Soundness and Completeness Proofs by Coinductive Methods

Jasmin Christian Blanchette, Andrei Popescu, Dmitriy Traytel

Abstract

We show how codatatypes can be employed to produce compact, high-level proofs of key results in logic: the soundness and completeness of proof systems for variations of first-order logic. For the classical completeness result, we first establish an abstract property of possibly infinite derivation trees. The abstract proof can be instantiated for a wide range of Gentzen and tableau systems for various flavors of first-order logic. Soundness becomes interesting as soon as one allows infinite proofs of first-order formulas. This forms the subject of several cyclic proof systems for first-order logic augmented with inductive predicate definitions studied in the literature. All the discussed results are formalized using Isabelle/HOL’s recently introduced support for codatatypes and corecursion. The development illustrates some unique features of Isabelle/HOL's new coinductive specification language such as nesting through non-free types and mixed recursion–corecursion.

The final publication is available at link.springer.com.

Paper draft