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Abstract. Runtime verification tools must correctly establish a specification’s
validity or detect violations. This task is difficult, especially when the specifi-
cation is given in an expressive declarative language that demands a non-trivial
monitoring algorithm. We use a proof assistant to not only solve this task, but
also to gain confidence in our solution. We formally verify the correctness of a
monitor for metric first-order temporal logic specifications using the Isabelle/HOL
proof assistant. From our formalization, we extract an executable algorithm with
correctness guarantees and use differential testing to find discrepancies in the
outputs of two unverified monitors for first-order specification languages.
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1 Introduction

Runtime verification (RV) tools are used today in safety, mission, and security-critical
applications, where mistakes are too costly to be tolerated. These tools rely on complex
monitoring algorithms for expressive specification languages. The correctness of these
algorithms and their implementations is important and rarely obvious.

The RV community has considered different ways of improving monitors’ trustwor-
thiness by model checking monitoring algorithms [15, 21, 22] and using proof assistants
to formally verify monitor instances for fixed specifications [6, 30] or entire monitors
for linear temporal logic (LTL) on finite words [24] and differential dynamic logic
(dL) [7, 18]. We add to these lines of work and use the Isabelle/HOL proof assistant
(Sect. 2) to develop and prove correct a monitor that supports a large fragment of metric
first-order temporal logic with past and future operators (MFOTL) (Sect. 3).

Basin et al. [2] describe an efficient monitoring algorithm for MFOTL, which is imple-
mented in the state-of-the-art monitoring tool MonPoly [3]. Our implementation deviates
from the algorithm’s informal description [2] in several fine points, in particular regarding
the concrete representation of the monitor’s state. Our formally verified algorithm closely
follows MonPoly’s implementation, while incorporating several simplifications regarding
the evaluation order of subformulas and using simpler, less optimized data structures.

Like MonPoly, we consider a fragment of MFOTL that is monitorable using finite re-
lations, which we represent as tables (Sect. 4). (Another version of MonPoly also supports
full MFOTL using automata to represent regular relations, but is orders of magnitude
less efficient.) Our monitoring algorithm processes a parametric event stream online,
incrementally updates its state, and outputs verdicts specifying for every position in the
event stream whether a violation has occurred and which parameters caused it (Sect. 5).
We have proved the algorithm correct by establishing a complex invariant on its state and
verifying that the outputted violations faithfully reflect MFOTL’s semantics (Sect. 6).
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Using Isabelle’s code generator [9], we extract an executable OCaml implementation
from our formalization. The resulting certified algorithm is integrated into MonPoly by
replacing its core algorithm, while reusing its (unverified) formula and log parsers. The
certified algorithm is slower than MonPoly’s original algorithm. Yet it is efficient enough
to process roughly 4 000 events per second on a formula with non-trivial past and future
operators, whereas the original algorithm can process 23 000 events per second.

To demonstrate the verified monitor’s usefulness, we perform a case study in differ-
ential testing: We compare our algorithm’s output to MonPoly’s on randomly generated
inputs (Sect. 7). We also compare with DejaVu [11–13], a monitor for past-only first-
order temporal logic. We find some discrepancies in the outputs of both tools, exhibiting
corner cases where the unverified tools deviate from MFOTL’s standard semantics.

In summary, we contribute a highly trustworthy monitor implementation by verifying
its correctness in Isabelle/HOL. The monitor features an expressive parametric specifica-
tion language with past and future metric temporal operators. Our case study confirms the
usefulness of having a trusted testing oracle. We describe the formalized algorithm using
concrete Isabelle syntax, demonstrating that programming in Isabelle is not different from
programming in any other functional programming language. Moreover, the described
algorithm can be seen as a more faithful and precise description of the MFOTL monitor
than the original paper by Basin et al. [2]. With only 3 000 lines of Isabelle definitions and
proofs, the verification effort was modest. The formalization is publicly available [29].

Related Work. Monitoring parametric traces and first-order specifications is bread-and-
butter business in runtime verification [2, 3, 10–13, 23, 25, 26]. We refer to Havelund et
al. [14] for a recent overview. Here, we discuss verification efforts targeting monitors.

Pike et. al [15,21,22] use SMT-based model-checking to increase the trustworthiness
of monitors within the Copilot framework. Blech et al. [6] extract executable monitors
for regular expressions from a formalization in the Coq proof assistant. However, the
monitors must be proved correct manually for every property because their construction is
not verified. Völlinger [30] develops a framework for certifying the output of distributed
algorithms in Coq. The certification procedures that are part of this framework can
be seen as concrete monitors for specific properties. Their correctness, too, must be
proved manually for every distributed algorithm considered. Rizaldi et al. [24] verify
a dynamic programming monitor for LTL on finite traces in Isabelle/HOL as part of
their work on monitoring traffic rules. The finite trace semantics significantly simplifies
their algorithm. ModelPlex is a framework for synthesizing correct-by-construction
monitors for cyber-physical systems [18]. Bohrer et al. [7] further extend this work to an
entire verified pipeline that culminates in the usage of a verified compiler. Both works
use differential dynamic logic, which targets cyber-physical systems, but cannot easily
express metric temporal properties.

More distantly related verification efforts in proof assistants include regular expres-
sion matchers [1, 20], a model checker for LTL [8], a library of timed automata [31]
including a model checker [32], and relational database management systems [4, 5, 16].

In a separate line of work [27], we have extended our formalization with a framework
for adaptive parallel monitoring. There parallel instances of the verified monitor must
exchange parts of their states. Having the formalization of the monitor in the first place
was crucial to gain trust in the correctness of this nontrivial extension.
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2 Isabelle/HOL

Proof assistants are tools that mechanically check human-written proofs. They provide
the highest level of trustworthiness by being built around a small, well-understood infer-
ence kernel. All proofs must pass through the kernel, which rules out invalid arguments.

Isabelle/HOL [19] is a proof assistant based on classical higher-order logic (HOL)
with Hilbert choice, the axiom of infinity, and rank-1 polymorphism. HOL’s syntax resem-
bles that of functional programming languages, but with quantifiers. Isabelle features a
code generator [9], which exports executable specifications to Haskell, OCaml, and Scala.

HOL’s basic types include type variables 'a, 'b, . . . , Booleans bool, natural numbers
nat, sets 'a set, pairs 'a× 'b, and functions 'a⇒ 'b. Functions are usually curried, and⇒ is
right-associative. Type constructors such as 'a set are written postfix, e.g., nat set denotes
the type of sets of natural numbers. The command type_synonym t = u introduces an
abbreviation t for an existing type u. The command typedef t = S defines a genuinely
new type from a nonempty set S over an existing type. Recursive datatypes are defined
by the datatype command, similar to Haskell’s data. For example, datatype 'a list =
[] | Cons 'a ('a list) defines finite lists. The Cons constructor is usually written infix as #.

