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Abstract. Linear temporal logic (LTL) and its quantitative extension metric tem-
poral logic (MTL) are standard languages for specifying system behaviors. Reg-
ular expressions are an even more expressive formalism in the non-metric setting
and several extensions of LTL, including the recently proposed linear dynamic
logic (LDL), offer regular-expression-like constructs. We extend LDL with past
operators and quantitative features. The resulting metric dynamic logic (MDL)
offers the quantitative temporal conveniences of MTL while increasing its ex-
pressiveness. We develop and evaluate an online monitoring algorithm for MDL
whose space-consumption is almost event-rate independent—a notion that char-
acterizes monitors that scale to high-velocity event streams.

1 Introduction

Runtime monitoring is a well-established paradigm for verifying system properties by
comparing system events against a specification formalizing which event sequences
are allowed. Numerous monitoring algorithms have been developed for both the online
setting, where events are monitored in real-time, as they occur, and for the offline setting,
where the monitor analyzes events stored in logs. In this paper we address the online
monitoring problem: Given a stream of events and a property formalized in a formal
specification language, identify all the points in the stream that violate the property.

A standard specification language is linear temporal logic (LTL) with past and fu-
ture temporal operators, which express qualitative temporal constraints like “A must
follow (or be preceded by) B.” Metric temporal logic (MTL) extends LTL to formulate
quantitative temporal constraints like “A must be followed by B within an hour.” There
are numerous semantics for MTL and we work here with a discrete, point-based time
model (Section 2). This model faithfully captures the imprecision of physical clocks
and is algorithmically easier to handle than the dense, interval-based model [8].

We recently developed a monitor for MTL based on dynamic programming that
scales to high-volume and high-velocity event streams [5]. The central notion in this
work is almost event-rate independence (Section 2): the monitor’s space consumption
may only depend logarithmically on the number of events per time-unit. This require-
ment is stronger than the traditionally used trace-length independence, as it accounts for
a high velocity of events. Future temporal constraints make it hard for a monitor to be
event-rate independent. This is because the monitor may be unable to output verdicts for
events, since the verdicts may depend on future events and the number of such events
can exceed the event rate. To overcome this problem, our monitor outputs equivalence



verdicts in addition to the standard Boolean verdicts. With an equivalence verdict, the
monitor indicates that it does not know the exact verdict for an event, but it knows that
the verdict will be equivalent to the verdict of another (also presently unknown) event.

LTL falls short of expressing all regular languages. For example, one cannot express
that some event occurs at every other position in a stream. This limitation is often a
problem in practice [29] and carries over to the point-based semantics of MTL [9]. A
realistic example that cannot be expressed in MTL is that, within the next day, an action
is approved and executed and the approval event happens before the execution event.

To overcome this limitation, researchers have developed numerous, more expres-
sive extensions of LTL and MTL by adding regular-expression-like constructs to the
language [30]. This resulted in specification languages such as the industrially standard-
ized property specification language [29] (PSL), regular linear temporal logic [22, 23]
(RLTL), and more recently linear dynamic logic [14] (LDL). We survey these and other
languages in Section 6. All of them lack some of the features that make MTL an attrac-
tive choice: either its support for past operators or its quantitative features.

Our contributions in this paper are as follows. First, we propose metric dynamic
logic (MDL), an extension of LDL with past operators and quantitative features (Sec-
tion 3). Second, we develop, implement, and optimize an almost event-rate independent
monitoring algorithm for MDL that substantially extends our earlier algorithm for MTL
and Antimirov’s results on partial derivatives of regular expressions [3] (Section 4). Fi-
nally, we empirically evaluate our algorithm and show that it outperforms state-of-the-
art monitoring tools for MTL and timed regular expressions (Section 5).

2 Metric Temporal Logic and Event-Rate Independence

We present our discrete, point-based time model [8] below, briefly introduce metric
temporal logic (MTL) [21], and the notion of event-rate independence for monitors [5].

Let Σ be a set of atomic propositions. An event is a pair (τ, π), where τ ∈ N is a
time-stamp and π⊆ Σ is a set of propositions that are true at that event. An event stream
is an infinite sequence of events ρ= 〈(τ0, π0), (τ1, π1), (τ2, π2), . . .〉with monotonically
increasing time-stamps: τi ≤ τi+1 for all i ∈ N. We write ∆i for the non-negative time-
stamp difference τi+1−τi. We call the indices in ρ time-points, i.e., event (τi, πi) occurs
at time-point i. Moreover, we require that time progresses: for all time-stamps τ there
exists a time-point i with τi > τ. The event rate erρ(τ) of a stream ρ at time-stamp τ is
the number of time-points with that time-stamp, i.e., erρ(τ) = |{i | τi = τ}|.

Metric temporal logic (MTL) [21] is a commonly used language to formulate prop-
erties of event streams. Its syntax is given by the grammar

ϕ= p | ¬ϕ | ϕ∨ϕ |#I ϕ | I ϕ | ϕ SI ϕ | ϕ UI ϕ,

where p ∈ Σ and I ∈ I. Here, I denotes the set of non-empty intervals over N. We write
[a, b] for the interval {x ∈N | a≤ x≤ b}, where a ∈N, b ∈N∪{∞}, and a≤ b. For an
interval I and n∈N, we define I−n to be the interval {x−n | x∈ I}∩N and I− to be the
set of intervals {I−n | n ∈N}, which is always finite. Along with the standard Boolean
operators, MTL includes the past temporal operators  I (previous) and SI (since) and
the future temporal operators #I (next) and UI (until), which may be nested freely. A

2



formula is interpreted with respect to a fixed event stream ρ at a time-point i. As this is
standard, we only show the UI case (omitting the fixed event stream ρ):

i |= ϕ UI ψ iff j |= ψ for some j≥ i with τ j−τi ∈ I and k |= ϕ for all i≤ k < j.

