J. Autom. Reasoning manuscript No.
(will be inserted by the editor)

Formalizing Bachmair and Ganzinger’s
Ordered Resolution Prover

Anders Schlichtkrull - Jasmin Blanchette -
Dmitriy Traytel - Uwe Waldmann

Received: date / Accepted: date

Abstract We present an Isabelle/HOL formalization of the first half of Bachmair and
Ganzinger’s chapter on resolution theorem proving, culminating with a refutationally
complete first-order prover based on ordered resolution with literal selection. We devel-
oped general infrastructure and methodology that can form the basis of completeness
proofs for related calculi, including superposition. Our work clarifies fine points in the
chapter, emphasizing the value of formal proofs in the field of automated reasoning.

Keywords Resolution calculus - Automatic theorem provers - Proof assistants

1 Introduction

Much research in automated reasoning amounts to metatheoretical arguments, typically
about the soundness and completeness of logical inference systems or the termination
of theorem proving processes. Often the proofs contain more insights than the systems
or processes themselves. For example, the superposition calculus rules [2], with their
many side conditions, look rather arbitrary, whereas in the completeness proof the
conditions emerge naturally from the model construction. And yet, despite being
crucial to our field, today such proofs are usually carried out without tool support. We
believe proof assistants are becoming mature enough to help.

A. Schlichtkrull (B<0)

DTU Compute, Department of Applied Mathematics and Computer Science, Technical University of
Denmark, Richard Petersens Plads, Building 324, 2800 Kongens Lyngby, Denmark

E-mail: andschl@dtu.dk

J. Blanchette

Vrije Universiteit Amsterdam, Department of Computer Science, Section of Theoretical Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, the Netherlands

E-mail: j.c.blanchette @vu.nl

J. Blanchette - U. Waldmann
Max-Planck-Institut fiir Informatik, Saarland Informatics Campus E1 4, 66123 Saarbriicken, Germany
E-mail: {jblanche,uwe } @mpi-inf.mpg.de

D. Traytel

ETH Ziirich, Department of Computer Science, Institute of Information Security, Universititstrasse 6, 8092
Ziirich, Switzerland

E-mail: traytel @inf.ethz.ch

2 A. Schlichtkrull et al.

In this article, we present a formalization, developed using the Isabelle/HOL sys-
tem [28], of a first-order prover based on ordered resolution with literal selection. We
follow Bachmair and Ganzinger’s account [4] from Chapter 2 of the Handbook of
Automated Reasoning, which we refer to as simply “the chapter.” Our formal develop-
ment covers the refutational completeness of two resolution calculi for ground (i.e.,
variable-free) clauses and general infrastructure for theorem proving processes and
redundancy. It culminates with a completeness proof for a first-order prover expressed
as transition rules operating on triples of clause sets. This material corresponds to the
chapter’s first four sections.

From the perspective of automated reasoning, increased trustworthiness of the
metatheory of automatic theorem provers is an obvious benefit of formal proofs.
But formalizing also helps clarify arguments, by exposing and explaining difficult
steps. Making definitions and theorem statements precise can be a huge gain for
communicating metatheoretical results. Moreover, a formal proof can tell us exactly
where hypotheses and lemmas are used. Once we have created a rich library of
basic results and a methodology, we will be in a good position to study extensions and
variants. Given that automatic provers are integrated into modern proof assistants, there
is also an undeniable thrill in applying these tools to reason about their own metatheory.

From the perspective of interactive theorem proving, formalization work consti-
tutes a case study in the use of a proof assistant. It gives us, as developers and users of
such a system, an opportunity to experiment, contribute to lemma libraries, and get
inspiration for new features and improvements.

Our motivation for choosing Bachmair and Ganzinger’s chapter is manifold. The
text is a standard introduction to superposition-like calculi (together with Handbook
Chapters 7 [25] and 27 [49]). It offers perhaps the most detailed treatment of the lifting
of a resolution-style calculus’s static completeness to a saturation prover’s dynamic
completeness. It introduces a considerable amount of general infrastructure, including
different types of inference systems (sound, reductive, counterexample-reducing, etc.),
theorem proving processes, and an abstract notion of redundancy. The resolution calcu-
lus, extended with a term order and literal selection, captures most of the insights under-
lying superposition-like calculi [2,3,6,7,19,24,46], but with a simple notion of model.

The chapter’s level of rigor is uneven, as shown by the errors and imprecisions
that we discovered. We will see that the main completeness result does not hold, due
to the improper treatment of self-inferences. Naturally, our objective is not to diminish
Bachmair and Ganzinger’s outstanding achievements, which include the development
of superposition; rather, it is to demonstrate that even the work of some of the most
celebrated researchers in our field can benefit from formalization. Our view is that
formal proofs can be used to complement and improve their informal counterparts.

This work is part of the IsaFoL (Isabelle Formalization of Logic) project [9], which
aims at developing a library of results about logical calculi used in automated reason-
ing. The Isabelle theory files are available in the Archive of Formal Proofs [38]. They
amount to about 8000 lines of source text. Below we provide implicit hyperlinks from
theory names to the Archive’s 2020 edition. A better way to study the theory files, how-
ever, is to open them in Isabelle/jEdit [51], an integrated development environment for
formal proof. This will ensure that logical and mathematical symbols are rendered prop-

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 3

erly (e.g., V instead of \<forall>) and let you inspect proof states. We used Isabelle
version 2017, but the Archive is continuously updated to track Isabelle’s evolution.
An earlier version of this work was presented at IICAR 2018 [39]. This article
extends the conference paper with in-depth discussions of many formalization aspects,
notably: some hurdles arising from ordering multisets of multisets of literals (Sect. 2);
examples demonstrating Isabelle’s proof language (Sect. 3); and details concerning the
resolution rules, including discussions of their soundness (Sects. 4 and 6). Compared
with the conference paper, we made the article more self-contained with respect to the
chapter, quoting the main definitions from the chapter and contrasting them with their
formal counterparts. Nevertheless, we still assume that the reader is familiar with the
chapter’s content. Finally, we added Appendix A, which summarizes the mathematical
errors and imprecisions we discovered in the chapter in the course of formalization.

2 Preliminaries

Ordered resolution depends on little background metatheory that needs to be formal-
ized using Isabelle. Much of it, concerning partial and total orders, well-foundedness,
and finite multisets, is provided by standard Isabelle libraries. We also need literals,
clauses, models, terms, and substitutions.

Isabelle. Isabelle/HOL [28] is a proof assistant based on classical higher-order logic
(HOL) [20] with Hilbert choice, the axiom of infinity, rank-1 polymorphism, and type
classes. HOL notations are similar to those of functional programming languages.
Functions are applied without parentheses or commas (e.g., f x y). Through syntactic
abbreviations, many traditional notations from mathematics are provided, notably to
denote simply typed sets and multisets. We refer to Nipkow and Klein [27, Part 1] for
a modern introduction to Isabelle.

Multisets. Multisets are central to our development. Isabelle provides a multiset
library, but it is much less developed than those of sets and lists. In the context of
the IsaFoL effort, we had already extended it considerably and implemented further
additions in a separate file (Multiset_More.thy). Some of these, notably a plugin for
Isabelle’s simplifier to apply cancellation laws, are described elsewhere [11, Sect. 3].

Clauses and Models. We used the same library of clauses (Clausal_Logic.thy)
as for the verified SAT solver by Blanchette et al. [10], which is also part of IsaFoL.
Atoms are represented by a type variable ‘a, which can be instantiated by arbitrary
concrete types—e.g., numbers or first-order terms. A literal, of type ‘a literal (where
the type constructor is written in ML-style postfix syntax), can be of the form Pos A or
Neg A, where A :: 'a is an atom. The literal order > (written = in the chapter) extends
a fixed atom order > by comparing polarities to break ties, with Neg A > Pos A.
Following the chapter, a clause is defined as a finite multiset of literals, 'a clause =
'a literal multiset, where multiset is the Isabelle type constructor of finite multisets.
Thus, the clause AV B, where A and B are atoms, is identified with the multiset {A, B};

http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Nested_Multisets_Ordinals/Multiset_More.html
http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/Clausal_Logic.html

4 A. Schlichtkrull et al.

the clause C Vv D, where C and D are clauses, is C & D; and the empty clause L is {}.
The clause order is the multiset extension [17] of the literal order.

A Herbrand interpretation I (Herbrand_Interpretation.thy), of type a set,
specifies which ground atoms are true. The “models” operator F is defined in the usual
way on atoms, literals, clauses, sets, and multisets of clauses; e.g., [F C < JLeC.
I E L. Satisfiability of a set or multiset of clauses N is defined by sat N < 31. I = N.

The main hurdle we faced concerned multisets. Multisets of clauses have type
'a literal multiset multiset. The corresponding order is the multiset extension of the
clause order. In Isabelle, the multiset order was called #C#, and it relied on the el-
ement type’s < operator, through Isabelle’s type class mechanism. Unfortunately,
for multisets, < was defined as the subset relation, so when nesting multisets (as
'a multiset multiser), we obtained the multiset extension of the subset relation. Initially,
we worked around the issue by defining an order #C## on multisets of multisets, but
we also saw potential for improvement. After some discussions on the Isabelle users’
mailing list, we let < be the multiset order. To avoid introducing subtle changes in
the semantics of existing developments, we first renamed < to something else, freeing
up <; then, in the next Isabelle release, we replaced #C# and #C## by <. In the
intermediate state, all occurrences of < were flagged as errors, easing porting.

Terms and Substitutions. The IsaFoR (Isabelle Formalization of Rewriting) library,
an inspiration for IsaFoL, contains a definition of first-order terms and results about
substitutions and unification [43]. It made sense to reuse this functionality. A practical
issue is that most of IsaFoR is not accessible from the Archive of Formal Proofs.
Resolution depends only on basic properties of terms and atoms, such as the
existence of most general unifiers (MGUs). We exploited this to keep the development
parameterized by a type of atoms ‘a and an abstract type of substitutions s, through
Isabelle locales [5] (Abstract_Substitution.thy). A locale represents a module
parameterized by types and terms that satisfy some assumptions. Inside the locale, we
can refer to the parameters and assumptions in definitions, lemmas, and proofs. The
basic operations provided by our locale are application (- :: ‘a = 's = 'a), identity (id ::
’s), and composition (o :: 's = 's = ’s), about which some assumptions are made (e.g.,
A -id = A for all atoms A). Substitution is lifted to literals, clauses, sets of clauses, and
so on. Many other operations can be defined in terms of the primitives—for example:

is.groundA < Vo.A=A-o is_renaming o < 3r.cot=id
is_ground o= < VA.is_ground (A-0) instance of CD < J0. C-0c=D

MGUs are also taken as a primitive: The mgu :: 'a set set = 's option operation takes
a set of unification constraints, each of the form A; = - -- = A,,, and returns either an
MGU or a special value (None).