Terms are built from variables x,y, . . . , constants, function applications f x, and ab-
stractions λx. z. Function application is left-associative. We use additional notation, e.g.,
conditionals if b then z1 else z2, case distinctions for datatypes case d of x # xs⇒ z | . . . ,
and infix operators. The expression z :: t denotes that the term z has type t. The command
definition c :: t where c = z defines a new constant c from the term z :: t, which may not
contain c. Recursive functions are defined by pattern-matching using fun. For example,

fun map :: ('a⇒ 'b)⇒ 'a list⇒ 'b list where
map f [ ] = [ ] | map f (x # xs) = f x # map f xs

defines the standard list map function. Inductive predicates can be introduced differently:

inductive list_all2 :: ('a⇒ 'b⇒ bool)⇒ 'a list⇒ 'b list⇒ bool where
list_all2 P [ ] [ ] | P x y∧ list_all2 P xs ys−→ list_all2 P (x # xs) (y # ys)

The inductive command defines list_all2 as the least (inductive) predicate closed under
the two given rules (implications). In other words, list_all2 P xs ys is true iff the lists xs
and ys have the same lengths, and their elements satisfy the binary predicate P pairwise.

We use many constructs from Isabelle’s library: e.g., projections fst and snd on
pairs and the minimum operator min. The type enat extends nat with infinity ∞. The set
{x. P x} contains all x satisfying P. Other set operations are A×B (Cartesian product),
A−B (set difference),

⋃
x∈ A. F x (indexed union, i.e., {y. ∃x∈ A. y∈ F x}), Inf A (infi-

mum), and f ‘A (image of A under f , i.e.,
⋃

x∈ A. { f x}). The sets {a ..< b} and {a<.. b}
contain all natural numbers n with a≤ n < b and a < n≤ b, respectively. The list [a ..< b]
contains all of {a ..< b} in ascending order. The datatype 'a option has two constructors⊥
and 〈x :: 'a〉. The term map_option f maps ⊥ to ⊥ and 〈x〉 to 〈 f x〉. Options can be con-
verted to sets via d⊥e= {} and d〈x〉e= {x}. The function these :: 'a option set⇒ 'a set
maps A to

⋃
x ∈ A. dxe. The term foldr f xs z combines the elements of the list xs with

the binary function f , using z as the initial value, e.g., foldr (−) [1,2] 3 = 1− (2−3).
The set of all elements in the list xs is set xs, the length of xs is length xs, the i-th element
of xs is xs ! i (zero-based, requires i < length xs), and list concatenation is xs@ys. Strings
string are character lists. Streams 'a stream are infinite sequences of values of type 'a.
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type_synonym name = string
type_synonym db = (name×domain list) set

typedef trace = {s :: (db× ts) stream. wf_trace s}
datatype trm = V nat | C domain

type_synonym domain = string
type_synonym ts = nat

typedef I = {(a :: nat,b :: enat). a≤ b}
datatype frm = Pred name (trm list) | Eq trm trm | Neg frm |Or frm frm | Exists frm
| Since frm I frm | Until frm I frm

fun eval_trm :: domain list⇒ trm⇒ domain where eval_trm v (V x)= v! x | eval_trm v (C x)= x

fun sat :: trace⇒ domain list⇒ nat⇒ frm⇒ bool where
sat σ v i (Pred r ts) = ((r,map (eval_trm v) ts) ∈ Γ σ i)
| sat σ v i (Eq t1 t2) = (eval_trm v t1 = eval_trm v t2) | sat σ v i (Neg ψ) = (¬sat σ v i ψ)
| sat σ v i (Exists ψ) = (∃z. sat σ (z # v) i ψ) | sat σ v i (Or α β) = (sat σ v i α∨ sat σ v i β)
| sat σ v i (Since α I β) = (∃ j≤ i. τ σ i−τ σ j ∈I I∧ sat σ v j β∧ (∀k ∈ { j <.. i}. sat σ v k α))
| sat σ v i (Until α I β) = (∃ j≥ i. τ σ j−τ σ i ∈I I∧ sat σ v j β∧ (∀k ∈ {i ..< j}. sat σ v k α))

Fig. 1. Syntax and semantics of MFOTL

3 Metric First-Order Temporal Logic

We interpret MFOTL over infinite streams of time-stamped events. Figure 1 shows the
types of event streams and formulas along with the relation sat defining the semantics.
Events consist of a name and a list of parameters from some domain (name×domain list).
The name and domain types are arbitrary; we choose strings for convenience. We group
concurrent events into databases (db). Time-stamps are discrete and modeled as natural
numbers (ts). An event stream (trace) is an infinite stream of time-stamped databases.
We write Γ σ i for the i-th database in event stream σ and τ σ i for the corresponding
time-stamp, where i is a zero-based index. The predicate wf_trace in trace’s definition en-
sures that the time-stamp sequence is monotonic (∀i. τ σ i≤ τ σ (i+1)) and unbounded
(∀t. ∃i. t < τ σ i). A (stream) prefix π is a finite list of time-stamped databases. It satisfies
wf_prefix iff the prefix π has monotonic time-stamps. We write prefix_of π σ if the event
stream σ extends the prefix π, i.e., the sequence of σ’s first length π elements equals π.

The datatypes for terms (trm) and formulas (frm) are mostly standard. We use
De Bruijn indices to represent free and bound variables, e.g., ∃y. A(x,y) is encoded
as Exists (Pred A [V 1,V 0]). In examples, we will show both the standard notation
and the concrete encoding. The term fv ϕ denotes the set of ϕ’s free variables. The
degree nfv ϕ is the least number n such that for than any x ∈ fv ϕ we have x < n. The
predicate is_Const tests whether its argument is C d for some d. The type I mod-
els nonempty intervals over the natural numbers. The term interval a b represents
the interval from a to b (both inclusive), and point c = interval c c. We write left I
and right I for the endpoints of I : I, and n ∈I I for the membership of n in I. We
use abbreviations for some derived operators: And α β = Neg (Or (Neg α) (Neg β)),
AndNot α β = Neg (Or (Neg α) β), TT = Eq (C d) (C d), where d is an arbitrary
domain value, and Eventually I ψ= Until TT I ψ. We omit the operators previous and
next from our presentation. These operators are implemented in the formalization [29].

