding α Altκ in α MGκ1, κ2 transitively via α option SSegκ or α option Bunκ and
the cardinal bounds give a hint which route was taken.

6.4 Vardi Systems

Vardi systems, also known as concurrent Markov chains [23], blend non-deterministic
and probabilistic transitions in a rather symmetric fashion. They are similar to coalge-

1 Clearly, this discussion is somewhat esoteric, since in practice one barely is interested to look
beyond countable sets. Still, we are interested in keeping the results as general as possible.
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Fig. 6: Intransitivity of Vardi systems

bras of the binary BNF (α, σ) Varκ0 = (α×σ) pmf+(α×σ) setκ; however there is
a twist: Vardi systems identify the singleton bounded set {(a, s)} with the singleton
discrete distribution returnpmf (a, s). Formally, we define the equivalence relation 1 in-
ductively by the following three rules, where Inl and Inr are the sum type embeddings.

v 1 v Inl (returnpmf (a, s)) 1 Inr {(a, s)} Inr {(a, s)} 1 Inl (returnpmf (a, s))

The type (α, σ) Varκ is then defined as a quotient of (α, σ) Varκ0 by 1. Lifting the func-
torial structure of (α, σ) Varκ0 to the quotient (α, σ) Varκ is straightforward and we omit
the definitions. However, it turns out that the resulting quotient is not a BNF: its canon-
ical relator relVar does not distribute over relation composition. We only try to convey
the intuition behind this fact—a formal proof can be found in our formalization. Fig-
ure 6 shows on the left two Vardi automata that use only non-deterministic transitions
and are related by relset R (lifted to the sum type (α, σ) Varκ0 and further to the quotient
type (α, σ) Varκ) where R x y←→ y =4. Similarly, the two automata on the right are
related by relpmf S where where S x y←→ x =4. The two middle automata are related
by 1, i.e., they are equal on the quotient type (α, σ) Varκ. Distributivity of the relator
requires the two outermost automata to be related by relVar, but this is not the case.

Since (α, σ) Varκ is not a BNF, our proof approach is not applicable. Not only that,
the above counterexample, found in the course of formalization, is easily transferable
into the general coalgebraic setting, allowing us to prove that the functor used in the
original hierarchy [21] does not preserve weak pullbacks, and as a consequence bisim-
ilarity of Vardi systems is not an equivalence relation. The weak pullback preservation,
however, is a necessary criterion for the original proof method for two mappings from
Vardi to Segala and Bundle systems. Those outgoing “arrows” must be purged: there is
no such bisimilarity preserving and reflecting mapping.

In contrast to our approach, the original proof still covers the two incoming “arrows”
from non-deterministic automata and generative systems to Vardi systems. We have
formalized those bisimilarity preserving and reflecting mappings separately, without
going through codatatypes. The proofs are significantly longer (overall 145 lines for
just two mappings, contrasting 450 lines for 25 mappings in our hierarchy) and less
suited for automation, because they require several non-trivial quantifier instantiations.
In summary, equational reasoning on codatatypes proved superior whenever applicable.

7 Further Related Work

In the other sections of the paper, we have already referenced existing work we build
on, in particular Sokolova’s [2,21] and the Isabelle packages and tools [4–6,13,15,19].

14



Our formalization of pmfs is similar to the work in Coq presented by Audebaud
and Paulin-Mohring [1]. They introduce a monadic structure on subprobability mea-
sures. They use integrals as representations of measures, while in our case we directly
lift measures from Isabelle’s measure theory. As their measures are subprobabilities
they also provide a fixed-point operator which is not available in general for α pmf.
Their formalization is also directed towards program verification; they do not provide a
functorial structure (i.e. mappmf and setpmf in our case) on their type of measures.

Apart from process algebra [16], the relator relpmf is used in probabilistic relational
Hoare logic, too [3]. In this context, Zanella [26] proved distributivity with composition
in Coq; see §4 for a comparison. Deng [7] collects further results on the relator and its
applications. Beyond (strong) bisimilarity, weak bisimilarity compares systems mod-
ulo certain irrelevant invisible observations. Sokolova [21] recasts weak bisimilarity as
bisimilarity of translated systems, which in turn can be hierarchized as presented here.

Mechanizations of category theory abound (see [9] for an overview), and the hier-
archy result could probably be formalized with some of them. Yet, we do not formalize
the general theory, but its application to concrete instances. Thus, our system types are
proper HOL types and can be used directly for modeling concrete systems.

8 Conclusion

We have presented a formalization of the hierarchy of probabilistic system types in
Isabelle/HOL. The hierarchy stems from the coalgebraic framework, which presents
the various systems in a uniform fashion and caters for simple and concise proofs.
We model probabilistic systems as codatatypes, which enables convenient equational
reasoning and makes the proofs even more concise. This modeling requires nested co-
recursion through bounded sets and discrete probability distributions—a perfect match
for demonstrating the flexibility of Isabelle’s new codatatype facility. Finally, we have
learned that weak pullback preservation is an important but subtle property, by uncov-
ering two mistakes in informal proofs.
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