Perhaps the main reason to prefer multisets to sets for representing clauses is
that multisets behave better with respect to substitution. Using a set representation,
applying o = {x — a, y — a} to either the unit clause C = p(x) or the two-literal
clause D = p(x) V p(y) yields a unit clause p(a). This oddity breaks stability under
substitution—the requirement that D > C implies D-o > C - 0.

http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/Herbrand_Interpretation.html
http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/Abstract_Substitution.html

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 5

To complete our formal development and ensure that our assumptions are legiti-
mate, we instantiated the locale’s parameters with IsaFoR types and operations and
discharged its assumptions (IsaFoR_Term.thy).

3 Refutational Inference Systems

In their Sect. 2.4, Bachmair and Ganzinger introduce basic conventions for refutational
inference systems. In Sect. 3, they present two ground resolution calculi and prove
them refutationally complete in Theorems 3.9 and 3.16. In Sect. 4.2, they introduce
a notion of counterexample-reducing inference system and state Theorem 4.4 as a
generalization of Theorems 3.9 and 3.16 to all such systems. For formalization, two
courses of actions suggest themselves: follow the book closely and prove the three
theorems separately, or focus on the most general result. We chose the latter, as being
more consistent with the goal of providing a well-designed, reusable library, at the
cost of widening the gap between the text and its formal companion.

We collected the abstract hierarchy of inference systems in a single Isabelle theory
file (Inference_System.thy). An inference, of type ‘a inference, is a triple (C, D, E)
that consists of a multiset of side premises C, a main premise D, and a conclusion E.
An inference system, or calculus, is a possibly infinite set of inferences:

locale inference_system =
fixes I :: 'a inference set

The Isabelle locale fixes, within a named context (inference_system), a set I of in-
ferences between clauses over atom type ‘a. Inside the locale, we defined a func-
tion infers_from that, given a clause set N, returns the subset of I" inferences whose
premises all belong to N.

A satisfiability-preserving (or consistency-preserving) inference system enriches
the inference system locale with an assumption, whereas sound systems are character-
ized by a different assumption:

locale sat_preserving_inference_system = inference_system +
assumes sat N => sat (N U concl_of “infers_from N)

locale sound_inference_system = inference_system +
assumes (C,D,E)eT'=IECU{D}=IFE

The notation f * X above stands for the image of the set or multiset X under function f.
Soundness is a stronger requirement than satisfiability preservation. In Isabelle,
this can be expressed as a sublocale relation:

sublocale sound_inference_system < sat_preserving_inference_system

This command emits a proof goal stating that sound_inference_system’s assumption
implies sat_preserving_inference_system’s. Afterwards, all the definitions and lemmas
about satisfiability-preserving calculi become available about sound ones.

In reductive inference systems (reductive_inference_system), the conclusion of
each inference is smaller than the main premise according to the clause order. A related
notion, the counterexample-reducing inference systems, is specified as follows:

https://www.isa-afp.org/browser_info/Isabelle2020/AFP/Functional_Ordered_Resolution_Prover/IsaFoR_Term.html
http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/Inference_System.html

6 A. Schlichtkrull et al.

locale counterex_reducing_inference_system = inference_system +
fixes |_of :: 'a clause set = 'a set
assumes {} { N=DeN=|of N¥D=
(VCEN. lof NFC=D<C(C)=
ACCN.IE. I of NECA(C,D,E)eT Nl of NHFENE<D

The parameter |_of maps clause sets to candidate models. The assumption is that
for any clause set N that does not contain {} (i.e., L), if D € N is the smallest
counterexample—the smallest clause in N that is falsified by |_of N—we can derive
a smaller counterexample E using an inference from clauses in N. This property is
useful because if N is saturated (i.e., closed under I" inferences), we must have £ € N,
contradicting D’s minimality:

theorem saturated_model: saturated N = {} ¢ N =1 of NEN
corollary saturated_complete: saturated N = —satN = {} €N

Bachmair and Ganzinger claim that compactness of clausal logic follows from the
refutational completeness of ground resolution (Theorem 3.12), although they give no
justification. Our argument relies on an inductive definition of saturation of a set of
clauses: saturate :: 'a clause set = 'a clause set. Most of the work goes into proving
this key lemma, by rule induction on the saturate function:

lemma saturate_finite: C € saturate N = dM C N. finite M A C € saturate M

The interesting case is when C = L. We established compactness in a locale that
combines counterex_reducing_inference_system and sound_inference_system:

theorem clausal_logic_compact: — sat N << AM C N. finite M A\ - sat M
To give a taste of the formalization, here is the formal Isar [SO] proof:

proof
assume —sat N
then have {} € saturate N
using saturated_complete saturated_saturate saturate.base
unfolding true_clss_def by meson
then have IM C N. finite M A {} € saturate M
using saturate_finite by fastforce
then show IM CN. finite M A = sat M
using saturate_sound by auto
next
assume JM C N. finite M A —msat M
then show —sat N
by (blast intro: true_clss_mono)
qed

The = direction relies on the calculus’s refutational completeness to show that |
belongs to saturate N, on the above lemma to obtain a finite subset M from which L
can be derived, and on the calculus’s soundness to conclude that M is unsatisfiable.
Our compactness result is meaningful only if the locale assumptions are consistent.
In the next section, we will exhibit two sound counterexample-reducing calculi that can
be used to instantiate the locale and retrieve an unconditional compactness theorem.

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 7

4 Ground Resolution

A useful strategy for establishing properties of first-order calculi is to initially restrict
our attention to ground calculi and then to lift the results to first-order formulas
containing terms with variables. Accordingly, the chapter’s Sect. 3 presents two
ground calculi: a simple binary resolution calculus and an ordered n-ary resolution
calculus with literal selection. Both consist of a single resolution rule, with built-
in positive factorization. Most of the explanations and proofs concern the simpler
calculus. To avoid duplication, we factored out the candidate model construction
(Ground_Resolution_Model.thy). We then defined the two calculi and proved that
they are sound and reduce counterexamples (Unordered_Ground_Resolution.thy,
Ordered_Ground Resolution.thy).

Candidate Models. Refutational completeness is proved by exhibiting a model for
any saturated clause set N Z L. The model is constructed incrementally, one clause
C € N at a time, starting with an empty Herbrand interpretation, in which all atoms are
false. The idea appears to have originated with Brand [14] and Zhang and Kapur [52].

Bachmair and Ganzinger introduce two operators to build the candidate model:
Ic denotes the current interpretation before considering C, and ¢ denotes the set of
(zero or one) atoms added, or produced, to ensure that C is satisfied. Bachmair and
Ganzinger define I and g¢ as follows (Definition 3.14):

Take Ic to be the set | Jc-p €p. Furthermore, if C is a clause that
(i) is contained in N,
(ii) is of the form C’V A, where A is the maximal literal in C;
(iii) is false in I¢; and
(iv) nothing is selected in C;
then ec = {A}; otherwise, &c is the empty set.

We take the liberty to adapt quotes from the chapter to our notations.
Formally, the candidate model construction is parameterized by a literal selection
function S. It can be ignored by taking S := AC. {}.

locale ground_resolution_with_selection =
fixes S :: 'a clause = 'a clause
assumes SCCC and L€ SC = is_neg L

Inside the locale, we fixed a clause set N, for which we want to derive a model. Then
we defined two operators corresponding to ¢ and I¢:

function production :: ‘a clause = 'a set where
production C = {A|C € N AC # {} A Max C = Pos A
A (Up<cproduction D) ¥ C A S C = {}}

definition interp :: ‘a clause = 'a set where
interp C = Up<c production D

To ensure monotonicity of the construction, any produced atom must be maximal in
its clause. Moreover, clauses that produce an atom, called productive clauses, may not
contain selected literals. In the chapter, ¢ and I¢ are expressed in terms of each other.

http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/Ground_Resolution_Model.html
http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/Unordered_Ground_Resolution.html
http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/Ordered_Ground_Resolution.html

8 A. Schlichtkrull et al.

We simplified the definition by inlining /¢ in &¢, so that only &¢ is recursive. Since
the recursive calls operate on clauses D that are smaller with respect to a well-founded
order, the definition is accepted [22]. Once the operators were defined, we could inline
interp’s definition in production’s equation to derive the intended mutually recursive
specification as a lemma. The 1€ and Iy operators are defined as abbreviations:

Interp C = interp C U production C INTERP = Jcep production C

We then proved a host of lemmas about these concepts. Bachmair and Ganzinger’s
Lemma 3.4 states the following:

Let C and D be clauses such that D > C. If C is true in Ip or I? then C is also
. . . . /
true in Iy and in all interpretations I,/ and 1P, where D' > D.

This amounts to six monotonicity properties, including

lemma Interp_imp_interp: C <D = D < D' = Interp D= C = interpD'E C
lemma Interp_imp_Interp: C <D= D <D'=>Interp DEC = Interp D' C
lemma Interp_imp_INTERP: C < D =>Interp DEC = INTERPE C

In the chapter, the first property is wrongly stated with D < D’ instead of D < D/,
admitting the counterexample N = {{A}} and C = D = D' = {A}.

Lemma 3.3, whose proof depends on a monotonicity property, is better proved
after Lemma 3.4:

lemma productive_imp_INTERP: production C # {} = INTERPE C

A more serious oddity is Lemma 3.7. Using our notations, we can state it as
DeN=C#D= (VD'<D.Interp D' C) = interp DE D’

However, the last occurrence of D’ is clearly wrong—the context suggests C instead.
Even after this amendment, we have a counterexample, corresponding to a gap in the
proof: D = {}, C = {Pos A}, and N = {D,C}. Since this “lemma” is not used, we
simply ignored it.