A (traditional online) monitor for MTL takes as input an MTL formula ϕ and events
from ρ, one at a time, and outputs a stream of Boolean verdicts 〈0 |= ϕ, 1 |= ϕ, 2 |=
ϕ, . . .〉. Note that for future formulas (i.e., those containing UI or#I), the monitor cannot
in general output the verdict at time-point i before it has seen some of the events at
future time-points j > i. Taking this to the extreme, for the formula p U[0,∞] q with
atomic propositions p and q and the event stream ρ with τi = i and πi = {p} for all
i, the monitor can never output a verdict at time-point 0 because it always sees only a
finite prefix of the stream. Moreover, even with bounded future intervals, the number
of events that a monitor might need to wait for is unbounded, since non-increasing
time-stamps are allowed in our model. It follows that the memory consumption of any
monitor depends on the event rate as it must allocate at least one bit for each time-point
at which it has not yet produced an output.

In earlier work [5], we developed an MTL monitor that is robust against increasing
event rates. Our almost event-rate independent monitor differs from traditional moni-
tors in its output: additionally to outputting Boolean verdicts, it may output equivalence
verdicts between time-points i≡ j. Such an equivalence means that the Boolean verdicts
at both i and j are presently unknown (since they depend on future events). However,
independent of the future events, they are guaranteed to be equal. Moreover, the moni-
tor may output verdicts out of order with respect to time-points. For the above example,
for p U[0,∞] q the monitor would forever output equivalence verdicts 〈0≡ 1, 0≡ 2, . . .〉.
These changes in how the monitor outputs verdicts are crucial and result in monitor’s
space requirement being almost event-rate independent. Namely, while reading a se-
quence of time-points with identical time-stamps, the monitor keeps the current value
of the time-stamp, as well as the offset between the current and the first time-point
with the same time-stamp. The monitor therefore requires space only logarithmic in the
event-rate, i.e. the number of bits needed to encode the above-mentioned offset.

3 Metric Dynamic Logic

In this section, we introduce metric dynamic logic (MDL). This logic extends LDL [14]
with past temporal operators and time intervals associated with temporal formulas.
MDL’s syntax is defined by the following grammar, where p ∈ Σ denotes an atomic
proposition, and I ∈ I denotes a non-empty interval.

ψ= p | ¬ψ | ψ∨ψ | 〈r〉I ψ | ψ I〈r〉 r = ? | ψ? | r+ r | r · r | r∗

Aside from Boolean operators, MDL contains dynamic modalities like the metric
future diamond operator 〈r〉I ϕ which expresses that formula ϕ is true at some future
time-point with a time difference bounded by the interval I and that the regular expres-
sion r matches the portion of the event stream from the current point up to that future
time-point. The past diamond operator ϕ I〈r〉 expresses the same property about a past
time-point. Regular expressions in MDL match portions of the event stream, i.e., words
over 2Σ . The expression?matches any character andϕ? matches the empty word starting
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at time-point i if the formula ϕ holds at i. Moreover, +, ·, and ∗ are the standard alterna-
tion, concatenation, and (Kleene) star operators. The semantics of formulas and regular
expressions is defined by mutual induction. A formula is interpreted over a fixed event
stream ρ = 〈(τi, πi)〉i∈N and a position i ∈ N. The semantics of a regular expression r
is given by a relation R(r) ⊆ N×N that contains pairs of time-points (i, j) with i ≤ j
such that the sequence πi, . . . ,π j (or π j, . . . ,πi for past) from the fixed ρ matches r.

i |= p iff p ∈ πi R(?) = {(i, i+1) | i ∈ N}
i |= ¬ϕ iff i 6|= ϕ R(ϕ?) = {(i, i) | i |= ϕ}

i |= ϕ1∨ϕ2 iff i |= ϕ1 or i |= ϕ2 R(r+ s) =R(r)∪R(s)

i |= 〈r〉I ϕ iff j |= ϕ for some j≥ i R(r · s) = {(i, k) | ∃ j. (i, j) ∈R(r)
with τ j−τi ∈ I and (i, j) ∈R(r) and ( j, k) ∈R(s)}

i |= ϕ I〈r〉 iff j |= ϕ for some j≤ i R(r∗) = {(i, i) | i ∈ N}∪
with τi−τ j ∈ I and ( j, i) ∈R(r) {(i0, ik) | ∃i1, . . . , ik−1. (i j, i j+1) ∈R(r)

for all 0≤ j < k}
We employ the usual syntactic sugar for additional Boolean constants and operators:

true = p∨¬p, false =¬true, and ϕ∧ψ=¬(¬ϕ∨¬ψ). The ability to arbitrarily nest the
negation operator allows us to define the metric future and past box operators [r ]I ϕ and
ϕ I [r ] as ¬(〈r〉I ¬ϕ) and ¬(¬ϕ I〈r〉), respectively. We use the abbreviations 〈ϕ〉I ψ and
ψ I〈ϕ〉 for 〈ϕ? · ?〉I ψ and ψ I〈? · ϕ?〉. We perform the same implicit cast of a formula
ϕ to the regular expression ϕ? · ? in the context of a future regular expression (or ? ·ϕ?
in the context of a past regular expression) for any formula that occurs as an argument
to one of the +, · , and ∗ constructors. For example, 〈ϕ∗〉I ψ abbreviates 〈(ϕ? · ?)∗〉I ψ.

For an MDL formula ϕ, let SF(ϕ) denote the set of its subformulas defined as
usual. Note that ϕ∈ SF(ϕ). We extend this set to the set of interval-skewed subformulas
ISF(ϕ) = SF(ϕ)∪{ψ J〈r〉 | ψ I〈r〉 ∈ SF(ϕ), J ∈ I−}∪{〈r〉J ψ | 〈r〉I ψ ∈ SF(ϕ), J ∈ I−},
which contains all temporal formulas with the same structure as existing temporal sub-
formulas of ϕ, except with intervals shifted by constants.