We have sat σ v i ϕ iff the formula ϕ is satisfied by the valuation v at index i, given the
event stream σ. Valuations are modeled as lists of domain values, the first element being
the assignment to the variable with index 0, the second to the variable 1, and so forth.
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type_synonym tuple = domain option list type_synonym table = tuple set

definition wf_tuple :: nat⇒ nat set⇒ tuple⇒ bool where
wf_tuple n V v = (length v = n∧ (∀i < n. v ! i =⊥←→ i /∈ V))

definition wf_table :: nat⇒ nat set⇒ (tuple⇒ bool)⇒ table⇒ bool where
wf_table n V Q A = (∀v. v ∈ A←→ (Q v∧wf_tuple n V v))

fun join1 :: tuple× tuple⇒ tuple option where
join1 ([ ], [ ]) = 〈[ ]〉
| join1 (⊥# xs,⊥# ys) = map_option (λzs.⊥# zs) (join1 (xs, ys))
| join1 (〈x〉# xs,⊥# ys) = map_option (λzs. 〈x〉# zs) (join1 (xs, ys))
| join1 (⊥# xs, 〈y〉# ys) = map_option (λzs. 〈y〉# zs) (join1 (xs, ys))
| join1 (〈x〉# xs, 〈y〉# ys) = (if x = y then map_option (λzs. 〈x〉# zs) (join1 (xs, ys)) else⊥)
| join1 (_, _) =⊥

definition join :: bool⇒ table⇒ table⇒ table where
join p A B = (if p then these (join1 ‘ (A×B)) else A− these (join1 ‘ (A×B)))

Fig. 2. Finite tables

4 Finite Tables
Our monitor computes and outputs all satisfying valuations of a formula at all indices.
To do so efficiently, it operates on finite sets of valuations, which can be viewed as finite
tables, and manipulates them using standard relational operations like natural join.

A way to represent finite sets of valuations for a given formula ϕ is to use sets of
n-ary tuples (i.e., lists of length n), where n is the number of free variables in ϕ. The
representation must map free variables to positions in the tuple and the natural join
operation changes the arity of tuples. We chose a slightly different representation to
simplify the implementation of union and join: Our tuples xs are lists of optional domain
values, which assign values only to those variables i whose corresponding entries xs ! i
are not⊥. This allows us to use tuples of a fixed length n, regardless of the formula’s free
variables, while ensuring that for any subformula all its free variables given by a set V
are assigned, as specified by the well-formedness predicate wf_tuple (Fig. 2). We use the
statement wf_tuple n (fv ϕ) v with nfv ϕ≤ n to express that v is a well-formed tuple for ϕ.
We obtain the corresponding valuation v= map the v, where the function the maps 〈x〉 to
x and⊥ to some unspecified domain element. The actual value assigned to⊥ is irrelevant
for the valuation’s satisfaction since it is only assigned to variables that are not free in ϕ.

A well-formed table A, written wf_table n V Q A, is a set of well-formed tuples. The
parameter Q is a predicate on tuples that further restricts our attention to those tuples
satisfying Q. Typically, Q will be instantiated by sat expressing that a table A consists of
precisely the well-formed tuples that satisfy a given formula ϕ on stream σ at index i, i.e.,
wf_table n (fv ϕ) (λv. sat σ v i ϕ) A, where nfv ϕ≤ n. The abbreviation table n V A =
wf_table n V (λv. v ∈ A) A expresses that A only contains well-formed tuples.

Using this representation, the union of tables A and B both satisfying table n V is
just the set union A∪B, satisfying table n V (A∪B). The natural join operation is more
involved. We first show how to join two individual tuples. We define this function join1
recursively (Fig. 2) assuming that the two input tuples have the same length (but not nec-
essarily the same variables being set to ⊥). The function join1 returns an optional tuple,
where ⊥ indicates either that the inputs do not have the same length (last equation) or
that they are not joinable, i.e., have conflicting assigned domain values (the else branch in
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type_synonym buf = table list× table list type_synonym saux = (ts× table) list
type_synonym uaux = (ts× table× table) list

datatype state = EqS table | PredS name (trm list)
| AndS state bool state buf |OrS state state buf | ExistsS state
| SinceS bool state I state buf (ts list) saux | UntilS bool state I state buf (ts list) uaux

datatype mstate = MState nat nat state

definition init :: frm⇒ mstate where . . .
fun step :: db× ts⇒ mstate⇒ (nat× tuple) set×mstate where . . .
fun steps :: (db× ts) list⇒ mstate⇒ (nat× tuple) set where

steps [ ] _ = {} | steps (tdb #π) s = (let (A,s′) = step tdb s in A∪ steps π s′)

Fig. 3. The monitor’s state and its high-level interface

the if-expression). The key property of join1 is its correspondence to logical conjunction:

wf_tuple n V v∧wf_tuple n W w−→
join1 (v,w) = 〈z〉 ←→ (wf_tuple n (V ∪W) z∧ v = z ↓ V ∧w = z ↓W),

where v ↓ V maps all domain elements assigned to variables outside of the set V to ⊥;
formally, v ↓ V = map (λi. if i ∈ V then v ! i else⊥) [0 ..< length v].

The function join (Fig. 2) lifts join1 to tables, where the Boolean p indicates whether
a join (p = True) or an anti-join (p = False) is computed. Naturally, join’s key property
is similar to join1’s, but now expressed on tables. For the anti-join, the negated part’s
variables (W) must be contained in those of the non-negated part (V) to ensure finiteness.

table n V A∧ table n W B∧ (¬p−→W ⊆ V)−→
z ∈ join p A B←→ (wf_tuple n (V ∪W) z∧ z ↓ V ∈ A∧ (p←→ z ↓W ∈ B))

Above, join computes A×B before applying join1. We prove and use for code genera-
tion the more space-efficient definition join True A B =

⋃
v ∈ A.

⋃
w ∈ B. djoin1 (v,w)e.

5 Monitor
A monitor takes an MFOTL formula ϕ and an event stream σ as inputs. It computes satis-
factions: pairs (i,v) of indices i and valuations v that satisfy the formula, i.e., sat σ v i ϕ.
One is often interested in finding the violations of a formula ϕ, which are the pairs (i,v)
such that ¬sat σ v i ϕ. Violations can be obtained by monitoring the negated formula.

A monitor cannot directly process an infinite event stream. Instead, in the offline
setting, the monitor computes satisfactions for a single stream prefix. In the online setting,
the monitor processes an unbounded stream incrementally and produces intermediate out-
puts. Our monitor always receives a whole time-stamped database at once, since MFOTL
formulas cannot distinguish the order and arrival time of events within a database.