Unordered Resolution. The unordered ground resolution calculus consists of a single
binary inference rule, with the side premise C VAV ---V A, the main premise ~AV D,
and the conclusion C V D:

CVAV---VA -AVD
CcvD

Formally, this rule is captured by a predicate:

inductive unord_resolve :: ‘a clause = 'a clause = 'a clause = bool where
unord_resolve (C W replicate (n+ 1) (Pos A)) ({Neg A} & D) (C W D)

Soundness was trivial to prove:

lemma unord_resolve_sound: unord_resove CDE = I1C=IFD=IFE
using unord_resolve.cases by fastforce

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 9

To prove completeness, it sufficed to show that the calculus reduces counterexamples.
This corresponds to Bachmair and Ganzinger’s Theorem 3.8:

Let N be a set of clauses not containing the empty clause and C be a minimal
counterexample in N for Iy. Then there exists an inference by binary resolution
with factoring from C such that

(i) its conclusion is a counterexample for /y and is smaller than C; and

(ii) C is its main premise and the side premise is a productive clause.

In our formalization, the conclusion is strengthened slightly to match the locale
counterex_reducing _inference_system’s assumption:

theorem unord_resolve_counterex_reducing:
assumes {} ¢ N and C € N and INTERP N ¥ C and
VDeN.INTERPN¥D=C<D
obtains D E where
De N and INTERP N E D and production N D # {} and
unord_resolve DC E and INTERPNEE and E<C

The arguments N to INTERP and production are necessary because the theorem is
located outside the block in which N was fixed. This explicit dependency makes it
possible to instantiate the locale’s | of :: ‘a clause set = 'a set parameter with INTERP.

By instantiating the sound_inference_system and counterex_reducing_inference_
system locales, we obtained refutational completeness (Theorem 3.9 and Corollary
3.10) and compactness of clausal logic (Theorem 3.12).

Ordered Resolution with Selection. Ordered ground resolution consists of a single
rule, ord_resolve. Like unord_resolve, it is sound and counterexample-reducing (Theo-
rem 3.15). Moreover, it is reductive (Lemma 3.13): The conclusion is always smaller
than the main premise. The rule is given in the chapter’s Figure 2 as
CiVAV---VA] -+ Cy,VA,V---VA, —-AV---V-A,VD

CiV---vVCy,VD

where
(i) either the subclause —A;V ---V —A,, is selected by S in D, or else S (D)
is empty, n = 1, and A; is maximal with respect to D,
(i1) each atom A; is strictly maximal with respect to C;, and
(iii) no clause C;VA;V ---V A; contains a selected atom.

The side conditions help prune the search space and make the rule reductive.

The rule’s (n+ 1)-ary nature constitutes a substantial complication. The ellipsis
notation hides most of the complexity in the informal proof, but in Isabelle, even stating
the rule is tricky, let alone reasoning about it. We represented the n side premises by
three parallel lists of length n: CAs gives the entire clauses, whereas Cs and As store
the C; and the A; = A; V - - - V A; parts separately. In addition, As is the list [A],...,A,].
The following inductive definition captures the rule formally:

inductive
ord_resolve ::

10 A. Schlichtkrull et al.

'a clause list = 'a clause = 'a multiset list = 'a list = 'a clause = bool
where

|CAs|=n=|Cs|=n=|As|=n=|As|=n=n#0=

(Vi<n. CAs'i=Cs!i¥Pos‘ As!i) = (Vi<n. As'i# {}) =

(Vi<n.VAe As'i. A= As!i) = eligible As (D & Neg ‘ mset As) =

(Vi<n. strict_max_in (As!i) (Cs'i)) = (Vi<n. S (CAs!i) ={}) =

ord_resolve CAs (D W Neg ‘ mset As) As As ((mset Cs) W D)

The xs ! i operator returns the (i + 1)st element of xs, and mset converts a list to a
multiset. Before settling on the above formulation, we tried storing the n premises in
a multiset, since their order is irrelevant. However, due to the permutative nature of
multisets, there can be no such things as “parallel multisets”; to keep the dependencies
between the clauses C; and the atoms A;, we must keep them in a single multiset of
tuples, which is very unwieldy.

An early version of the formalization represented each A; V ---V A; as a value
of type 'a x nat—the nat representing the number of times A; is repeated. With this
approach, the definition of ord_resolve did not need to state the equality of the atoms
in each As!i. On the other hand, the approach does not work on the first-order level,
where atoms should be unifiable instead of equal.

Formalization revealed an error and a few ambiguities in the rule’s statement.
References to S(D) in the side conditions should have been to S(—A; V---V—A4, VD).
In our formalization, this is captured by the eligible As (D & Neg ‘ mset As) premise
that corresponds to (i) from the original rule, where eligible is defined by

eligible As DA <
S DA = Neg ‘mset As V (SDA = {} A |As| = 1 A As!0 = Max (atms_of DA))

The ambiguities are discussed in Appendix A.
Soundness is a good sanity check for our definition:

lemma ord_resolve_sound.:
ord_resolve CAs DA AsAsE = IFEmset CAs= IEDA=IFE

The proof is by case distinction: Either the interpretation / contains all atoms A;, in
which case the D subclause of the main premise =A; V---V = A, V D must be true, or
there exists an index 7 such that A; ¢ I, in which case the corresponding C; must be
true. In both cases, the conclusion C{ V ---V C, V D is true.

5 Theorem Proving Processes

In their Sect. 4, Bachmair and Ganzinger switch from a static to a dynamic view of
saturation: from clause sets closed under inferences to theorem proving processes
that start with a clause set Ny and keep deriving new clauses until L is generated
or no inferences are possible. Proving processes support an important optimization:
Redundant clauses can be deleted at any point from the clause set, and redundant
inferences need not be performed at all.

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 11

A derivation performed by a proving process is a possibly infinite sequence
No > N; > N > - -+, where [> relates clause sets (Proving Process.thy). In Isa-
belle, such sequences are captured by lazy lists, a codatatype [8] generated by
LNil :: ‘a llist and LCons :: ‘a = 'a llist = 'a llist, and equipped with lhd (“head”)
and It (“tail”) selectors that extract LCons’s arguments. Unlike datatypes, codatatypes
allow infinite values—e.g., LCons 0 (LCons 1 (LCons 2 ...)). The coinductive predi-
cate chain checks that its argument is a nonempty lazy list whose pairs of consecutive
elements are related by a given binary predicate R:

coinductive chain :: ("a = 'a = bool) = 'a llist = bool where
chain R (LCons x LNil)
| chain R xs = R x (lhd xs) => chain R (LCons x xs)

A derivation is a lazy list Ns of clause sets satisfying the chain predicate with R = >.
Derivations depend on a redundancy criterion presented as two functions, R and Rz,
that specify redundant clauses and redundant inferences, respectively:

locale redundancy_criterion = inference_system +
fixes
Rz ::'aclause set = 'a clause set and
Rz :: 'a clause set = 'a inference set
assumes
R:NCT and
N C N = RFNC R]:N/ and
NQN’ - RINQ R]_’Nl and
N CRsN=RzNCRz(N\N') and
N/ - R]:N == RIN - RI (N\N/) and
sat (N\RzN)=satN

By definition, a transition from M to N is possible if the only new clauses added are
conclusions of inferences from M and any deleted clauses would be redundant in N:

inductive > :: ‘a clause set = 'a clause set = bool where
N\ M C conclof ‘infers fromM = M\NCRzN=M>N

This rule combines deduction (the addition of inferred clauses) and deletion (the
removal of redundant clauses). The chapter distinguishes the two operations:

Deduction: N> N,M if M C concl_of ‘infers_from N
Deletion: NM>N ifMCRzN

This is problematic, because it is sometimes necessary to perform both deduction and
deletion in a single transition, as we will see in Sect. 7.

A key concept to connect static and dynamic completeness is that of the set of
persistent clauses, or limit of a sequence of clause sets: Neo = [J;(;>; N;. These are the
clauses that belong to all clause sets except for at most a finite prefix of the sequence N;.
We also needed the supremum of a sequence, | J; N;, and of a bounded prefix, U,!:o N;.
We introduced these functions (Lazy_List_Liminf.thy):

definition Liminf :: ‘a llist = 'a where
Liminf xs = Ui<|xs| mj:i§j<|xs\ xs!j

http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/Proving_Process.html
http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/Lazy_List_Liminf.html

12 A. Schlichtkrull et al.

definition Sup :: ‘a llist = 'a where
Sup xs = U X5 1

definition Sup_upto :: ‘a llist = nat = 'a where
Sup_upto x5 j = Ujsic|us|ni<;*s i

Although codatatypes open the door to coinductive methods, we followed the
chapter’s index-based approach whenever possible. When interpreting the expression
UiNj>; N; for the case of a finite sequence of length n, it is crucial to use the right
upper bounds, namely i, j < n. For j, it is clear that ‘< n’ is needed to keep N;’s index
within bounds. For i, the danger is more subtle: If i > n, then jri< j<an collapses to
the trivial infimum ey Nj, i.e., the set of all clauses.

Lemma 4.2 connects redundant clauses and inferences at the limit to those of the
supremum, and the satisfiability of the limit to that of the initial clause set. Formally:

lemma Rf_limit_Sup: chain (>>) Ns = Rz (Liminf Ns) = Rz (Sup Ns)
lemma Ri_limit_Sup: chain (>) Ns = Rz (Liminf Ns) = Rz (Sup Ns)
lemma sat_limit_iff: chain (>) Ns = (sat (Liminf Ns) <> sat (lhd Ns))

The proof of the last lemma relies on
lemma deriv_sat_preserving: chain (>>) Ns = sat (lhd Ns) = sat (Sup Ns)

In the chapter, this property follows “by the soundness of the inference system I
and the compactness of clausal logic,” contradicting the claim that “we will only
consider consistency-preserving inference systems” [4, Sect. 2.4] and not sound ones.
Thanks to Isabelle, we now know that soundness is unnecessary. By compactness, it
suffices to show that all finite subsets D of |J; N; are satisfiable. By finiteness of D,
there must exist an index k such that D C Ui-‘:O N;. We perform an induction on k.
The base case is trivial. For the induction step, if & is beyond the end of the list, then
Ui-‘:() N; = f;ol N; and we can apply the induction hypothesis directly. Otherwise, we
have that the set Sup_upto Ns (k— 1) U concl_of ‘infers_from (Sup_upto Ns (k—1))
is satisfiable by the induction hypothesis and satisfiability preservation of I" inferences.
Hence, Sup_upto Ns (k— 1) U Ns !k, i.e., Sup_upto Ns k, is satisfiable, as desired.