Theorem 1. For every MTL formula there exists an equivalent MDL formula.

Proof. We prove this constructively by defining a syntactic translation ξ:

ξ(p) = p; ξ(ϕ∨ψ) = ξ(ϕ)∨ ξ(ψ); ξ(¬ϕ) = ¬ξ(ϕ); ξ(#I ϕ) = 〈?〉I ξ(ϕ);
ξ(ϕ UI ψ) = 〈ξ(ϕ)∗〉I ξ(ψ); ξ( I ϕ) = ξ(ϕ) I〈?〉; ξ(ϕ SI ψ) = ξ(ψ) I〈ξ(ϕ)∗〉.

Given an MTL formula ϕ and a fixed stream ρ, one can prove that ∀i. i |= ξ(ϕ)⇐⇒ i |= ϕ
by induction on the structure of ϕ. (Note that we overload the notation for satisfiability
|= for both logics.) We show the proof only for UI . The other cases follow similarly.

i |= ξ(ϕ UI ψ)
def. ξ⇐⇒ i |= 〈ξ(ϕ)∗〉I ξ(ψ)

cast⇐⇒ i |= 〈(ξ(ϕ)? · ?)∗〉I ξ(ψ)
def. |=⇐⇒ j |= ξ(ψ) for some j≥ i with τ j−τi ∈ I and (i, j) ∈R((ξ(ϕ)? · ?)∗)
IH ψ⇐⇒ j |= ψ for some j≥ i with τ j−τi ∈ I and (i, j) ∈R((ξ(ϕ)? · ?)∗)

def. R⇐⇒ j |= ψ for some j≥ i with τ j−τi ∈ I and k |= ξ(ϕ) for all i≤ k < j
IH ϕ⇐⇒ j |= ψ for some j≥ i with τ j−τi ∈ I and k |= ϕ for all i≤ k < j

def. |=⇐⇒ i |= ϕ UI ψ ut

4



Since MDL extends LDL, it can express any ω-regular language [14]. For instance,
the property “the event a occurs at every even position” can be expressed as [(true ·
true)∗ ]a. This property cannot be expressed by any LTL or MTL formula. Similarly,
the property “both b and c occur within the next two time-units and b occurs before
c” cannot be expressed in MTL with point-based semantics [9]. It can, however, be
expressed in MDL with the formula 〈true∗ · b · true∗〉[0,2] c.

4 The Monitoring Algorithm

Our almost event-rate independent monitor for MTL [5] uses dynamic programming in
a way that extends the classic monitor for past-only LTL by Havelund and Roşu [18].
For MDL we follow the same approach. We recapitulate the algorithm in the simpler
setting of MTL (Subsection 4.1) and afterwards we use incremental reasoning about
dynamic modalities (Subsection 4.2) to extend the algorithm to MDL (Subsection 4.3).
Finally, we present several important performance optimizations (Subsection 4.4).

4.1 An Almost Event-Rate Independent Monitor for MTL

At its core, the MTL monitor relies on an alternative recursive definition of the satis-
fiability of temporal formulas. For example, for a fixed stream ρ, UI’s definition reads:

i |= ϕ UI ψ iff a = 0 and i |= ψ, or ∆i ≤ b, i |= ϕ, and i+1 |= ϕ UI−∆i ψ, (1)

where I = [a,b]. The key observation is that the satisfiability of ϕ UI ψ at time-point i
is fully determined by the satisfiability of ϕ and ψ at the current time-point i and the
satisfiability of the interval-skewed formula ϕ UI−∆i ψ at the next time-point i+1, along
with some interval boundary checks. For SI , a symmetric characterization refers to an
interval-skewed formula at the previous time-point i−1.

Figure 1 (left) illustrates these dependencies as arrows for verdicts at time point i
for the formula (p S[0,5] ϕ) U[2,4] ψ and its subformula p S[0,5] ϕ. Note that the future
dependencies can, in general, only be resolved after having seen the event at time-point
i+ 1. Our monitor treats such future dependencies symbolically as Boolean variables.
To monitor the formula Φ, the algorithm stores a Boolean expression for each interval-
skewed subformula ϕ ∈ ISF(Φ) in an array curr, ordered such that, for any formula ϕ at
index k, each of its proper subformulas occurs at a lower index l < k. We write Φk for
the formula occurring at index k and sometimes use formulas synonymously as indices,
e.g., by writing curr[ϕ] for the curr’s entry at position k, given that ϕ = Φk. We use
Boolean expressions in negation normal form, defined inductively as:

bexp =⊥ | > | Var N | ¬Var N | bexp∧bexp | bexp∨bexp.

Negation ¬ is applied to arbitrary Boolean expressions by pushing it down to the leaves.
With each arriving event, the array curr is updated following Equation 1 (and anal-

ogous equations). The variables in expressions at time-point i represent pointers into
the monitor’s array curr after processing the event at time-point i+1. Instead of using
pointers to the past time-point i−1, the monitor directly uses the expressions from the
array at time-point i−1 to build from them new expressions at time-point i.
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p > >
·· ·

ϕ

· · ·
ψ

· · ·
p S[0,5] ϕ

· · ·
(p S[0,5] ϕ) U[1,3] ψ

(p S[0,5] ϕ) U[2,4] ψ

time-point i−1 i i+1
time-stamp 42 42 43

now :=−1
off := 0
hist := {}
prev :=⊥n

curr := (Now ⊥)n

step (τ, π) =
∆= τ−now
for k = 0, . . . , n−1

prev[k] := eval∆(curr[k])
hist := filter_verdicts

({((now, off), prev[Φ])}∪
{( j, subst (λk. prev[k]) c) | ( j, c) ∈ hist})

now := τ

off := if ∆= 0 then off+1 else 0
for k = 0, . . . , n−1

curr[k] := progress (Φk, ∆, π)