Figure 3 shows our monitor’s state type (mstate) and its online and offline interface.
The online interface is a transition system given by two functions: init, which computes
the initial state, and step, which updates the state with a new input (a time-stamped
database) and outputs satisfactions. The offline interface is the function monitor ϕ π=
steps π (init ϕ), where steps iterates step on a prefix and collects all satisfactions in a set.

Example 1. Consider the formula A(x)−→ ♦[1,2](∃y.B(x,y)), i.e., all A events must be
followed by a matching B event after one or two time units. To obtain violations, we
monitor the negation A(x)∧¬♦[1,2](∃y.B(x,y)), which we encode as
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ϕex = AndNot (Pred A [V 0])
(
Eventually (interval 1 2) (Exists (Pred B [V 1,V 0]))

)
.

Given the prefix πex =
[
({(A, [d]),(A, [e])},1),({(B, [d,f])},2),({(B, [e,f])},5)

]
, which

consists of three databases with indices 0, 1, 2 and time-stamps 1, 2, and 5, with four
events in total, there is one satisfaction: monitor ϕex πex = {(0, [〈e〉])}. The satisfaction
originates from the event (A, [e]), which is part of the database with index 0 in πex. The
satisfaction’s valuation is [〈e〉] because the parameter of (A, [e]) is bound to ϕex’s first
(and only) free variable. The satisfaction is output after processing the third database:

step ({(A, [d]),(A, [e])},1) (init ϕex) = ({}, s1)

step ({(B, [d,f])},2) s1 = ({}, s2)

step ({(B, [e,f])},5) s2 = ({(0, [〈e〉])}, s3),

where s1, s2, and s3 are the monitor’s states after processing each input.

Overview of the Algorithm. We require satisfactions to be output in the order they occur.
Namely, (i1,v1) cannot be output after (i2,v2) if i1 < i2. Therefore, the monitor’s state is
characterized by its progress, which we represent by a stream index i. The progress is the
smallest index for which new satisfactions cannot be computed without receiving more
databases. It is initially zero and always at most the number of databases received. It is
generally not possible to compute all satisfactions for an index j after processing the j-th
input when monitoring a formula with future operators. For example, if the j-th input con-
tains the event (A, [d]), we do not know whether ( j, [〈d〉]) satisfies ϕex from Example 1 un-
til we either observe a matching B event or a time-stamp that is at least three units ahead.

For every input database, step advances i by recursively evaluating the monitored
formula. The evaluation of a subformula ψ at index i yields a table containing all
valuations v with sat σ v i ψ. For any binary operator in the formula, it may be possible to
evaluate its subformulas up to different indices, e.g., if one subformula contains a future
operator and the other does not. Our monitor evaluates subformulas as far as possible.
Therefore, every subformula ψ has its own progress iψ describing how far it has been
evaluated. (We omit the subscript when it is clear from the context.) Since several indices
might be resolved at once by a new input, the evaluation result is a list xs :: table list. Its
elements correspond to indices [i ..< i+ length xs] according to their position in the list.

Recall that tables are finite sets. Evaluation of a subformula must therefore not
result in infinitely many satisfying valuations. This is not guaranteed for all MFOTL
formulas. For example, the formula ¬A(x) (i.e., Neg (Pred A [V 0])) has infinitely many
satisfying valuations at each index, regardless of the event stream. We, therefore, adopt
the restriction to a syntactic fragment of MFOTL that is used in the table-based variant of
MonPoly [2]. A formula is monitorable if and only if its satisfies the recursive predicate
mf (Fig. 4). Note that the negation of ϕ must be monitorable if we search for violations
of ϕ, which is generally different from the monitorability of ϕ itself. Basin et al. [2]
describe a heuristic that attempts to rewrite formulas into equivalent, monitorable ones.

An equality Eq t1 t2 is only monitorable if at least one of the terms is a constant
(otherwise, an infinite number of valuations satisfy x = x, i.e., Eq (V 0) (V 0)). In
general, monitorable formulas may contain negations only in specific places. The pattern
Neg (Or (Neg α) (Neg β)) corresponds to a conjunction And α β, which is always
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fun mf :: frm⇒ bool where
mf (Eq t1 t2) = (is_Const t1∨ is_Const t2)
| mf (Pred e trms) = True
| mf (Neg (Or (Neg α) β)) = (mf α∧ (mf β∧ fv β⊆ fv α∨mf ?Neg β)
| mf (Or α β) = (fv α= fv β∧mf α∧mf β)
| mf (Exists ψ) = mf ψ
| mf (Since α I β) = (fv α⊆ fv β∧ (mf α∨mf ?Neg α)∧mf β)
| mf (Until α I β) = (fv α⊆ fv β∧ (mf α∨mf ?Neg α)∧mf β∧ right I 6= ∞)
| mf _ = False

Fig. 4. Monitorable formulas ( f ?Neg ϕ abbreviates case ϕ of Neg ϕ′⇒ f ϕ′ | _⇒ False)

fun init0 :: nat⇒ frm⇒ state where . . .
fun eval :: nat⇒ ts⇒ db⇒ state⇒ table list× state where . . .
definition init :: frm⇒ mstate where init ϕ= (let n = nfv ϕ in MState n 0 (init0 n ϕ))

fun step :: db× ts⇒ mstate⇒ (nat× tuple) set×mstate where
step (db, t) (MState n i s) = (let (xs, s′) = eval n t db s

in (
⋃
(k,V) ∈ set (enumerate i xs).

⋃
v ∈ V. {(k,v)}, MState n (i+ length xs) s′))

Fig. 5. Initialization and step functions of the monitor

monitorable if α and β are monitorable. For AndNot α β, we additionally require that
all variables free in β are free in α. This rules out formulas like A(x)∧¬B(y) (i.e.,
AndNot (Pred A [V 0]) (Pred B [V 1])), which has infinitely many satisfactions if the
stream contains at least one A event. The subformulas α and β of Or α β must have
exactly the same free variables for similar reasons. The temporal operators Since and
Until allow a negated left subformula α = Neg α′ even if α itself is not monitorable.
However, there is always a restriction on the free variables. For example, Since α I β is
already satisfied at index i if β is satisfied at i. Any free variable in α that is not free in β
could thus be assigned any value, and the resulting table would be infinite. Moreover, the
future reach of Until α I β must be bounded to ensure that the monitor can make progress.

The monitor’s state MState n i s consists of the formula’s degree n = nfv ϕ (to avoid
recomputation), the progress i, and a formula state s. The formula state datatype state
(Fig. 3) extends the abstract syntax tree of formulas with the state that is associated with
the formula’s operators. It restricts the syntax to a superset of the monitorable formulas,
such that the evaluation can be implemented directly as a recursive function on state.