Next, we formally showed that the limit is saturated, under some assumptions and
for a relaxed notion of saturation. A clause set N is saturated up to redundancy if all
inferences from nonredundant clauses in N are redundant:

definition saturated_upto :: 'a clause set = bool where
saturated_upto N < infers_from (N\RzN) C Rz N

The limit is saturated for fair derivations—derivations in which no inferences from
nonredundant persisting clauses are delayed indefinitely:

definition fair_clss_seq :: a clause set llist = bool where
fair_clss_seq Ns <> let N’ = Liminf Ns\ Rz (Liminf Ns) in
concl_of ‘infers_from N'\ Rz N’ C Sup Ns U Rz (Sup Ns)

The criterion must also be effective, which is expressed by a locale:

locale effective_redundancy_criterion = redundancy_criterion +
assumes y € '= conclof yENURsN =7y € Rs N

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 13

In a locale that combines sat_preserving _inference_system and effective_redundancy_
criterion, we have Theorem 4.3:

theorem fuir_derive_saturated_upto:
chain () Ns = fair_clss_seq Ns = saturated_upto (Liminf Ns)

It is easy to show that the trivial criterion defined by RN = {} and Rz N =
{y €T | concl_of y € N} satisfies the requirements on effective_redundancy_criterion.
A more useful instance is the standard redundancy criterion, which depends on a
counterexample-reducing inference system I' (Standard_Redundancy. thy):

definition R r:: ‘a clause set = 'a clause set where
RN ={C|IDCN.(V.IED=IEC)A(YDeD.D<C)}

definition R; :: 'a clause set = 'a inference set where
RN ={yel|IDCN. (VI. [E D Wside_prems_of y = I F concl_of y) A
(VDeD. D < main_prem_of y)}

Standard redundancy qualifies as an effective_redundancy_criterion. In the chapter,
this is stated as Theorems 4.7 and 4.8, which depend on two auxiliary properties,
Lemmas 4.5 and 4.6. The main result, Theorem 4.9, is that counterexample-reducing
calculi are refutationally complete under the application of standard redundancy:

theorem saturated_upto_complete: saturated_upto N = (—sat N < {} € N)

The informal proof of Lemma 4.6 applies Lemma 4.5 in a seemingly impossible way,
confusing redundant clauses and redundant inferences and exploiting properties that
appear only in the proof of Lemma 4.5. Our solution is to generalize the core argument
into the following lemma and apply it to prove both Lemmas 4.5 and 4.6:

lemma wlog_non_Rf:
(IDCN. (VI.IEDWC = IFE)A(VD'eD.D'< D)) =
ADCN\RxzN.(VI.IEDWC = IFE) A (YD'eD.D'< D)

Incidentally, the informal proof of Theorem 4.9 also needlessly invokes Lemma 4.5.

Finally, given a redundancy criterion (R, Rz) for T, its standard extension for
I" OTis (RxRY), where R N =R; NU (I"\I') (Proving Process.thy). The
standard extension is itself a redundancy criterion and it preserves effectiveness,
saturation up to redundancy, and fairness. In Isabelle, this can be expressed outside
the locale blocks by using the locale predicates—explicit predicates named after the
locales and parameterized by the locale arguments:

lemma standard_redundancy_criterion_extension:
[CI” = redundancy _criterion ' R » Rz => redundancy _criterion I R » R/

lemma standard_redundancy_criterion_extension_effective:
I' C I = effective_redundancy_criterion ' R R; =
effective_redundancy _criterion I R » R,

lemma standard_redundancy_criterion_extension_saturated_upto_iff :
I' CI” = redundancy criterion ' R R; =
(redundancy _criterion.saturated_upto T R Rz N <
redundancy _criterion.saturated_upto I R R/, N)

http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/Standard_Redundancy.html
http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/Proving_Process.html

14 A. Schlichtkrull et al.

lemma standard_redundancy_criterion_extension fair_iff :
I' C I = effective_redundancy_criterion R R; =
(effective_redundancy _criterion.fair_clss_seq I" R R, Ns <
effective_redundancy _criterion.fair_clss_seq I R » R 1 Ns)

6 First-Order Resolution

The chapter’s Sect. 4.3 presents a first-order version of the ordered resolution rule and a
first-order prover, RP, based on that rule. The first step towards lifting the completeness
of ground resolution is to show that we can lift individual ground resolution inferences
(FO_Ordered_Resolution.thy).

Inference Rule. First-order ordered resolution consists of a single rule. In the chapter,
ground and first-order resolution are both called Og. In the formalization, we also
let the rules share the same name, but since they exist in separate locales, the system
generates qualified names that make this unambiguous: Isabelle generates the name
ground_resolution_with_selection.ord_resolve, which refers to ground resolution, and
FO_resolution.ordered_resolve, which refers to first-order resolution. If the user is in
doubt at any time, the system can always tell which one is meant.
The rule is given in the chapter’s Figure 4 as follows:

C]\/A]l\/---\/Alk1 Cn\/Aln\/“'\/Ank,, A V---V-A,VD

Ci-oV---VC,-oVD-o
where o is a most general simultaneous solution of all unification problems
Ajy = =Ay, =A;, where 1 <i<n,and
(i) either Ay,...,A, are selected in D, or else nothing is selected in D, n =1,
and A; - o is maximal in D - o,
(ii) each atom A;; - o is strictly maximal with respect to C; - o, and
(iii) no clause C;VA; V-V Ay, contains a selected atom.

The Isabelle representation of this rule is similar to that of its ground counterpart,
generalized to apply 0. We corrected a few typos listed in Appendix A.

inductive

ord_resolve ::

'a clause list = 'a clause = 'a multiset list = 'a list = 's = 'a clause = bool
where

|CAs| =n=|Cs|=n=|As|=n=|As|=n=n#0=

(Vi<n. CAs'i=Cs!i¥Pos‘ As!i) = (Vi<n. As'i# {}) =

Some o = mgu (set_mset ‘ set (map2 add_mset As As)) =

eligible o As (D W Neg ‘ mset As) =

(Vi<n. strict_max_in (As!i-o) (Cs!i-0)) = (Vi<n. S (CAs i) ={}) =

ord_resolve CAs (D & Neg mset As) As As o (((U mset Cs) W D) - o)

Our MGU o is uniquely determined by the unification problems A;; = --- = Ay, = A;,
which ensures that each concrete set of premises gives rise to exactly one conclusion.

http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/FO_Ordered_Resolution.html

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 15

The rule as stated is incomplete; for example, the clauses p(x) and = p(f(x)) cannot
be resolved because x and f(x) are not unifiable. Such issues arise when the same
variable names appear in different premises. In the chapter, the authors circumvent
this issue by stating, “We also implicitly assume that different premises and the
conclusion have no variables in common; variables are renamed if necessary.” For
the formalization, we first considered enforcing the invariant that all derived clauses
use mutually disjoint variables, but this does not help when a clause is repeated in an
inference’s premises. An example is the inference

p(x) p(y) —p(a)V-p(b)
1

where p(x) and p(y) are the same clause up to renaming. Instead, we rely on a predicate
ord_resolve_rename, based on ord_resolve, that standardizes the premises apart. The
renaming is performed by a function called renamings_apart :: ‘a clause list = 's list
that, given a list of clauses, returns a list of corresponding substitutions to apply. This
function is part of our abstract interface for terms and substitutions (Sect. 2) and is
implemented using IsaFoR.

As in the ground case, it is important to establish soundness. We formally proved
that any ground instance of the rule ord_resolve is sound:

lemma ord_resolve_ground_inst_sound:
ord_resolve CAs DA AsAsc E = IEmset CAs-c-n=IFDA-0c-n=
is_ground_substy =IFE-n

Similarly, ground instances of ord_resolve_rename are sound. It then follows that the
rules ord_resolve and ord_resolve_rename are sound:

lemma ord_resolve_rename_sound.:
ord_resolve_rename CAs DA As As o E =
(Vo is_ground_subst o = I E (mset CAs + {DA}) - o) =
is_ground_substy = IFE-n

Lifting Lemma. To lift ground inferences to the first-order level, we consider a set
of clauses M and introduce an adjusted version Sy, of the selection function S.

definition Sy, :: ‘a literal multiset = 'a literal multiset where
Sy C =
(if C € grounding_of M then
(SOMEC'.3D e M. 30.C=D-0c AC' =S D-o Ais_ground subst o)
else
SC)

Here, SOME is Hilbert’s choice operator, which picks an arbitrary element satisfying
the condition if one exists, and a completely arbitrary element otherwise. For the
above definition, we could prove that an element satisfying the condition always exists.
The new selection function depends on both S and M and works in such a way that
any ground instance inherits the selection of at least one of the nonground clauses of
which it is an instance:

16 A. Schlichtkrull et al.

lemma S_M _grounding of _clss:
C € grounding_of M =
dDeM.Jo. C=D-c ANSyC=SD-o Ais_ground_subst o

where grounding_of M is the set of ground instances of a set of clauses M.

The lifting lemma, Lemma 4.12, states that whenever there exists a ground in-
ference from clauses belonging to grounding_of M, there exists a (possibly) more
general inference from clauses belonging to M:

Let M be a set of clauses and K = grounding_of M. If
c, -~ C, Co
C

is an inference in O, (K) then there exist clauses C; in M, a clause C’, and a
ground substitution o such that

c, - C
CI

is an inference in Og (M), C; =C}-o,and C =C’ - 0.

In the formalization, the side premises are stored in a list CAs, the main premise is
called DA, and the conclusion is called E.

lemma ord_resolve_rename _lifting:
(Vp C.is_renamingp = S (C-p) =S C-p) =
ord_resolve Sy; CAs DA As As 0 E =
{DA} U set CAs C grounding_of M =
dns 0 CAsg DAy Asy Asg Eg 1.
ord_resolve_rename S CAsg DAg Asg Aso 7 Eg A
CAsy-ns=CAs N\DAo-n=DANEy-0=E N{DAo} Uset CAso C M

The informal proof of this lemma consists of two sentences spanning four lines of
text. In Isabelle, these two sentences translate to 250 lines and 400 lines, respectively,
excluding auxiliary lemmas. Our proof involves six steps:

1. Obtain a list of first-order clauses CAsq and a first-order clause DA that belong to
M and that generalize CAs and DA with substitutions ns and 7, respectively.
Choose atoms Asg and Asg in the first-order clauses on which to resolve.