Fig. 1: Example excerpt of the MTL monitor’s state (left) and pseudocode (right)

For future formulas, there is an additional complication: before the monitor has
seen the time-stamp at position i + 1, it cannot know which of the interval-skewed
future formulas to refer to. Therefore, we work with so called future expressions de-
fined as fexp = Now bexp | Later (N → bexp), where the parameter of Later is the
time-stamp difference between the time-points i+ 1 and i. The functions ∧fexp, ∨fexp,
¬fexp lift Boolean operators to future expressions while propagating Boolean values ea-
gerly, for example, by simplifying Now >∨fexp x to Now > and Now ⊥∨fexp x to x.
Given a time-stamp difference ∆, a future expression evaluates to a Boolean expression:
eval∆(Now c) = c and eval∆(Later f ) = f (∆).

We are now set to describe our almost event-rate independent monitor. Figure 1
(right) depicts its (OCaml-like) pseudocode. The monitor’s state consists of five vari-
ables initialized as shown, where n is the number of interval-skewed subformulas of Φ.
To denote their mutability, we write them in boldface. The variable now is the current
time-stamp and together with it the natural number off identifies the current time-point.
Note that we represent time-points as pairs (τ, k), where the second component is an
offset into a block of time-points labeled with time-stamp τ. The history hist is a set of
pairs of Boolean expressions and time-points (again stored as time-stamp-offset pairs).
It contains all time-points at which no verdict was output so far, since the verdict de-
pends on future events. The variable curr is the array of length n of future expressions
for all interval-skewed subformulas at the current time-point. The variable prev is an-
other array of length n of Boolean expressions that belong to the previous time-point.
The monitor updates its state using the step function for each incoming event (τ, π).

The step function first computes the time-stamp difference ∆ between τ and the
previous time-stamp stored in now. It uses ∆ to translate future expressions from curr
to Boolean expressions and store them in prev, thereby discarding any old expression
stored in prev. Next the history hist is updated. This step is the key to obtaining almost
event-rate independence. The variables of all Boolean expressions stored in the history
refer to the latest seen time-point. To maintain this invariant, we first update all expres-
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sions in the history by substituting their variables (pointing to what used to be in curr
before the call of step) with the actual Boolean expressions contained in curr (that is
now stored in prev). The substitution is performed by the higher-order function subst,
whose definition is omitted. Moreover, the expression prev[Φ] is added as a new element
to the history. Then, the function filter_verdicts (whose formal definition is omitted, too)
performs two verdict output steps. First, it iterates over the history and removes (and
outputs as Boolean verdicts) all Boolean expressions equivalent to > or ⊥. Second,
it finds all pairwise equivalent pairs of expressions from the history and for each such
pair it removes the expression with the larger time-point from the history and outputs an
equivalence verdict. By guaranteeing that only semantically different Boolean expres-
sions in at most n variables are contained in the history, the monitor is almost event-rate
independent, as only offset’s size depends on the event rate. Note that if the second step
were omitted, we would obtain a standard monitor that is event-rate dependent. Finally,
after a trivial update of now and off, the progress function fills the curr array with new
future expressions. We only show its definition for UI , following Equation 1.

progress (ϕ U[a,b] ψ, ∆, π) = (Now (a = 0)∧fexp curr[ψ]) ∨fexp

Later (λ∆′. ∆′ ≤ b∧ eval∆′(curr[ϕ])∧Var (ϕ U[a,b]−∆′ ψ))

For other formulas, the update works similarly, for example, by inspecting the π argu-
ment for atomic propositions. Note that the parameter ∆ is not used for UI , as it is the
time-stamp difference between the current and previous time-point. In contrast, ∆′ from
the Later argument is the appropriate time-stamp difference for UI . It will be instanti-
ated to a concrete value after the next event (including its time-stamp) is received. To
refer to the satisfiability of ϕ U[a,b]−∆′ ψ at position i+1 as stipulated by Equation 1, we
use the Var constructor applied to (the index of) ϕ U[a,b]−∆′ ψ.

In the presented algorithm, only the progress function and the computation of interval-
skewed subformulas are specific to MTL. In the following subsections we will replace
these ingredients to obtain a monitor for MDL.

4.2 Derivatives of Dynamic Modalities

To build on ideas from the above algorithm for MDL, we need an alternative recursive
definition of the past and future modalities that refer only to the (i− 1)st and (i+ 1)st
time-point. For a fixed stream ρ, the following characterization holds.

i |= 〈r〉I ϕ iff a = 0, εi(r), and i |= ϕ, or ∆i ≤ b and i+1 |= 〈δi(r)〉I−∆i
ϕ (2)

i |= ϕ I〈r〉 iff a = 0, εi(r), and i |= ϕ, or ∆i−1 ≤ b and i−1 |= ϕ I−∆i−1
〈 δi(r)〉 (3)

Here, I = [a, b], εi(r) is the Boolean denoting whether (i, i) ∈ R(r) (i.e., r matches
the empty word), and δi(r) is the Brzozowski derivative [10] of the regular expression
r (and δi(r) its symmetric counterpart). For plain regular expressions, the Brzozowski
derivative δc(r) computes a regular expression whose language is the left quotient {w |
cw∈ L(r)} of the input expression’s language L(r) by a given letter c. One may view the
derivative as a deterministic automaton whose states are labeled by regular expressions,
whereby reading c in a state r takes the automaton to δc(r). For MDL formulas, the
time-point i takes the place of the given letter c and “reading c” means querying a
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subformula’s satisfaction at time-point i. The inductive definitions of ε, δ, and δfollow.
They all are implicitly parameterized by the fixed ρ.

εi(?) =⊥ δi(?) =>? δi(?) =>?
εi(ϕ?) = i |= ϕ δi(ϕ?) =⊥? δi(ϕ?) =⊥?