The monitor’s entry points are defined in Fig. 5. The function init uses init0 to convert
the formula recursively into a formula state. We omit init0’s definition, which follows
mf’s definition. Some of state’s constructors carry a Boolean flag p that indicates whether
one of the subformulas is positive (p=True) or negated (p= False). In those cases where
a negated subformula is not monitorable, we remove the negation before the recursive
conversion and set p to False. For example, α∧¬β (i.e., AndNot α β) is converted to
AndS (init0 n α) False (init0 n β) ([ ], [ ]). All lists in the state are initially empty.

The step function step is a wrapper for eval that evaluates a formula state given the
formula’s degree and the new time-stamp and database. It returns a list of tables for
all indices that could be evaluated, and the updated state. We cover all cases of eval’s
definition in the following subsections. The standard function enumerate i xs maps the
elements V of xs to pairs (k,V), where the numbers k increase sequentially starting at i.
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fun match :: trm list⇒ domain list⇒ (nat⇒ domain option) option where
match [ ] [ ] = 〈λx.⊥〉
| match (C x # trms) (y # ys) = (if x = y then match trms ys else ⊥)
| match (V x # trms) (y # ys) = (case match trms ys of ⊥⇒⊥
| 〈 f 〉 ⇒ (case f x of ⊥⇒ 〈 f (x 7→ y)〉 | 〈z〉 ⇒ if y = z then 〈 f 〉 else ⊥))
| match _ _ =⊥

Fig. 6. The match function

fun buf_add :: table list⇒ table list⇒ buf ⇒ buf where
buf_add xs′ ys′ (xs,ys) = (xs @ xs′,ys @ ys′)

fun buf_take :: (table⇒ table⇒ 'b)⇒ buf ⇒ 'b list×buf
buf_take f (x # xs,y # ys) = (let (zs,b) = buf_take f (xs,ys) in ( f x y # zs,b))
| buf_take f (xs,ys) = ([ ],(xs,ys))

Fig. 7. Buffer operations

Atomic Formulas. The constructor EqS of state represents constant tables corresponding
to (monitorable) equalities. The associated state is always the same table, which is
returned upon evaluation. For a predicate’s state PredS e trms, we first select all events
in the database db with the name e. The auxiliary function match, defined in Fig. 6, is
applied to each selected event. This function attempts to compute the unique valuation for
the variables in trms that makes the terms match the event’s parameters. It returns 〈 f 〉 if
such a valuation f exists, and ⊥ otherwise. To simplify match’s definition, f is encoded
as a partial function nat⇒ domain option. We convert it into a tuple using map f [0 ..< n].

eval n t db (EqS r) = ([r],EqS r)
| eval n t db (PredS e trms) = ([(λ f . map f [0 ..< n]) ‘ these

(match trms ‘ (
⋃
(e′, x) ∈ db. if e = e′ then {x} else {}))], PredS e trms)

Non-Temporal Operators. It may be possible to evaluate the two subformulas α and β
of a binary operator up to different indices iα 6= iβ. Then, the operator itself can only be
evaluated up to the minimum of iα and iβ. The remaining tables obtained from the subfor-
mula that is further ahead must be stored until more results are available from the other
subformula. We store the tables in a buffer of type buf , which consists of one list for each
subformula. The lists act as queues: new results are appended, and whenever both lists
are nonempty, the subformula can be evaluated by removing pairs of tables from the front.
The function buf_add xs′ ys′ b (Fig. 7) adds the result lists xs′ and ys′ from the two subfor-
mulas to the buffer b. The function buf_take f b removes pairs of tables from the front of
the buffer and applies the operator-specific function f to them, collecting a list of results.

For AndS and OrS, we evaluate both subformulas and obtain two result lists xs and ys,
as well as the updated subformula states s′1 and s′2. The results are added to the buffer b.
Then, buf_take combines the results that are available for both subformulas into the
results of the operator, using an (anti-)join for conjunctions and a union for disjunctions.

| eval n t db (AndS s1 p s2 b)= (let (xs, s′1)= eval n t db s1; (ys, s′2)= eval n t db s2
(zs,b) = buf_take (join p) (buf_add xs ys b) in (zs,AndS s′1 p s′2 b)

| eval n t db (OrS s1 s2 b) = (let (xs, s′1) = eval n t db s1;(ys, s′2) = eval n t db s2;
(zs,b) = buf_take (∪) (buf_add xs ys b) in (zs,OrS s′1 s′2 b)
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definition update_since :: I⇒ bool⇒ table⇒ table⇒ ts⇒ saux⇒ table× saux where
update_since I p r1 r2 nt aux=(let aux=(case [(t, join r p r1). (t,r)← aux, nt− t≤ right I] of

[ ]⇒ [(nt,r2)]
| x # aux′⇒ (if fst x = nt then (fst x,snd x∪ r2)# aux′ else (nt,r2)# x # aux′))

in (foldr (∪) [r. (t,r)← aux, left I ≤ nt− t] {},aux)

fun update_until :: I⇒ bool⇒ table⇒ table⇒ ts⇒ uaux⇒ uaux where
update_until I p r1 r2 nt aux = (map (λx. case x of (t,a1,a2)⇒

(t, if p then join a1 True r1 else a1∪ r1, if nt− t ∈I I then a2∪ join r2 p a1 else a2)) aux)@
[(nt,r1, if left I = 0 then r2 else {})]

fun eval_until :: I⇒ ts⇒ uaux⇒ table list×uaux
eval_until I nnt [ ] = ([ ], [ ])
| eval_until I nnt ((t,a1,a2)# aux) = (if t+ right I < nnt

then (let (xs,aux) = eval_until I nnt aux in (a2 # xs,aux)) else ([ ],(t,a1,a2)# aux))

fun tbuf_take :: (table⇒ table⇒ ts⇒ 'b⇒ 'b)⇒ 'b⇒ buf ⇒ ts list⇒ 'b×buf × ts list where
tbuf_take f z (x # xs,y # ys) (t # ts) = tbuf_take f ( f x y t z) (xs,ys) ts
| tbuf_take f z (xs,ys) ts = (z,(xs,ys), ts)

Fig. 8. Auxiliary operations for evaluating SinceS and UntilS

We increment the degree in the recursive computation of an existential quantifier
ExistsS to account for the variables’ De Bruijn encoding. Each computed tuple v (which
is a list) is then replaced by its tail tl v to remove the assignment to the bound variable.

| eval n t db (ExistsS s) = (let (xs, s′) = eval (n+1) t db s
in (map (λr. tl ‘ r) xs,ExistsS s′)

Since and Until. The monitoring algorithm implements Since α I β by decomposing the
interval I. Note that Since α I β is equivalent to a disjunction of Since α (point c) β, where
c ranges over I. We can additionally bound c from above by the time-stamp τ σ (i−1),
where i is the operator’s progress. This ensures that the disjunction always consists of
finitely many terms (even if right I =∞). We store the satisfactions for Since α (point c) β
in a list in the monitor’s state, together with time-stamps τ σ (i−1)− c. The list, called
the auxiliary state, is sorted on the time-stamps c. It also contains satisfactions for
c < left I (if left I > 0) because these may move into the interval I as time progresses.