. Standardize CAsy and DA apart, yielding CAs{, and DA,

. Obtain the MGU 7 of the literals on which to resolve.

. Show that ordered resolution on CAs;, and DA, with 7 as MGU is applicable.

. Show that the resulting resolvent Ey generalizes E with substitution 6.

In step 1, suitable clauses must be chosen so that S (CAsg ! i) generalizes Sy
(CAs i), for 0 <i<n, and S DA¢ generalizes Sy DA. By the definition of Sy, this
is always possible. In step 2, we choose the literals to resolve upon in the first-order
inference depending on the selection on the ground inference. If some literals are
selected in DA, we let Asg be the selected literals in DAy, such that (Asg i) -7 =As!i
for each i. Otherwise, As must be a singleton list containing some atom A, and we

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 17

let Asg be the singleton list consisting of an arbitrary Ag € DA such that Ay - = A.
Step 3 may seem straightforward until one realizes that renaming variables can in
principle influence selection. To rule this out, our lemma assumes stability under
renaming: S (C-p) = S C - p for any renaming substitution p and clause C. This
requirement seems natural, but it is not mentioned in the chapter, and it is easy to
imagine implementations that would violate it.

The above choices allowed us to perform steps 4 to 6. In the chapter, the authors
assume that the obtained CAsy and DA are standardized apart from each other as well
as their conclusion Ey. This means that they can obtain a single ground substitution that
connects CAso, DAy, Eg to CAs, DA, E. By contrast, we provide separate substitutions
ns, 1, 6 for the different side premises, the main premise, and the conclusion.

7 A First-Order Prover

Modern resolution provers interleave inference steps with steps that delete or reduce
(simplify) clauses. In their Sect. 4.3, Bachmair and Ganzinger introduce the nonde-
terministic abstract prover RP that works on triples of clause sets, similarly to the
Otter and DISCOUNT loops [16,23]. RP’s core rule, called inference computation,
performs first-order ordered resolution as described above; the other rules delete or
reduce clauses or move them between clause sets. We formalized RP and proved it
complete assuming a fair strategy (FO_Ordered_Resolution Prover.thy).

Abstract First-Order Prover. The RP prover is a relation ~~ on states of the form
(N, P,0O), where N is the set of new clauses, P is the set of processed clauses, and
O is the set of old clauses. RP’s formal definition closely follows the original one:

inductive ~ :: 'a state = 'a state = bool where
Neg A € C = PosA € C = (NU{C},P,0) ~ (N,P,0)
| D€ PUO = subsumes D C = (NU{C},P,0) ~ (N,P,0)
| D € N = strictly_subsumes D C = (N,PU{C},0) ~ (N,P,0)
| D € N = strictly_subsumes D C = (N, P,0OU{C}) ~ (N,P,O)
| De PUO = reduces DC L= (NU{CW{L}},P,0) ~ (/\/U{C},P,@)
| De N = reduces D C L= (N, PU{CW{L}},O)~ (N,PU{C},0)
| D€ N = reduces DC L= (N,P,OU{CWY{L}}) ~ (N,PU{C},0)
| (NU{C},P,0) ~ (N,PU{C},0)
| ({},PU{C},O) ~~ (concl_of ‘infers_between O C,P,OU{C})

The rules correspond, respectively, to tautology deletion, forward subsumption, back-
ward subsumption in P and O, forward reduction, backward reduction in P and O,
clause processing, and inference computation.

Initially, N consists of the problem clauses, and the other two sets are empty.
Clauses in N are reduced using P U O, or even deleted if they are tautological or
subsumed by P U O. Conversely, N can be used for reducing or subsuming clauses in
P UO. Clauses eventually move from N to P, one at a time. As soon as N is empty,
a clause from P is selected to move to O. Then all possible resolution inferences

http://www.isa-afp.org/browser_info/Isabelle2020/AFP/Ordered_Resolution_Prover/FO_Ordered_Resolution_Prover.html

18 A. Schlichtkrull et al.

between this given clause and the clauses in O are computed and put in N, closing
the loop. The subsumption and reduction rules depend on the following predicates:

subsumesDC < Jdo. D-oc CC
strictly_subsumes D C < subsumes D C A — subsumes C D
reduces DCL < 3D'L'c. D=D'W{L'}N—L=L oAD' -cCC

The definition of the set infers_between O C, on which inference computation depends,
is more subtle. In the chapter, the set of inferences between C and O consists of all
inferences from O U {C} that have C as exactly one of their premises. This, however,
leads to an incomplete prover, because it ignores inferences that need multiple copies
of C. For example, assuming a maximal selection function (one that always returns
all negative literals), the resolution inference

P p —pPV—p
L
is possible. Yet if the clause —p V —p reaches O earlier than p, the inference would
not be performed. This counterexample requires ternary resolution, but there also

exists a more complicated one for binary resolution, where both premises are the same
clause. Consider the clause set containing

(1) q(a,c,b) () —q(x,y,2) Va(y,z,x) (3) —q(b,a,c)

and an order > on atoms such that q(c,b,a) > q(b,a,c) > q(a,c,b). Inferences between
(1) and (2) or between (2) and (3) are impossible due to order restrictions. The only
possible inference involves two copies of (2):

-q(x,y,2) Va(y,z.x) —q(x.y,7)va(y,7Z,x)
=q(x,y,2) Va(z,x,y)

From the conclusion, we derive —q(a,c,b) by (3) and L by (1).

This incompleteness is a severe flaw, although it is probably just an oversight.
Fortunately, it can easily be repaired by defining infers_between O C as {(C,D,E) €T |
CU{D} COU{C} AC e CU{D}}.

Projection to Theorem Proving Process. On the first-order level, a derivation can
be expressed as a lazy list Ss of states, or as three parallel lazy lists As, Ps, Os. The
derivation’s limit state is defined as Liminf Ss = (Liminf A/s, Liminf Ps, Liminf Os),
where Liminf on the right-hand side is as in Sect. 5.

Bachmair and Ganzinger use the completeness of ground resolution to prove RP
complete. The first step is to show that first-order derivations can be projected down
to theorem proving processes on the ground level. This corresponds to Lemma 4.10:

If S ~ &', then grounding_of S >* grounding_of &', with 1> based on some
extension of ordered resolution with selection function S and the standard
redundancy criterion (R Rz).

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 19

This raises some questions: (1) Exactly which instance of the calculus are we extend-
ing? (2) Which calculus extension should we use? (3) How can we repair the mismatch
between >* in the lemma statement and > where the lemma is invoked?

Regarding question (1), it is not clear which selection function to use. Is the
function the same S as in the definition of RP or is it arbitrary? It takes a close
inspection of the proof of Lemma 4.13, where Lemma 4.10 is invoked, to find out that
the selection function used there iS S iminf Os-

Regarding question (2), the phrase “some extension” is cryptic. It suggests an
existential reading, and from the context it would appear that a standard extension
(Sect. 5) is meant. However, neither the lemma’s proof nor the context where it is
invoked supplies the desired existential witness. A further subtlety is that the witness
should be independent of S and &, so that transitions can be joined to form a single
theorem proving derivation. Our approach is to let > be the standard extension for the
proof system consisting of all sound derivations: I' = {(C,D,E) | VI. [ECU{D} =
I E E}. This also eliminates the need for Bachmair and Ganzinger’s subsumption
resolution rule, a special calculus rule that is, from what we understand, implicitly
used in the proof of Lemma 4.10 for the subcases associated with RP’s reduction rules.

As for question (3), when the lemma is invoked, it is used to join transitions
together to whole theorem proving processes. This requires the transitions to be of
>, not >>*. The need for >* instead of > arises because one of the cases requires a
combination of deduction and deletion, which Bachmair and Ganzinger model as
separate transitions. By merging the two transitions (Sect. 5), we avoided the issue
altogether and could use > in the formal counterpart of Lemma 4.10.

With these issues resolved, we could formalize Lemma 4.10. In Sect. 6, we
established that ground instances of the first-order resolution rule are sound. Since
our ground proof system consists of all sound rules, we could reuse that lemma in the
inference computation case. We proved Lemma 4.10 for single steps and extended it
to entire derivations:

lemma RP_ground_derive: S ~» S’ = grounding_of S 1> grounding_of &’

lemma RP_ground_derive_chain:
chain (~) Ss = chain (>>) (Imap grounding_of Ss)

The Imap function applies its first argument elementwise to its second argument.

Fairness and Clause Movement. From a given initial state (Ao, {},{}), many der-
ivations are possible, reflecting RP’s nondeterminism. In some derivations, we could
leave a crucial clause in A or P without ever reducing it or moving it to O, and then
fail to derive L even if V) is unsatisfiable. For this reason, refutational completeness
is guaranteed only for fair derivations. These are defined as derivations such that
Liminf As = Liminf Ps = {}, ensuring that no clause will stay forever in A/ or P.

Fairness is expressed by the fair_state_seq predicate, which is distinct from the
fair_clss_seq predicate presented in Sect. 5. For the rest of this section, we fix a
lazy list of states Ss and its projections Ns, Ps, and Os, such that chain (~) Ss,
fair_state_seq Ss, and lhd Os = {}.

Thanks to fairness, any nonredundant clause C in Ss’s projection to the ground
level eventually ends up in O and stays there. This is proved as Lemma 4.11 in the

20 A. Schlichtkrull et al.

chapter. Again there are some difficulties: The vagueness concerning the selection
function can be resolved as for Lemma 4.10, but there is another, deeper flaw.

Bachmair and Ganzinger’s proof idea is as follows. By hypothesis, the ground
clause C must be an instance of a first-order clause D in As!jU Ps! juU Os! j for
some index j. If C € Ns! j, then by nonredundancy of C, fairness of the derivation,
and Lemma 4.10, there must exist a clause D’ that generalizes C in Ps !/ U Os ! for
some [> j. By a similar argument, if D’ belongs to Ps !, it will be in Os ! for some
' > 1, and finally in all Os !k with k > I'. The flaw is that backward subsumption can
delete D’ without moving it to O. The subsuming clause would then be a strictly more
general version of D’ (and of the ground clause C).