εi(r+ s) = εi(r)∨εi(s) δi(r+ s) = δi(r)+δi(s) δi(r+ s) = δi(r)+ δi(s)

εi(r · s) = εi(r)∧εi(s) δi(r · s) = δi(r) · s+ δi(r · s) = r · δi(s)+
εi(r)? · δi(s) εi(s)? · δi(r)

εi(r∗) => δi(r∗) = δi(r) · r∗ δi(r∗) = r∗ · δi(r)
The definition of δ is faithful to Brzozowski’s original definition. Note thatR(>?)=

{(i, i) | i ∈N},R(⊥?) = {}, and εi(r)? ·δi(s) is equivalent to if εi(r) then δi(s)else⊥?,
which is more commonly used to define Brzozowski derivatives. The equations for the
right derivative δare symmetric for the concatenation and star cases. Thereby, δmatches
the regular expression from right to left. It is easy to verify that the Equations 2 and 3
hold for those definitions by structural induction on the regular expression r.

How can we integrate Equations 2 and 3 into our monitor? Since the equations
refer to the satisfiability of formulas 〈δi(r)〉I−∆i

ϕ and ϕ I−∆i−1
〈 δi(r)〉, those formulas

must occur in our interval-skewed subformulas array. In other words, we must moni-
tor 〈δi(r)〉I ϕ simultaneously to 〈r〉I ϕ (and all their interval-skewed variants). But by
the same reasoning, 〈δ j(δi(r))〉I ϕ must be monitored, too. Hence, we must monitor
all formulas that can be reached by repeatedly computing the derivative of the original
subexpressions. Fortunately, Brzozowski has proved that the set of expressions reach-
able by repeatedly taking derivatives is finite, provided that one rewrites expressions to a
normal form with respect to associativity, commutativity, and idempotence (ACI) of the
+ constructor. Unfortunately, the number of all such Brzozowski derivatives is expo-
nential in the size of the initial expression r. This is hardly surprising, since regular ex-
pressions are exponentially more concise than deterministic automata and the set of all
Brzozowski derivatives represents exactly the set of states of a deterministic automaton.

With the size of the array exponential in the size of the input formula, we would still
obtain an almost event-rate independent monitor, but not one that is very time-efficient.
We can do better by resorting to nondeterministic automata, which are as concise as
regular expressions. The equivalent of the Brzozowski derivative for nondeterminis-
tic automata are Antimirov’s partial derivatives of regular expressions [3]. Instead of
computing only one successor expressions, a partial derivative computes a set of ex-
pressions, analogous to the transition function of a nondeterministic automaton. The
partial derivative ∂ and its symmetric counterpart ∂are defined inductively as follows.

∂i(?) = {>?} ∂i(?) = {>?}
∂i(ϕ?) = {} ∂i(ϕ?) = {}

∂i(r+ s) = ∂i(r)∪∂i(s) ∂i(r+ s) = ∂i(r)∪ ∂i(s)

∂i(r · s) = ∂i(r)� s ∪ εi(r)?�∂i(s) ∂i(r · s) = r� ∂i(s) ∪ εi(s)?� ∂i(r)

∂i(r∗) = ∂i(r)� r∗ ∂i(r∗) = r∗� ∂i(r)

Here,� lifts · to sets of expressions. Overloading notation we have r�X = {r · s | s∈ X}
and X� r = {s · r | s ∈ X}.
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Partial derivatives enjoy nice properties: the sum of all expressions in ∂i(r) is equiv-
alent to δi(r). Moreover, the number of different expressions reachable from r by re-
peated application of the partial derivative is bounded by n+1, where n is r’s size [3].
In other words, partial derivatives convert a regular expression of size n into a nondeter-
ministic automaton of size n+1. The states of this automaton are labeled by the n+1
reachable expressions, and these are exactly the ones our monitor will need to keep
track of to follow the following partial derivative variant of Equations 2 and 3.

i |= 〈r〉I ϕ iff a = 0, εi(r), and i |= ϕ, or ∆i ≤ b and
∨

s∈∂i(r) i+1 |= 〈s〉I−∆i
ϕ (4)

i |= ϕ I〈r〉 iff a = 0, εi(r), and i |= ϕ, or ∆i ≤ b and
∨

s∈ ∂i(r) i−1 |= ϕ I−∆i
〈s〉 (5)

Those equations follow by structural induction on r, using the distributivity of the dia-
mond operators over +, i.e., i |= 〈r+ s〉I ϕ⇐⇒ i |= 〈r〉I ϕ∨〈s〉I ϕ.

We must know which regular expressions to keep track of before actually running
the monitor. We can overapproximate this set by replacing εi(ϕ?) with > instead of
i |=ϕ. Then both ε and ∂ become independent of the fixed ρ and i. The number of expres-
sions in the approximation is still bounded by the size of the original expression (+1).

4.3 An Almost Event-Rate Independent Monitor for MDL

The recursive equations are a useful blueprint. However, we cannot use the ε and partial
derivative operations directly, since they rely on the satisfiability of subformulas that are
arguments of _?. But the monitor might not know at time-point i whether some subfor-
mula ϕ is satisfied, since ϕ could refer to the future. However, the monitor does know
the symbolic future expression curr[ϕ] denoting ϕ’s satisfiability at i. This knowledge
allows us to compute the ε symbolically as a future expression:

ε(?) = Now ⊥ ε(r+ s) = ε(r)∨fexp ε(s)
ε(ϕ?) = curr[ϕ] ε(r · s) = ε(r)∧fexp ε(s) ε(r∗) = Now >

Unlike previous definitions of ε, this definition does not depend on any fixed stream ρ.
For the symbolic version of partial derivatives, an additional complication arises.