For every new input database, the function update_since (Fig. 8) updates the list to
maintain the correspondence with Since α (point c) β. It also computes the satisfactions
by taking the union over all tables in the list that satisfy c ∈I I. The arguments of
update_since are the interval I of the Since operator, a flag p indicating whether the left
subformula is positive (not negated), the subformulas’ results r1 and r2 at index i, the time-
stamp nt = τ σ i, and the old auxiliary state aux. We assume that the left subformula is
evaluated without the negation. If the new time-stamp τ σ i differs from the previous time-
stamp τ σ (i−1), i.e., ∆= τ σ i−τ σ (i−1) 6= 0, the tables in the old auxiliary state now
represent Since α (point (c+∆)) β, but without taking the satisfactions of α and β at i into
account. First, update_since removes all tables for which c+∆ exceeds the right bound
of the interval. It then joins each remaining table with the result r1 for α, and adds the sat-
isfactions r2 for β either to the first table (if c+∆= 0) or as a new list element to the list.

Decomposing a formula ψ= Until α I β into point intervals is not as useful because
there is no obvious way to compute the satisfactions of Until α (point c) β at index i+1
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from those at index i, which would allow us to reuse previous computations. Another dif-
ference to Since is that we cannot immediately output the satisfactions once we have the
subformulas’ results. A new input may still change the satisfactions for previous indices.

Let i∗ be the minimum of iα and iβ. The auxiliary state for Until, which has type
uaux, stores for all k in {iψ ..< i∗} the time-stamp τ σ k and two tables a1 and a2, sorted
by k. The meaning of the tables depends on the flag p, which indicates whether the left
subformula α is positive. If p = True, the table a1 contains the valuations satisfying α at
all indices in {k ..< i∗}. If p = False, it contains the valuations satisfying Neg α at some
index in {k ..< i∗}. The table a2 contains the valuation satisfying β at some index k′ in
{k ..< i∗} with τ σ k′−τ σ k ∈I I, and satisfying α for all indices in {k ..< k′}. Note that
this is not the same as the satisfactions for Until α I β at k because the interval may be
incomplete between k and i∗. The function update_until (Fig. 8) maintains this invariant
for every advance of i∗. Its arguments have the same meaning as for update_since.
However, it does not compute the results, which is instead done by eval_until. Its
argument nnt denotes the time-stamp τ σ (i∗+1), or τ σ j if j is the most recent input
database and i∗ = j. The function retrieves those tables a2 for which the interval is
complete, i.e., nnt is more than right I units ahead of the associated time-stamp t.

The implementation of eval for SinceS and UntilS follows the other binary operators,
but with an additional update step for the auxiliary state.

| eval n t db (SinceS p s1 I s2 b ts aux) = (let (xs, s′1) = eval n t db s1;
(ys, s′2) = eval n t db s2; ((zs,aux),b, ts) = tbuf_take (λr1 r2 t (zs,aux).

let (z,aux) = update_since I p r1 r2 t aux in (zs @ [z],aux))
([ ],aux) (buf_add xs ys b) (ts @ [t])

in (zs,SinceS p s′1 I s′2 b ts aux)
| eval n t db (UntilS p s1 I s2 b ts aux) = (let (xs, s′1) = eval n t db s1;

(ys, s′2) = eval n t db s2; ((zs,aux),b, ts) =
tbuf_take (update_until I p) aux (buf_add xs ys b) (ts @ [t]);

(zs,aux) = eval_until I (case ts of [ ]⇒ t | t′ # _⇒ t′) aux
in (zs,UntilS p s′1 I s′2 b ts aux)

Here, tbuf_take (Fig. 8) is used instead of buf_take as we must consider the time-stamps
ts@ [t] corresponding to the subformulas’ (future) results. Unlike buf_take, this function
does not apply f individually, but it folds all results from left to right.

6 Correctness

We define a formal invariant for the monitor’s state, which connects its structure with
MFOTL’s semantics and the stream prefix observed so far. We then prove that init
establishes and that step preserves the invariant. Moreover, we show that the satisfactions
output by steps are sound and eventually complete for monitorable formulas.

The invariant relates the tables stored in a formula state to the semantics of the corre-
sponding subformulas. In Sect. 5, we introduced the notion of progress iψ, which states
how far the subformula ψ has been evaluated. The function prog in Fig. 9 defines iψ con-
cretely. Its arguments are the trace σ, an arbitrary MFOTL formula ψ, and the index j of
the next time-stamped database to be received by the monitor. (Initially, j is zero, and ev-
ery application of step increases it by one.) Predicates and equalities can always be evalu-
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fun prog :: trace⇒ frm⇒ nat⇒ nat where
prog σ (Pred e ts) j = j | prog σ (Eq t1 t2) j = j
| prog σ (Neg ψ) j = prog σ ψ j | prog σ (Or α β) j = min (prog σ α j) (prog σ β j)
| prog σ (Exists ψ) j = prog σ ψ j | prog σ (Since α I β) j = min (prog σ α j) (prog σ β j)
| prog σ (Until α I β) j =

Inf {i. ∀k. k < j∧ k ≤min (prog σ α j) (prog σ β j)−→ τ σ i+ right I ≥ τ σ k}
definition prog2 σ α β j = min (prog σ α j) (prog σ β j)

Fig. 9. Progress of the monitor

definition wf_mstate :: frm⇒ (db× ts) list⇒ mstate⇒ bool where
wf_mstate ϕ π (MState n i s)←→ wf_prefix π∧n = nfv ϕ∧ (∀σ. prefix_of π σ−→

i = prog σ ϕ (length π)∧wf_state σ (length π) n s ϕ)

inductive wf_state :: trace⇒ nat⇒ nat⇒ state⇒ frm⇒ bool where
· · ·
| wf_state σ j n s1 α∧wf_state σ j n s2 β∧

(p−→ α′ = α)∧ (¬p−→ α′ = Neg α)∧mf α= p∧ fv α⊆ fv β∧
wf_buf σ j n α β b∧wf_ts σ j α β ts∧wf_uaux σ j n p α I β aux−→

wf_state σ j n (UntilS p s1 I s2 b ts aux) (Until α′ I β)

Fig. 10. Main invariant predicates (excerpt)

ated up to j. For Until α I β, we take the least index i at which we cannot evaluate the oper-
ator yet. Recall that these are the indices for which we do not have complete information
up to and including the time τ σ i+ right I. The index k in the definition ranges over all
indices for which the time-stamp (condition k < j) and the results from both subformulas
(condition min (prog σ α j) (prog σ β j)) are available. All other operators are only con-
strained by the progress of their subformula(s). We note some basic properties of prog.