Our solution is to choose D, and consequently D', such that it is minimal, with
respect to subsumption, among the clauses that generalize C in the derivation. This
works because strict subsumption is well founded—which we also proved, by reduction
to a well-foundedness result about the strict generalization relation on first-order terms,
included in IsaFoR [21, Sect. 2]. By minimality, D’ cannot be deleted by backward
subsumption. This line of reasoning allows us to prove Lemma 4.11, where O_of
extracts the O component of a state:

lemma fair_imp_Liminf _minus_Rf _subset_ground_Liminf _state:
Gs = Imap grounding_of S5 =
Liminf Gs — R » (Liminf Gs) C grounding_of (O_of (Liminf Ss))

Soundness and Completeness. The chapter’s main result is Theorem 4.13. It states
that, for fair derivations, the prover is sound and complete. Soundness follows from
Lemma 4.2 (sat_deriv_Liminf_iff) and is independent of whether the derivation is fair:

theorem RP_sound: {} € clss_of (Liminf Sts) = — sat (grounding_of (Ihd Sts))

Once we had brought Lemmas 4.10, 4.11, and 4.12 into a suitable shape, com-
pleteness was not difficult to formalize:

theorem RP_saturated_if fair: saturated_upto (Liminf (Imap grounding_of Ss))

corollary RP_complete_if fair:
- sat (grounding_of (lhd Ss)) = {} € O_of (Liminf Ss)

A crucial point that is not clear from the text is that we must always use the selec-
tion function S on the first-order level and Sy jminf o5 On the ground level. Another subtle
point is the passage “Liminf Gs (and hence Liminf Ss) contains the empty clause.”
Obviously, if grounding_of (Liminf Ss) contains L, then Liminf Ss must as well. How-
ever, the authors do not explain the step from Liminf Gs, the limit of the grounding,
to grounding_of (Liminf Ss), the grounding of the limit. Fortunately, by Lemma 4.11,
the latter contains all the nonredundant clauses of the former, and _L is nonredundant;
hence the informal argument is fundamentally correct. For the other direction, which
is used in the soundness proof, we proved that the former includes the latter.

The proof of Theorem 4.13 simultaneously talks about the prover architecture and
the lifting of inferences using an appropriate extension of the nonground selection
function to ground clauses. One might have expected a more modular proof in which
redundancy is first lifted to nonground clauses, then RP is proved to compute fair

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 21

derivations according to fair_clss_seq and the lifted redundancy criterion, and finally
Theorem 4.3 establishes that the limit of these derivations is saturated, which yields
completeness immediately. Instead, Theorem 4.3 is used in neither the informal nor
the formal completeness proof and appears to play a purely pedagogical role.

The reason why Bachmair and Ganzinger did not follow the modular approach is
subsumption. Deletion of subsumed clauses is crucial for the efficiency of any practi-
cally useful saturation prover, but it is not covered by the usual lifting of redundancy to
nonground clauses, according to which a clause is redundant with respect to a clause
set N if all its ground instances are entailed by strictly smaller ground instances of
clauses in N. For subsumed clauses, we can guarantee only that the nonstrict ordering
relation holds. Thus, the sequences of nonground clause sets computed by RP are not
derivations with respect to the lifted redundancy criterion, and Theorem 4.3 is not
applicable. A redundancy lifting that permits a modular proof independently of the
prover architecture has very recently been investigated by Waldmann et al. [47].

8 Discussion

Bachmair and Ganzinger cover a lot of ground in a few pages. We found much of
the material straightforward to formalize: It took us about two weeks to reach their
Sect. 4.3, which defines RP and proves it refutationally complete. By contrast, we
needed months to fully understand and formalize that section. While the chapter
successfully conveys the key ideas at the propositional level, the lack of rigor makes it
difficult to develop a deep understanding of ordered resolution on first-order clauses.

There are several reasons why Sect. 4.3 did not lend itself easily to a formalization.
The proofs often depend on lemmas and theorems from previous sections without
explicitly mentioning them. The lemmas and proofs do not quite fit together. And while
the general idea of the proofs stands up, they have many confusing flaws that must be
repaired. Our methodology involved the following steps: (1) rewrite the informal proofs
to a handwritten pseudo-Isabelle; (2) fill in the gaps, emphasizing which lemmas are
used where; (3) turn the pseudo-Isabelle into real Isabelle, but with sorry placeholders
for the proofs; and (4) replace the sorrys with proofs. Progress was not always linear.
As we worked on each step, more than once we discovered an earlier mistake.

The formalization helps us answer questions such as, “Is effectiveness of ordered
resolution (Lemma 3.13) actually needed, and if so, where?”” (Answer: In the proof of
Theorem 3.15.) It also allows us to track definitions and hypotheses precisely, so that
we always know the scope and meaning of every definition, lemma, or theorem. If a
hypothesis appears too strong or superfluous, we can try to rephrase or eliminate it;
the proof assistant tells us where the proof breaks. If a definition is changed, the proof
assistant again tells us where proofs break. In the best case, they do not break at all
since the proof assistant’s automation is flexible enough. This happened, for example,
when we changed the definition of I> to combine deduction and deletion.

Starting from RP, we have refined it to obtain a functional implementation [37].
We could further refine it to an efficient imperative implementation following the
lines of Fleury, Blanchette, and Lammich’s verified SAT solver with the two-watched-
literals optimization [18]. However, this would probably involve a huge amount of

22 A. Schlichtkrull et al.

work. To increase provers’ trustworthiness, a more practical approach is to have them
generate detailed proofs that record all inferences leading to the empty clause [35,42].
Such output can be independently checked by verified programs or reconstructed using
a proof assistant’s inference kernel. This is the approach implemented in Sledgeham-
mer [12], which integrates automatic provers in Isabelle. Formalized metatheory could
in principle be used to deduce a formula’s satisfiability from a finite saturation.

We found Isabelle/HOL eminently suitable to this kind of formalization work. Its
logic balances expressiveness and ease of automation. We nowhere felt the need for
dependent types. We benefited from many features of the system, including codata-
types [8], Isabelle/jEdit [51], the Isar proof language [50], locales [5], and Sledgeham-
mer [12]. It is perhaps indicative of the maturity of theorem proving technology that
most of the issues we encountered were unrelated to Isabelle. The main challenge was
to understand the informal proof well enough to design suitable locale hierarchies and
state the definitions and lemmas precisely, and correctly.

9 Related Work

Formalizing the metatheory of logic and deduction is an enticing proposition for many
researchers in interactive theorem proving. In this section, we briefly review some
of the main related work, without claim to exhaustiveness. Two recent, independent
developments are particularly pertinent.

Peltier [31] proved static refutational completeness of a variant of the superposition
calculus in Isabelle/HOL. Since superposition generalizes ordered resolution, his result
subsumes our static completeness theorem. On the other hand, he did not formalize a
prover or dynamic completeness, nor did he attempt to develop general infrastructure. It
would be interesting to extend his formal development to obtain a verified superposition
prover. We could also consider calculus extensions such as polymorphism [15,48],
type classes [48], and AVATAR [45]. Two significant differences between Peltier’s
work and ours is that he represents clauses as sets instead of multisets (to exploit
Isabelle’s better proof automation for sets) and that he relies, for terms and unification,
on an example theory file included in Isabelle (Unification.thy) instead of IsaFoR.

Hirokawa et al. [21] formalized, also in Isabelle/HOL, an abstract Knuth—Bendix
completion procedure as well as ordered (unfailing) completion, a method developed
by Bachmair, Dershowitz, and Plaisted [1]. Superposition combines ordered resolution
(to reason about clauses) and ordered completion (to reason about equality). There are
many similarities between their formalization and ours, which is unsurprising given
that both follow work by Bachmair; for example, they need to reason about the limit of
fair infinite sequences of sets of equations and rewrite rules to establish completeness.

The literature contains many other formalized completeness proofs, mostly for
inference systems of theoretical interest. Early work was carried out in the 1980s
and 1990s, notably by Shankar [40] and Persson [32]. Some of our own efforts are
also related: completeness of first-order unordered resolution using semantic trees by
Schlichtkrull [36]; completeness of a Gentzen system following the Beth—Hintikka
style and soundness of a cyclic proof system for first-order logic with inductive
definitions by Blanchette, Popescu, and Traytel [13]; and completeness of a SAT solver

http://isabelle.in.tum.de/website-Isabelle2020/dist/library/HOL/HOL-ex/Unification.html

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 23

based on CDCL (conflict-driven clause learning) by Blanchette, Fleury, Lammich, and
Weidenbach [10].

The formal Beth—Hintikka-style completeness proof mentioned above has a gener-
ic flavor, abstracting over the inference system. Could it be used to prove completeness
of the ordered resolution calculus, or even of the RP prover? The central idea is to
build a finitely branching tree that encodes a systematic proof attempt. Given a fair
strategy for applying calculus rules, infinite branches correspond to countermodels.
It should be possible to prove ordered resolution complete using this approach, by
storing clause sets N on the tree’s nodes. Each node would have at most one child,
corresponding to the new clause set after performing a deduction. Such degenerate trees
would be isomorphic to derivations Ny > N; > - - - represented by lazy lists. However,
the requirement that inferences can always be postponed, called persistence [13,
Sect. 3.9], is not met for deletion steps based on a redundancy criterion. Moreover,
while the generic framework takes care of applying inferences fairly and of employing
Konig’s lemma to extract an infinite path from a failed proof attempt (which is,
incidentally, overkill for degenerate trees that have only one infinite path), it offers no
help in building a countermodel from an infinite path (i.e., in proving the chapter’s
Theorem 3.9).

Very recently, Waldmann et al. [47] proposed a saturation framework that gen-
eralizes Bachmair and Ganzinger’s framework. Its Isabelle/HOL mechanization, by
Tourret [44], could form the basis of a streamlined formal proof of RP’s completeness.

Beyond completeness, Godel’s first incompleteness theorem has been formalized
in Ngqthm by Shankar [41], in Coq by O’Connor [29], in HOL Light by Harrison (in
unpublished work), and in Isabelle/HOL by Paulson [30] and by Popescu and Traytel
[34]. The Isabelle formalizations also cover Godel’s second incompleteness theorem.
We refer to our earlier papers [10, 13,36] for further discussions of related work.