The above definition of ∂ computes a set of expressions and relies on the Boolean
verdicts of certain subformulas. When we work with future expressions, we do not
know for sure whether to include the partial derivatives of s when computing the partial
derivatives r · s, since ε(r) is not a Boolean value but a future expression. Therefore,
the derivative’s result must be something like a decision tree with sets of regular expres-
sions as leaves. Equations 4 and 5 illustrate, however, that in fact we are not interested in
expressions as such, but rather in expressions wrapped into some fixed past or future di-
amond operators and ultimately the satisfiability of the resulting formulas. Satisfiability
queries are much easier to represent using our machinery (as future expressions) than
decision tree with sets of regular expressions as leaves. Using continuation-passing-
style programming, we obtain the symbolic partial derivative ∂ (and the symmetric ∂)
that computes a future expression corresponding to

∨
s∈∂i(r) i+1 |= 〈s〉I−∆i

ϕ. The func-
tion ∂ takes two arguments: a regular expression r and a continuation function κ that is
supposed to wrap a regular expressions in a past or future diamond operator and create
a variable pointing to the corresponding formula in the (i+1)st time-point.

9



∂ (?, κ) = κ(>?) ∂(?, κ) = κ(>?)
∂ (ϕ?, κ) = Now ⊥ ∂(ϕ?, κ) = Now ⊥

∂ (r+ s, κ) = ∂ (r, κ)∨fexp ∂ (s, κ) ∂(r+ s, κ) = ∂(r, κ)∨fexp ∂(s, κ)

∂ (r · s, κ) = ∂ (r, λt. κ (t · s))∨fexp ∂(r · s, κ) = ∂(s, λt. κ (r · t))∨fexp
(ε(r)∧fexp ∂ (s, κ)) (ε(s)∧fexp ∂(r, κ))

∂ (r∗, κ) = ∂ (r, λt. κ (t · r∗)) ∂(r∗, κ) = ∂(r, λt. κ (r∗ · t))

Observe how the continuation is altered in the concatenation and star cases. The stan-
dard partial derivative first calculates recursively the set ∂i(r) before concatenating s to
each expression in ∂i(r). Here, we extend the continuation κ to perform the concatena-
tion via λt. κ (t · s) at the leaves of the recursion tree.

Finally, we define the progress function for MDL. The function takes as input a
subformula ϕ, the time-stamp difference ∆ between the current and the previous time-
point, and the set of currently true atomic predicates π. Moreover, it assumes, that the
array prev contains the Boolean expressions denoting the satisfiability at the previous
time-point for all interval-skewed variants of ϕ and that the array curr contains the future
expression denoting the satisfiability at the current time-point for all subformulas of ϕ.
It computes a future expression denoting the satisfiability of ϕ at the current time-point.

progress (ϕ, ∆, π) = case ϕ of
| p ⇒ Now (p ∈ π)
| ¬ψ ⇒ ¬fexp curr[ψ]
| ψ1∨ψ2 ⇒ curr[ψ1] ∨fexp curr[ψ2]
| 〈r〉[a,b] ψ⇒ (Now (a = 0)∧fexp ε(r)∧fexp curr[ψ]) ∨fexp

Later (λ∆′. ∆′ ≤ b∧ eval∆′(∂ (r, λs. Now (Var (〈s〉[a,b]−∆′ ψ)))))
| ψ [a,b]〈r〉 ⇒ (Now (a = 0)∧fexp ε(r)∧fexp curr[ψ]) ∨fexp

(Now (∆≤ b)∧fexp ∂(r, λs. subst (λk. curr[k]) prev[ψ [a,b]−∆〈s〉]))

Only the cases for the diamond operators are interesting. They implement Equations 4
and 5. The first disjunct is the same for both the future and past, since it covers the
case when the regular expression matches the empty word. For the future diamond,
the second disjunct is a Later future expression, since it does not know the time-stamp
difference between the current and the next time-point. The argument to Later is the
conjunction of the Boolean from the interval boundary test with the symbolic partial
derivative ∂ (evaluated to a Boolean expression using the abstracted time-difference
∆′). The continuation κ wraps a given regular expression into a future diamond formula
and creates a variable denoting the satisfiability of the resulting formula at the next
time-point. For the past diamond, the second disjunct is a conjunction of the interval
boundary test and the right derivative ∂. The continuation function for the latter wraps
a given regular expression into a past diamond formula and retrieves the Boolean ex-
pression denoting the formula’s satisfaction at the previous time-point from prev. The
variables in this expression point to the current time-point. The function subst updates
those variables to the next time-point by accessing curr.

Using this progress function in the algorithm shown in Subsection 4.1 results in our
almost event-rate independent monitor for MDL.
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Theorem 2. Our monitor is sound: for an MDL formula Φ and any prefix of the event-
stream ρ, whenever it outputs a Boolean verdict b at time-point i, then i |= ϕ⇐⇒ b and
whenever it outputs an equivalence verdict between time-points i and j, then i |= ϕ⇐⇒
j |= ϕ. Moreover, the monitor outputs each verdict as soon as it has seen enough events
to compute the verdict and its space consumption is almost event-rate independent.

Proof. For lack of space, we refer to the similar proof in our previous work for the MTL
monitor [5, Section 5.3]. Since we have only modified the progress function, the only
part that must be adjusted is the calculation given there in the proof of Lemma 2. ut

To process an event, our monitor solves several NP-complete problem instances. How-
ever, the Boolean equivalences arising in practice are simple and tractable (Section 5).

4.4 Optimizations

AERIAL [1] is a concise OCaml implementation of our monitoring algorithms for MTL
and MDL. In previous work [5], we reported on a PolyML implementation of the
homonymous MTL monitor. The OCaml successor employs several optimizations, used
in both logics, that substantially improve its performance for MTL.

Following Havelund and Rosu [18], our arrays store only expressions for tempo-
ral subformulas. The expressions for the Boolean connectives are computed on the fly
accessing the curr array for temporal subformulas and are not stored.