Lemma 1. (a) Monotonicity: j≤ j′ implies prog σ ϕ j≤ prog σ ϕ j′. (b) Upper bound:
prog σ ϕ j≤ j. (c) Completeness: mf ϕ implies ∃ j. i≤ prog σ ϕ j, for all i.

The predicate wf_mstate ϕ π mst (Fig. 10) is the invariant for a monitor state mst
after monitoring ϕ on the stream prefix π. We require that π is a well-formed prefix and
that the cached degree n agrees with the formula. All auxiliary invariants that are used
to define wf_mstate are expressed in terms of infinite streams instead of prefixes. This
includes wf_state σ j n s ϕ, which holds iff s :: state corresponds to the monitorable
formula ϕ :: frm after monitoring the first j databases of σ. Therefore, we consider all
event streams σ that extend the prefix π, i.e., prefix_of π σ.

We only show the case for UntilS in wf_state here. This case states the conditions
under which UntilS p s1 I s2 b ts aux is a well-formed state corresponding to Until α′ I β.
Depending on the flag p, α′ is either a negated subformula α′ = Neg α for some α, or
its outermost operator is not a negation and α′ = α. The invariant inherits the condition
fv α⊆ fv β from the mf predicate (Sect. 5). The two subformula states m1 and m2 must
be recursively well-formed and correspond to α and β, respectively.

The predicate wf_buf (Fig. 11) encodes the invariant for buffers of type buf . These
store all results of the formulas α and β from index prog2 σ α β j to indices prog σ α j
and prog σ β j, respectively. The results must be tables assigning values to the free
variables of the corresponding formula. The invariant wf_ts ensures that the additional
time-stamp list ts, which is used by binary temporal operators, contains all time-stamps
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definition wf_buf :: trace⇒ nat⇒ nat⇒ frm⇒ frm⇒ buf ⇒ bool where
wf_buf σ j n α β b←→ (case b of (xs,ys)⇒

list_all2 (λk. wf_table n (fv α) (λv. sat σ v k α)) [prog2 σ α β j ..< prog σ α j] xs∧
list_all2 (λk. wf_table n (fv β) (λv. sat σ v k β)) [prog2 σ α β j ..< prog σ β j] ys)

definition wf_ts :: trace⇒ nat⇒ frm⇒ frm⇒ ts list⇒ bool where
wf_nts σ j α β ts←→ list_all2 (λk t. t = τ σ k) [prog2 σ α β j ..< j] ts

definition wf_uaux :: trace⇒ nat⇒ nat⇒ bool⇒ frm⇒ I⇒ frm⇒ uaux⇒ bool where
wf_uaux σ j n p α I β aux←→ prog σ (Until α I β) j+ length aux = prog2 σ α β j∧

list_all2 (λx k. case x of (t,r1,r2)⇒ t = τ σ k∧
wf_table n (fv α) (λv. if p then (∀k′ ∈ {k ..< prog2 σ α β j}. sat σ v k′ α)

else (∃k′ ∈ {k ..< prog2 σ α β j}. sat σ v k′ α))∧
wf_table n (fv β) (λv. ∃k′. k ≤ k′∧ k′ < prog2 σ α β j∧τ σ k′−τ σ k ∈I I∧

sat σ v k′ β∧ (∀k′′ ∈ {k ..< k′}. if p then sat σ v k′′ α else ¬sat σ v k′′ α)))
aux [prog σ (Until α I β) j ..< prog2 σ α β j])

Fig. 11. Invariants of the state’s components

from the start of the result buffer to the most recent input, which has index j.
The invariant for the auxiliary states aux of type uaux for the ψ=Until α′ I β operator

is shown in Fig. 11. The elements of aux are in a one-to-one correspondence with the in-
dices in [iψ ..< i∗], where iψ= prog σψ j and i∗= prog2σα′ β j= prog2σα β j (the pos-
sible negation in α′ does not affect the progress). Each element for such an index k with
time-stamp t is a triple (t,r1,r2). The content of the tables r1 and r2 is described in Sect. 5.

We state the correctness of the satisfactions output by step (and hence monitor) in
terms of a function verdicts, which characterizes the monitor’s output semantically. For
a formula ϕ and stream prefix π, it returns exactly the pairs (k,v) where the monitor has
made progress beyond k, and for which sat σ v i ϕ is true for all traces σ that extend π.

definition verdicts :: frm⇒ (db× ts) list⇒ (nat× tuple) set where
verdicts ϕ π= {(k,v). wf_tuple (nfv ϕ) (fv ϕ) v∧ (∀σ. prefix_of π σ−→

k < prog σ ϕ (length π)∧ sat σ v k ϕ)}
Using the completeness of prog, we show that verdicts behaves according to the informal
description of a monitor, which we gave in the beginning of Sect. 5.

Lemma 2. For all monitorable formulas ϕ, verdicts ϕ is sound and eventually complete,
i.e., for all prefixes π extending the stream σ, indices k, and tuples v,

(a) (k,v) ∈ verdicts ϕ π−→ sat σ v k ϕ, and
(b) k < length π∧wf_tuple (nfv ϕ) (fv ϕ) v∧(∀σ′. prefix_of π σ′ −→ sat σ′ v k ϕ)−→

(∃π′. prefix_of π′ σ∧ (k,v) ∈ verdicts ϕ π′).

We can now state the main correctness result for the more general online interface
consisting of init and step. The correctness of monitor follows easily. Let last_ts π
denote the last time-stamp of π, and 0 if π is empty.

Theorem 1. (a) init establishes the invariant: mf ϕ implies wf_mstate ϕ [ ] (init ϕ).
(b) step preserves the invariant and its output can be described in terms of verdicts: Let

step (db, t) mst = (A,mst′). If wf_mstate ϕ π mst and last_ts π ≤ t, then we have
A = verdicts ϕ (π@ [(db, t)])−verdicts ϕ π and wf_mstate ϕ (π@ [(db, t)]) mst′.