10 Conclusion

We presented a formal proof that captures the core of Bachmair and Ganzinger’s
Handbook chapter on resolution theorem proving. For all its idiosyncrasies, the chapter
withstood the test of formalization, once we had added self-inferences to the RP prover.
Given that the text is a basic building block of automated reasoning (as confirmed by
its placement as Chapter 2), we believe there is value in clarifying its mathematical
content for the next generations of researchers. We also hope that our work will be
useful to the editors of a future revision of the Handbook.

Formalization of the metatheory of logical calculi is one of the many connections
between automatic and interactive theorem proving. We expect to see wider adoption
of proof assistants by researchers in automated reasoning, as a convenient way to
develop metatheory. By building formal libraries of standard results, we aim to make it
easier to formalize state-of-the-art research as it emerges. We also see potential uses of
formal proofs in teaching automated reasoning, inspired by the use of proof assistants
in courses on the semantics of programming languages [26,33].

24 A. Schlichtkrull et al.

Acknowledgments Christoph Weidenbach repeatedly discussed Bachmair and Ganzinger’s chapter with
us and hosted Schlichtkrull at the Max-Planck-Institut in Saarbriicken. Christian Sternagel and René
Thiemann answered our questions about IsaFoR. Mathias Fleury, Florian Haftmann, and Tobias Nipkow
helped enrich and reorganize Isabelle’s multiset library. Mathias Fleury, Robert Lewis, Simon Robillard,
Mark Summerfield, Sophie Tourret, and the anonymous reviewers suggested many textual improvements.

Schlichtkrull was supported by a PhD scholarship in the Algorithms, Logic and Graphs section of DTU
Compute and by the LIGHT*" project, which is partially funded by the European Commission as an Innova-
tion Act as part of the Horizon 2020 research and innovation program (grant agreement No. 700321, LIGHT-
est). Blanchette was partly supported by the Deutsche Forschungsgemeinschaft (DFG) project Hardening the
Hammer (grant NI491/14-1). He also received funding from the ERC under the European Union’s Horizon
2020 program (grant agreement No. 713999, Matryoshka) and from the Netherlands Organization for
Scientific Research (NWO) under the Vidi program (project No. 016.Vidi.189.037, Lean Forward). Traytel
was partly supported by the DFG program Program and Model Analysis (PUMA, doctorate program 1480).

A Errors and Imprecisions Discovered in the Chapter

In the chapter, we encountered several mathematical errors and imprecisions of various
levels of severity. We also found lemmas that were stated but not explicitly applied
afterwards. For reference, this appendix provides an exhaustive list of our findings.
This list illustrates how difficult it is to write paper proofs correctly, and reminds us
that we cannot rely on reviewers or second readers to catch all mistakes. We hope that
our corrections will further increase the chapter’s value to the research community.

Regarding the errors and imprecisions, we have ignored infelicities that are not
mathematical in nature, such as typos and I£TEX macros gone wrong (e.g., “by the
defn[candidate model]candidate model for N’ on page 34); for such errors, careful
reading, not formalization, is the remedy. We have also ignored minor ambiguities if
they can easily be resolved by appealing to the context and the reader’s common sense
(e.g., whether the clause CVAV ---V A may contain zero occurrences of A).

— One of Lemma 3.4’s claims is that if clause C is true in I?, then C is also true
in Iy, where C < D < D’. This does not hold if C = D = D" and C is productive.
Similarly, the first sentence of the proof is wrong if D = D’ and D is productive:
“First, observe that In C IP C Ip C P C Iy, whenever D' = D

— The last occurrence of D’ in the statement of Lemma 3.7 should be changed to C. In
addition, it is not clear whether the phrase “another clause C” implies that C # D,
but the counterexample we gave in Sect. 4 works in both cases. Correspondingly,
in the proof, the case distinction is incomplete, as can be seen by specializing the
proof for the counterexample.

— In the chapter’s Figure 2, in Sect. 3, the selection function is wrongly applied:
References to S(D) should be changed to S(— AV ---V = A,V D). Moreover, in
condition (iii), it is not clear with respect to which clause the “selected atom”
must be considered, the two candidates being S(—=A;V---V A,V D) and S(C; vV
A;V---VA;). We assume the latter is meant. Finally, phrases like “A; is maximal
with respect to D” (here and in Figure 4) are slightly ambiguous, because it is
unclear whether A; denotes an atom or a (positive) literal, and whether it must be
maximal with respect to D’s atoms or literals. From the context, we infer that an
atom-with-atom comparison is meant.

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 25

— Soundness is required in the chapter’s Sect. 4.1, even though it is claimed in
Sect. 2.4 that only consistency-preserving inference systems will be considered.

— In Sect. 4.1, it is claimed that ““a fair derivation can be constructed by exhaustively
applying inferences to persisting formulas.” However, this construction is circular:
The notion of persisting formula (i.e., the formulas that belong to the limit) depends
itself on the derivation.

— In the proof of Theorem 4.3, the case where ¥ € R7(Nw \ R #(Nw)) is not covered.

— In Sect. 4.2, the phrase “side premises that are true in N’ must be understood as
meaning that the side premises both belong to N and are true in /.

— Lemma 4.5 states the basic properties of the redundant clause operator R » (mono-
tonicity and independence). Lemma 4.6 states the corresponding properties of the
redundant inference operator Rz. As justification for Lemma 4.6, the authors tell
us that “the proof uses Lemma 4.5,” but redundant inferences are a more general
concept than redundant clauses, and we see no way to bridge the gap.

— Similarly, in the proof of Theorem 4.9, the application of Lemma 4.5 does not fit.
What is needed is a generalization of Lemma 4.6.

— In condition (ii) of Figure 4, Sect. 4.2, A;;o- should be changed to A;jo.
— In the nth side premise of Figure 4, Sect. 4.2, A1, should be changed to A,,;.

— In Figure 4, Sect. 4.2, the same mistakes as in Figure 2 occur about the application
of the selection function.

— Sect. 4.3 states “Subsumption defines a well-founded ordering on clauses.” A sim-
ple counterexample is an infinite sequence repeating some clause. “Subsumption”
should be replaced by “proper subsumption.”

— In Lemma 4.10, it is not clear which selection function is used. When the lemma
is applied in the proofs of Lemma 4.11 and Theorem 4.13, it must be S¢_ .

- InLemma 4.10, G(S) and G(S) are related by I>*, but > is needed in the proofs
of Lemma 4.11 and Lemma 4.13 since then derivations in RP, which are possibly
infinite, can be projected to theorem proving processes. However G(S) > G(S')
does not hold in one of the cases since a combination of deduction and deletion is
required. A solution is to change the definition of > to allow such combinations.

— In Lemma 4.10, it is not clear that the extension used should be the same between
any considered pair of states. Otherwise, the lemma cannot be used to project
derivations in RP to theorem proving processes.

— In Lemma 4.11, it is not clear which selection function is used. When the lemma
is applied in the proofs of Theorem 4.13, it must be Sp_.

— A step in the proof of Lemma 4.11 considers a clause D € P; which has a nonre-
dundant instance C. It is claimed that when D is removed from P, another clause
D’ with C as instance appears in some O; . That, however, does not follow if D was
removed by backward subsumption. The problem can be resolved by choosing D
as minimal, with respect to subsumption, among the clauses that generalize C in
the derivation. This can be done since proper subsumption is well founded.

— In Lemma 4.11, a minor inconsistency is that the described first-order derivation
is indexed from 1 instead of 0.

26

A. Schlichtkrull et al.

— In the proof of Theorem 4.13, the conclusion of Lemma 4.11 is stated as N \

R(Nw) € O, but it should have been Neo \ R(Neww) C G(O..). Furthermore, when
Lemma 4.11 was first stated, the conclusion was Ne \ R #(Neo) € G(S). The two
are by fairness equivalent, but we find N \ R(Nw) € G(O.) more intuitive since
it more clearly expresses that all nonredundant clauses become old.

Chief among the factors that contribute to making the chapter hard to follow is

that many lemmas are stated (and usually proved) but not referenced later. We already
mentioned the unfortunate Lemma 3.7. Sect. 4 contains several other specimens:

— Theorem 4.3 (fair_derive_saturated_upto) states a completeness theorem for fair

derivations. However, in Sect. 4.3, fairness is defined differently, and neither the
text nor the formalization applies this theorem.

For the same reason, the property stated in the next-to-last sentence of Sect. 4.1
(standard_redundancy_criterion_extension_fair_iff), which lifts fairness with re-
spect to (R, Rz) to a standard extension (R 7 RY%), is not needed later.

Lemma 4.2 (sat_deriv_Liminf_iff, Ri_limit_Sup, Rf_limit_Sup) is not referenced in
the text, but we need it (sat_deriv_Liminf_iff, Ri_limit_Sup) to prove Theorem 4.13
(fair_state_seq_complete). We also need it (Rf_limit_Sup) to prove Lemma 4.11
(fair_imp_Liminf-minus_Rf_subset_ground_Liminf_state).

Lemma 4.6 (saturated_upto_complete_if) is not referenced in the text, but we need
it to prove Lemma 4.10 (resolution_prover_ground_derivation), Lemma 4.11 (fair_
imp_Liminf_minus_Rf_subset_ground_Liminf_state), and Theorem 4.13 (fair_state_
seq_complete).

Theorem 4.8 (Ri_effective) is not referenced in the text, but we need it to prove
Theorem 4.13 (fair_state_seq_complete).

Theorem 4.9 (saturated_upto_complete) is invoked implicitly in the next-to-last
sentence in the proof of Theorem 4.13 (fair_state_seq_complete).

References

. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: H. Ait-Kaci, M. Nivat

(eds.) Rewriting Techniques—Resolution of Equations in Algebraic Structures, vol. 2, pp. 1-30.
Academic Press (1989)

. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplifica-

tion. J. Log. Comput. 4(3), 217-247 (1994)

. Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of transitive relations. J.

ACM 45(6), 1007-1049 (1998)

. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: A. Robinson, A. Voronkov (eds.)

Handbook of Automated Reasoning, vol. I, pp. 19-99. Elsevier and MIT Press (2001)

. Ballarin, C.: Locales: A module system for mathematical theories. J. Autom. Reason. 52(2), 123-153

(2014)

. Baumgartner, P, Waldmann, U.: Hierarchic superposition revisited. In: C. Lutz, U. Sattler, C. Tinelli,

A. Turhan, F. Wolter (eds.) Description Logic, Theory Combination, and All That—Essays Dedicated
to Franz Baader on the Occasion of His 60th Birthday, Lecture Notes in Computer Science, vol. 11560,
pp. 15-56. Springer (2019)

. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirovi¢, P., Waldmann, U.: Superposition with lambdas.