A central operation in our monitor is the access to the curr and prev arrays based on a
subformula’s index. This raises the question of how to efficiently retrieve a subformula’s
index. Searching the array of subformulas is of course not an efficient option (although
our previous PolyML implementation did just that). A standard more efficient solution
would be to use a hash table, but some preliminary experiments showed that computing
hashes of formulas very quickly becomes a bottleneck, too. Instead, AERIAL stores the
indices for all subformulas directly in the formulas as annotations on the constructors.
In the progress function, we then still need to compute the index of a formula based on
the indices of its subformulas and the interval. However, the stored index allows us to
avoid computing the indices of the subformulas recursively. For MTL it is easy to com-
pute the exact position of a temporal formula ϕ UI ψ based on this information by using
a canonical order on subformulas as in [. . . , ϕ, . . . , ψ, . . . , ϕ UI−2 ψ, ϕ UI−1 ψ, ϕ UI ψ]:
the index of ϕ UI ψ is just the index of ψ increased by b, where I = [a, b]. For MDL
this is still problematic, since the derivatives are hard to align in a predictable way. We
resort to memoizing the derivative functions ∂ and ∂to compute a symbolic expression
not only in the verdicts at the (i+1)st time-point but also in the verdicts at the ith time-
point. Thereby, the search for indices happens only once during the initialization of the
monitor and not in the progress function. The progress function merely needs to substi-
tute the symbolic variables pointing to the ith time-point with the current values of curr.

Another crucial question is how to represent Boolean expressions. AERIAL offers
the choice between two representations: the one reported in the paper and one based on
binary decision diagrams (BDDs). For the former, it is important to keep the expres-
sions small. To achieve this, we normalize expressions with respect to the associativity,
commutativity, and idempotence of ∧ and ∨, as well as Boolean tautologies such as
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Fig. 2: Time (top) and memory (bottom) usage with respect to the event rate

>∧ c = c. Boolean expressions offer a low-cost substitution operation, but are expen-
sive to check for equivalence. In fact, the equivalence check translates expressions into
BDDs. The BDD version always works with the BDD representation thereby avoiding
the costly translation. In contrast, the substitution operation becomes more expensive.
In our experiments, the Boolean expression version outperformed the BDD version.

5 Evaluation

In our evaluation, we distinguish between two variants of our tool: AERIAL MDL and
AERIAL MTL and we compare them with MONPOLY [6, 7], a state-of-the-art monitor
for metric first-order temporal logic (MFOTL) and MONTRE [27,28], a state-of-the-art
matcher for timed regular expressions (TRE). We aim to answer the following questions:
Q1: How does AERIAL MDL scale with respect to the event rate?
Q2: How does AERIAL MDL scale with respect to the size of the monitored formula?
Q3: Does AERIAL MDL perform better then state-of-the-art tools?

We ran all our experiments on a 2.6 GHz quad-core Intel Core i7 processor with 16
GB RAM. We measure the tools’ total execution time and maximal memory usage via
the Unix time command. We use GNU Parallel [24] both to generate the streams and
run the four tools. Our evaluation can be divided into two parts: analyzing the tools’
scalability with respect to (1) the event rate and (2) the size of the monitored formula.
In the first part, we monitor a fixed set of formulas (♦[0,5]p, pU[0,5] q, pU[0,5] (q S[2,6] r),
and p U[0,5] (q U[2,6] r)) over streams with an increasing event rate. In the second part,
we monitor formulas of increasing size over a set of streams with a fixed event rate.

The finite prefixes of the synthetic streams used in the experiments span 100 time
units, with the event rate (the number of time-points labeled with the same time-stamp)
ranging from 100 to 100,000 on average (±10%) per stream. The streams contain
three events, Σ = {p,q,r}, and their distribution depends on three different generation
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strategies: random, constant, and custom. The random generation strategy uses the uni-
form probability distribution for each event. Under the constant strategy, each stream
has identical events at every time-point. Since |Σ| = 3, there are exactly eight distinct
constant streams, including the stream with all empty time-points, and the stream with
all events at all time-point. Constant streams are useful to test edge cases in the moni-
tors’ implementations and often trigger worst-case monitor execution time and memory
usage. Finally, the custom generation strategy uses event probability distributions tai-
lored to the particular formulas. For example, for the formula ♦[0,5]p, the probability of
p occurring is very small, which makes the tools wait longer before producing a verdict.

For each generation strategy and event rate, we generated eight different streams.
We also converted each of these streams to the format supported by MONTRE. Since
MONTRE supports only strictly monotonic time-stamps, our conversion simulated large
event rates by increasing the time granularity of the MONTRE streams. Namely, time-
points that share the same time-stamp in the original stream are converted into a se-
quence of time-points with time-stamps that strictly increase by one time unit. The
granularity of the time unit in the converted stream is proportional to the event rate.

We have developed a random MTL and MDL formula generator parameterized by
the formula’s size using QCheck [2], a QuickCheck implementation for OCaml. For our
evaluation, we measure the formula size simply as the number of subformulas and we
separately check the scalability of the monitors with respect to different interval sizes
in the formulas. Note that the tools can only be compared on commonly supported log-
ical fragments. Propositional MTL with both future and past is the common fragment
supported by AERIAL MDL, AERIAL MTL, and MONPOLY, while future MDL for-
mulas in positive normal form belong to the common fragment of AERIAL MDL and
MONTRE. To supply the correct input to each tool, the formula generator implements a
translation from MTL to fragments of MDL, MFOTL, and a translation from MDL to
TRE. The translation to TRE also scales the intervals appropriately to match the differ-
ent time granularity of MONTRE-compliant streams. In contrast to monitors that report
violations, MONTRE outputs all parts of the stream that match a TRE pattern. Hence, to
properly compare the tools, we negate the formulas inputed to the other monitors. We
generated ten arbitrary formulas for each formula size ranging from 5 to 100.