Corollary 1. If mf ϕ and wf_prefix π, monitor ϕ π= verdicts ϕ π.
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7 Case Study in Differential Testing

To demonstrate the benefit of our verified monitor we perform differential testing [17] to
compare our monitor to two existing unverified state-of the-art monitors, MonPoly [3]
and DejaVu [13], which support first-order temporal logic specifications.

We used Isabelle/HOL’s code generator [9] to export a certified implementation of
our monitoring algorithm (called VeriMon) for the monitorable fragment of MFOTL. The
generated file consists of about 2 800 lines of OCaml code and includes code generated
from an Isabelle library of red-black trees, which are used to efficiently implement
sets. To be used as a standalone monitor, the verified monitor must be augmented with
a formula and log parser. We reused MonPoly’s parsing components, as they were
implemented in OCaml and extensively used and tested. About 130 lines of straightfor-
ward, unverified OCaml code integrates these unverified components with the verified
algorithm, translating between the analogous types for formulas and traces.

We focus on randomized differential testing. We generate random stream prefixes and
formulas, invoke the monitors, and validate the results using VeriMon. For this purpose,
we have developed a random MFOTL formula generator that takes as parameters the
formula size (in terms of number of operators) and the number of free variables that
occur in the formula, and outputs a random formula and a signature describing the name,
arity, and parameter types for each predicate used in the formula. The generator creates
a random formula of size n by randomly selecting an operator op and then recursively
creating its subformula of size n−1 (if op is unary) or its two subformulas of size m
and n−m− 1 (if op is binary) for some random non-negative m < n. The generator
creates predicate or equality formulas for size n = 0. Since each monitor can be tested
on the logical fragment it mutually supports with VeriMon, our formula generator only
generates monitorable MFOTL formulas for testing MonPoly and monitorable, past-only,
non-metric formulas for testing DejaVu. Monitorable formulas are generated by sampling
only the operators that correspond to the cases in the definition of the recursive predicate
mf (Fig. 4). Whenever an operator op is sampled, free variables for its subformulas are
sampled to satisfy mf’s conditions for op. DejaVu requires the generator to sample only
past temporal operators, use only interval 0 ∞ in temporal formulas, and since it does
not support free variables, all generated formulas are closed. DejaVu can only monitor
traces with databases containing a single event, which results in formulas like P∧Q (i.e.,
And (Pred P []) (Pred Q [])) evaluating to false. The generator avoids this by ensuring
that binary Boolean formulas have at least one temporal subformula referring to the past.

The generated signature file is used by a random stream prefix generator to sample
random event names defined in the file. For each event, the generator uniformly samples
its parameter values from the domain D = {0,1, . . . ,109−1}. With a given probability
r, the last q unique values that were previously sampled are sampled again to ensure that
events have common parameter values. This makes the subsequent monitoring less trivial.

DejaVu’s output differs from MonPoly’s and VeriMon’s. DejaVu does not output
variable valuations that violate the formula, but only the prefix indices where the formula
is violated. We use these indices as the basis for comparing its output with VeriMon.

We ran our testing suite for formula sizes ranging from 2 to 5, having up to 6 free vari-
ables. For each combination of these parameters, we generated 1 000 random formulas
and for each formula 4 random prefixes with lengths of 20, 40, 60, and 100 databases.
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Our results reveal two classes of inconsistencies in MonPoly’s output and three in
DejaVu’s output. The inconsistencies in MonPoly’s output correspond to two implemen-
tation errors. The first error manifests in MonPoly’s handling of finite trace semantics.
Specifically, after reading the entire stream prefix MonPoly outputs an additional vio-
lation for a non-existing index (beyond the last index present in the prefix). MonPoly’s
second implementation error was exhibited by its failure to correctly monitor a formula
of the form α∧¬(βSα) (i.e., AndNot α (Since β (interval 0 ∞) α)) where nfv β > 0,
fv β⊂ fv α, and the order of occurrences of free variables in the two instances of α is dif-
ferent. These conditions trigger a heavily optimized part of MonPoly’s code, confirming
our intuition that complex performance optimizations can lead to implementation errors.

The problems exhibited by DejaVu’s implementation are arguably less severe and
all related to monitoring formulas with equalities. The most benign issue is that for-
mulas containing only arithmetic relations (and no predicates) fail to parse. Next,
we discovered that DejaVu does not produce any violation on a prefix satisfying a
propositional formula α, when monitoring a formula of the form ¬∃x. α∧ x = 24 (i.e.,
Neg (Exists (And α (Eq (V 0) (C 24))))). DejaVu’s authors documented that the for-
mula semantics changes if a variable occurs in arithmetic relations [11, §5]. Specifically,
the variable’s quantifier becomes bounded: it quantifies only over the active domain
defined as values seen in the prefix so far. The change has an (unintuitive) effect on
the subformulas where the variable does not occur as shown in the example above.
Finally, DejaVu does not output any violation for the formula ¬∃x. x = 24∧¬P(x) (i.e.,
Neg (Exists (AndNot (Eq (V 0) (C 24))(Pred P [V 0])))) when monitored on a prefix
without the event (P, [24]). This formula’s violations coincide under both standard and
active domain quantifier semantics. However, DejaVu’s definition of the active domain
does not include the constants occurring in the formula, which causes the discrepancy.

In addition to using random formulas, we included the tool’s benchmarks in our
testing. All the experiments are available in an easy to reproduce Docker image [28].

8 Conclusion

We demonstrated an approach to increase the trustworthiness of runtime verification
by formally verifying a monitor for MFOTL in the Isabelle/HOL proof assistant. Our
formalization of the non-trivial monitoring algorithm is essentially a high-level imple-
mentation as one would write it in a functional programming language. To prove its
correctness, we had to characterize the algorithm’s output, which precisely documents its
behavior. Being able to execute a verified monitor with acceptable performance enables
the systematic testing of more performant implementations. Our results from differential
testing, which uncovered two genuine errors in MonPoly, show that this is beneficial.

One possible use case of our verified monitor is as a referee in tool competitions,
where it can provide the ground truth. We also believe that it is a good starting point for
extensions of the monitoring algorithm, whose correctness may not be obvious, as in
our unpublished draft on adaptive monitoring [27]. Other future extensions may include
the use of more optimized and verified data structures, which would make the generated
code even more efficient. Finally, we hope that our compact formalization encourages
machine-checked proofs for other algorithms and tools.
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