In: P. Fontaine (ed.) CADE-27, vol. 11716, pp. 55-73. Springer (2019)

Formalizing Bachmair and Ganzinger’s Ordered Resolution Prover 27

8.

10.

11.

12.

13.

14.
15.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

Biendarra, J., Blanchette, J.C., Bouzy, A., Desharnais, M., Fleury, M., Holzl, J., Kuncar, O., Lochbih-
ler, A., Meier, F., Panny, L., Popescu, A., Sternagel, C., Thiemann, R., Traytel, D.: Foundational
(co)datatypes and (co)recursion for higher-order logic. In: C. Dixon, M. Finger (eds.) FroCoS 2017,
LNCS, vol. 10483, pp. 3-21. Springer (2017)

. Blanchette, J.C.: Formalizing the metatheory of logical calculi and automatic provers in Isabelle/HOL

(invited talk). In: A. Mahboubi, M.O. Myreen (eds.) CPP 2019, pp. 1-13. ACM (2019)

Blanchette, J.C., Fleury, M., Lammich, P., Weidenbach, C.: A verified SAT solver framework with
learn, forget, restart, and incrementality. J. Autom. Reason. 61(3), 333-366 (2018)

Blanchette, J.C., Fleury, M., Traytel, D.: Nested multisets, hereditary multisets, and syntactic ordinals
in Isabelle/HOL. In: D. Miller (ed.) FSCD 2017, LIPIcs, vol. 84, pp. 11:1-11:18. Schloss Dagstuhl—
Leibniz-Zentrum fiir Informatik (2017)

Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED. J. Formaliz. Reason.
9(1), 101-148 (2016)

Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by coinductive methods.
J. Autom. Reason. 58(1), 149-179 (2017)

Brand, D.: Proving theorems with the modification method. SIAM J. Comput. 4(4), 412-430 (1975)
Cruanes, S.: Logtk: A logic toolkit for automated reasoning and its implementation. In: S. Schulz,
L. de Moura, B. Konev (eds.) PAAR-2014, EPiC Series in Computing, vol. 31, pp. 39-49. EasyChair
(2014)

. Denzinger, J., Kronenburg, M., Schulz, S.: DISCOUNT—a distributed and learning equational prover.

J. Autom. Reason. 18(2), 189-198 (1997)

. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun. ACM 22(8),

465-476 (1979)

. Fleury, M., Blanchette, J.C., Lammich, P.: A verified SAT solver with watched literals using Imperative

HOL. In: J. Andronick, A.P. Felty (eds.) CPP 2018, pp. 158-171. ACM (2018)

Godoy, G., Nieuwenhuis, R.: Superposition with completely built-in abelian groups. J. Symb. Comput.
37(1), 1-33 (2004)

Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment for
Higher Order Logic. Cambridge University Press (1993)

Hirokawa, N., Middeldorp, A., Sternagel, C., Winkler, S.: Infinite runs in abstract completion. In:
D. Miller (ed.) FSCD 2017, LIPIcs, vol. 84, pp. 19:1-19:16. Schloss Dagstuhl—Leibniz-Zentrum fiir
Informatik (2017)

Krauss, A.: Partial recursive functions in higher-order logic. In: U. Furbach, N. Shankar (eds.) JCAR
2006, LNCS, vol. 4130, pp. 589-603. Springer (2006)

McCune, W.: OTTER 2.0. In: M.E. Stickel (ed.) CADE-10, LNCS, vol. 449, pp. 663—664. Springer
(1990)

Nieuwenhuis, R., Rubio, A.: Theorem proving with ordering and equality constrained clauses. J. Symb.
Comput. 19(4), 321-351 (1995)

Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: A. Robinson, A. Voronkov
(eds.) Handbook of Automated Reasoning, vol. I, pp. 371-443. Elsevier and MIT Press (2001)
Nipkow, T.: Teaching semantics with a proof assistant: No more LSD trip proofs. In: V. Kuncak,
A. Rybalchenko (eds.) VMCAI 2012, LNCS, vol. 7148, pp. 24-38. Springer (2012)

Nipkow, T., Klein, G.: Concrete Semantics: With Isabelle/HOL. Springer (2014)

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic,
LNCS, vol. 2283. Springer (2002)

O’Connor, R.: Essential incompleteness of arithmetic verified by Coq. In: J. Hurd, T.F. Melham (eds.)
TPHOLSs 2005, LNCS, vol. 3603, pp. 245-260. Springer (2005)

Paulson, L.C.: A machine-assisted proof of Godel’s incompleteness theorems for the theory of heredi-
tarily finite sets. Rew. Symb. Logic 7(3), 484498 (2014)

Peltier, N.: A variant of the superposition calculus. Archive of Formal Proofs 2016 (2016). URL
https://wuw.isa-afp.org/entries/SuperCalc.shtml

Persson, H.: Constructive completeness of intuitionistic predicate logic—a formalisation in type theory.
Licentiate thesis, Chalmers tekniska hogskola and Goteborgs universitet (1996)

Pierce, B.C.: Lambda, the ultimate TA: Using a proof assistant to teach programming language
foundations. In: G. Hutton, A.P. Tolmach (eds.) ICFP 2009, pp. 121-122. ACM (2009)

Popescu, A., Traytel, D.: A formally verified abstract account of Godel’s incompleteness theorems. In:
P. Fontaine (ed.) CADE-27, LNCS, vol. 11716, pp. 442—-461. Springer (2019)

Reger, G., Suda, M.: Checkable proofs for first-order theorem proving. In: G. Reger, D. Traytel (eds.)
ARCADE 2017, EPiC Series in Computing, vol. 51, pp. 55-63. EasyChair (2017)

https://www.isa-afp.org/entries/SuperCalc.shtml

28

A. Schlichtkrull et al.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Schlichtkrull, A.: Formalization of the resolution calculus for first-order logic. J. Autom. Reason.
61(4), 455-484 (2018)

Schlichtkrull, A., Blanchette, J.C., Traytel, D.: A verified prover based on ordered resolution. In:
A. Mahboubi, M.O. Myreen (eds.) CPP 2019, pp. 152-165. ACM (2019)

Schlichtkrull, A., Blanchette, J.C., Traytel, D., Waldmann, U.: Formalization of a comprehensive
framework for saturation theorem proving in Isabelle/HOL. Archive of Formal Proofs 2018 (2018).
URL https://wuw.isa-afp.org/entries/Ordered_Resolution_Prover.html
Schlichtkrull, A., Blanchette, J.C., Traytel, D., Waldmann, U.: Formalizing Bachmair and Ganzinger’s
ordered resolution prover. In: D. Galmiche, S. Schulz, R. Sebastiani (eds.) IICAR 2018, LNCS, vol.
10900, pp. 89-107. Springer (2018)

Shankar, N.: Towards mechanical metamathematics. J. Autom. Reason. 1(4), 407-434 (1985)
Shankar, N.: Metamathematics, Machines, and Godel’s Proof, Cambridge Tracts in Theoretical Com-
puter Science, vol. 38. Cambridge University Press (1994)

Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP data-exchange formats for automated theorem proving tools.
In: W. Zhang, V. Sorge (eds.) Distributed Constraint Problem Solving and Reasoning in Multi-Agent
Systems, Frontiers in Artificial Intelligence and Applications, vol. 112, pp. 201-215. IOS Press (2004)
Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In: S. Berghofer,
T. Nipkow, C. Urban, M. Wenzel (eds.) TPHOLSs 2009, LNCS, vol. 5674, pp. 452-468. Springer (2009)
Tourret, S.: A comprehensive framework for saturation theorem proving. Archive of Formal Proofs
2020 (2020). URL https://www.isa-afp.org/entries/Saturation_Framework.shtml
Voronkov, A.: AVATAR: The architecture for first-order theorem provers. In: A. Biere, R. Bloem (eds.)
CAV 2014, LNCS, vol. 8559, pp. 696-710. Springer (2014)

Waldmann, U.: Cancellative abelian monoids and related structures in refutational theorem proving
(part I/IT). J. Symb. Comput. 33(6), 777-829/831-861 (2002)

Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive framework for saturation
theorem proving. In: N. Peltier, V. Sofronie-Stokkermans (eds.) IJCAR 2020, LNCS. Springer (2020)
Wand, D.: Polymorphic+typeclass superposition. In: S. Schulz, L. de Moura, B. Konev (eds.) PAAR-
2014, EPiC Series in Computing, vol. 31, pp. 105-119. EasyChair (2014)

Weidenbach, C.: Combining superposition, sorts and splitting. In: A. Robinson, A. Voronkov (eds.)
Handbook of Automated Reasoning, vol. II, pp. 1965-2013. Elsevier and MIT Press (2001)

Wenzel, M.: Isabelle/Isar—a generic framework for human-readable proof documents. In: R. Ma-
tuszewski, A. Zalewska (eds.) From Insight to Proof: Festschrift in Honour of Andrzej Trybulec,
Studies in Logic, Grammar, and Rhetoric, vol. 10(23). University of Biatystok (2007)

Wenzel, M.: Isabelle/jEdit—a prover IDE within the PIDE framework. In: J. Jeuring, J.A. Campbell,
J. Carette, G.D. Reis, P. Sojka, M. Wenzel, V. Sorge (eds.) CICM 2012, LNCS, vol. 7362, pp. 468—471.
Springer (2012)

Zhang, H., Kapur, D.: First-order theorem proving using conditional rewrite rules. In: E.L. Lusk, R.A.
Overbeek (eds.) CADE-9, LNCS, vol. 310, pp. 1-20. Springer (1988)

https://www.isa-afp.org/entries/Ordered_Resolution_Prover.html
https://www.isa-afp.org/entries/Saturation_Framework.shtml

	1 Introduction
	2 Preliminaries
	3 Refutational Inference Systems
	4 Ground Resolution
	5 Theorem Proving Processes
	6 First-Order Resolution
	7 A First-Order Prover
	8 Discussion
	9 Related Work
	10 Conclusion
	A Errors and Imprecisions Discovered in the Chapter