We set a timeout for each monitoring run to be 100 seconds, coinciding with the
streams’ time span. Moreover, we enforce the following disqualification scheme: If a
tool times out for all the traces with the same event rate (or for all formulas with the
same size) it will not be invoked for traces with larger event rates (or, respectively, for
formulas with larger size). When computing the average values, a timeout counts as 100
seconds (although the actual run may take longer) and skews the curves to converge to
the 100 second margin. Therefore, in our plots we only show average values below 50
seconds. The memory used before a timeout contributes to the average memory usage.

Figure 2 shows the results of the first part of the evaluation classified according to
the stream generation strategy. We show the plots for formula p U[0,5] (q U[2,6] r), which
had least favorable outcome for AERIAL MDL. Each data point in the plots represents
a value averaged over eight different streams with a fixed event rate. To answer Q1, we
note that the space consumption of both versions of AERIAL is constant. As expected,
the increasing memory consumption of other tools significant increases the overall pro-
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cessing time. MONTRE was almost immediately disqualified in the case of constant
and custom streams. To answer Q2, we note that, even for the largest formula, AERIAL
MDL requires only 12MB of space compared to MONPOLY, which uses almost 2GB
(see Figure 3a). These experiments were performed on random traces and random for-
mulas and each data point is an average value over eight random traces and ten random
formulas with the same size. During the experiment indicated in Figure 3b, MONTRE
timed out 392 times which is over 50% of all its invocations. Figure 3c shows that
all the tools are mostly unaffected by the size of the time interval N in the formula
p U[0,N] (q S[N/2,N] r). Finally, we observe that in all tests AERIAL MDL performs only
marginally worse than AERIAL MTL, while supporting a strictly more expressive logic.

6 Related work

We survey temporal logics similar to MDL and we describe and compare monitoring
algorithms for those logics most closely related to ours.

MTL is a well known temporal logic for specifying real-time properties. Thati and
Roşu [25] provide an event-rate independent, dynamic programming monitoring al-
gorithm for MTL based on derivatives of MTL formulas. However, their algorithm
implements a non-standard semantics of MTL, truncated to finite traces. When han-
dling future temporal operators, the algorithm outputs verdicts without looking at future
events, which can potentially alter the verdicts. Computing verdicts this way defeats the
purpose of (top-level) future operators: An until that is not satisfied at the current time-
point, but only at the next one, is reported as a violation. Basin et al. [7, 8] introduce
techniques to handle MTL and metric first-order temporal logic with bounded future
operators, adhering to the standard non-truncated semantics for future formulas. Their
monitor uses a queue to postpone the evaluation of a future formula to a time-point at
which all needed information is present. Their algorithm stores in the worst case all
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time-points while it waits and its space complexity is therefore linear in the event rate.
Our previous work [5] is, up to now, the only almost event-rate independent monitoring
algorithm for MTL with the standard semantics for future operators.

Dynamic LTL [19] (DLTL) is one of the earliest attempts to extend LTL’s until oper-
ator to express all ω-regular languages. Leucker and Sánchez [22] propose regular LTL
(RLTL) that further improves on DLTL by allowing regular expressions to be nested
arbitrarily as LTL subformulas. RLTL’s power operator is also more suitable for exten-
sions that can handle past. Sánchez and Leucker [23] extend RLTL with past operators
and show that it can be translated into a 2-way alternating parity automaton with size
linear in the size of the RLTL formula. But 2-way automata are not ideally suited for the
online monitoring of high-velocity event streams, and removing bidirectionality incurs
an exponential blowup [20]. Dax et al. [11] propose a similar extension of the property
specification language [29] (PSL) with additional past operators, called regular tem-
poral logic (RTL). They translate RTL formulas into nondeterministic Büchi automata
with the worst-case size doubly exponential in the size of the RTL formula.

More recently, De Giacomo and Vardi [14] revisited this problem for the finite-
trace semantics and introduced linear dynamic logic (LDL f ). It was inspired by the
well-known propositional dynamic logic (PDL) [17], but its semantics closely resem-
ble LTL. The authors do not discuss the past diamond operator and do not provide a
monitoring algorithm. However, they do provide a general translation from LDL for-
mulas to alternating finite state automata that employs partial derivatives in a similar
fashion as our monitoring algorithm. De Giacomo et al. [12, 13] provide a direct trans-
lation from LDL f formulas to nondeterministic automata that are more suitable for
monitoring. Faymonville et al. [15, 16] propose an extension of LDL called parametric
linear dynamic logic (PLDL) that can specify quantitative temporal constraints. How-
ever, PLDL does not support past operators and its point-based time model does not in-
clude time-stamps, but rather time is implicitly encoded in the time-points. In this work,
we chose to extend LDL with metric features (as opposed to PSL, RTL, or RLTL) due to
its convenient and elegant mutual nesting of logical formulas and regular expressions.

Asarin et al. [4] introduce timed regular expressions (TRE) and prove their equiv-
alence to timed automata. Additionally, some of the authors propose offline [27] and
online [28] pattern matching algorithms for TRE, implemented as an open source tool
called MONTRE [26]. Although TRE was originally defined over both discrete point-
based and dense interval-based time models, MONTRE assumes the latter model.

7 Conclusion

We have introduced metric dynamic logic (MDL), a new logic that combines the expres-
sive power of regular expressions with the ability to reference the past and the future in
both a quantitative and qualitative way, as in metric temporal logic. Moreover, we have
extended our previous almost event-rate independent monitoring algorithm for MTL to
support MDL. Our evaluation shows that our implementation of this monitor, AERIAL,
outperforms other state-of-the-art monitoring tools.

As future work, we would like to extend the presented ideas to the first-order setting,
where events may carry data and formulas may quantify over the data’s domain.
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