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A formalization problem

datatype o re = Atom a | Alt (a re) (a re) | Conc (a re) (a re) | Star (are)

inductive ~ac1 where

£ Unsupported recursive occurrence rs~cAltsr Altrr~pcrr
of type /dl/ via type constructor
reacr in type expression /d/reac;. 1 S ~Ac1S F~act

) S~pct Concr’'s’ Starr ~pcr Starr’
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Automated BNF preservation
proofs via lift_bnf command in @ﬁ}
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Bounded Natural Functors (BNF)

Functor
mapg id = id
mapg g o mapg f = mapg (g of)
Bound
[sete x| < R

F((1A) =()F{A
Natural (N4 =FA)

setg (mapg f x) = f(setg x)
Vx € setg x. f X =g X

SN
[2,3] [3,3]
[1,2,3] Relator
(X,y) €relrR=3z€ F(R). mapg 11 z=X A
mapg 2 2 =Y
relrRerelrS=relr (ReS)

mapg f X = mapg g X
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Closure properties of BNF
Derived BNFs

Basic BNFs
+ _ _X _ composition

unit + codatatypes

T=_ _ stream

datatypes

e subtypes*

_ balanced-tree
_set =7

Non-BNFs * Conditions apply.
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Viewing reacr as a subtype

fun nfacy :: c re = a re where ...
lemmar ~pc1 S «— nfacr r = nfacr s (proof)

typedef a react = {nfacir| r:: are} by auto

NF

lift_bnf a reac: unlikely for non-injective f

1. s€ NF— map, fs €NF
2. ...

Quotients can be viewed as subtypes via representatives
but we cannot lift the BNF structure along this view.
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X~y —>setp X =setpy
~ preserves wide intersections
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Distinct Lists

typedef a dlist =
{xs :: a list | distinct xs}

(] [a]
[bb]  [a,b]
[a,b,b]

map (1_. a)
[a,a]

quotient_type a dlist =
a list / (Axs ys. remdups xs = remdups ys)

v
~dlist

/XS ~diist Y5 —> set xs = set ys
J/ ~dist preserves wide intersections
/ ~dist preserves weak pullbacks



Terminated Lazy Lists

[] [a]
[b,b] [a,b]
[a,b,...

codatatype a llist = LNil | LCons a (a llist)




Terminated Lazy Lists

[] [a]
[b,b] [a,b]
[a,b,...

codatatype a llist = LNil | LCons a (a llist)

codatatype (a, b) tllist = TLNil b | TLCons a ((a, b) tllist)




Terminated Lazy Lists

[]
[b,b]
[a,b,...

codatatype a llist = LNil | LCons a (a llist)

codatatype (a, b) tllist = TLNil b | TLCons a ((a, b) tllist)

[a]
[a,b]




Terminated Lazy Lists

(] [a]
[bb]  [a,b]{
[a,b,... )

codatatype a llist = LNil | LCons a (a llist)

codatatype (a, b) tllist = TLNil b | TLCons a ((a, b) tllist)




Terminated Lazy Lists

(] [a] _
[bb]  [ably
[a,b,... B

codatatype a llist = LNil | LCons a (a llist)

codatatype (a, b) tllist = TLNil b | TLCons a ((a, b) tllist)




Terminated Lazy Lists

(] [a]
[b,b]

codatatype a llist = LNil | LCons a (a llist)

codatatype (a, b) tllist = TLNil b | TLCons a ((a, b) tllist)

[a,b]y.



Terminated Lazy Lists

(] [a]
[b,b] [a,b]

codatatype a llist = LNil | LCons a (a llist)

quotient_type (a, b) tllist =
allist x b/ (A(xs,a) (YS,B)- XS =YS A (|xs| < 00 — o =p))

v
~tllist




Terminated Lazy Lists

(] [a]
[b,b] [a,b]

codatatype a llist = LNil | LCons a (a llist)

quotient_type (a, b) tllist =
allist x b/ (A(xs,a) (YS,B)- XS =YS A (|xs| < 00 — o =p))

v
~tllist

(XS, @) ~ist (YS,B) — setyist XS = setyst YS
(xs, @) ~ist (yS,8) — {a} = {8}

~tllist preserves wide intersections

~tlist preserves weak pullbacks



Terminated Lazy Lists
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codatatype a llist = LNil | LCons a (a llist)

quotient_type (a, b) tllist =
allist x b/ (A(xs,a) (YS,B)- XS =YS A (|xs| < 00 — o =p))

-~

Vv (XS, @) ~uiist (¥S,8) — setuist XS = setyist YS
X (xs,@) ~uiist (¥s,8) — {a} = {8}
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/ ~tlist preserves weak pullbacks
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datatype a option = None | Some a

setp/n [X]~ = N {a.Some a € setr y}
y€[mapg Some x|~

N/'
[1]
[1,2]
1 |[2] __Mmapg Some [S1,S 2]
22,
(3] [S 2,5 2]
\
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Preservation theorem

m BNF F with equivalence relation ~
m ~ preserves wide intersections
A#£ L ANAE T — N{AIAeFA} S [NFA)]L
m ~ weakly preserve pullbacks
ReS#£{}—relrRe~erelrSC ~erelr (ReS)e~

yields BNF for F/~
m mapg, f [X]~ = [mapg f X]~

B setp/~ [X]~ = N {a.Some a € setf y}
y€[mapg Some X]~

B ([X]~[Y]~) € relf/~ R «— (mapg Some X, mapg Some y) € (~ o relg (relgption R) ® ~)
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lift_bnf in action
codatatype a /list = LNil | LCons a (a llist)
definition ~yst:: a llist x b = a llist x b = bool where
(XS, @) ~iist (YS,8) «— XS =YyS A (|xs| <00 — a =p)
quotient_type (a,b) tllist = a llist x b [ ~jist
lift_bnf (a,b) tllist
1. AeA'#£ 1 —>BeB £1—»
relx (relyist A) B @ ~yist o relx (relyst A') B” < ~tiist @ relx (relyst (Ao A”)) (BeB’) @ ~yist

2. SAE{}—NS£{t—
Aﬂs{x. 3y. y ~tilist X A setyise (1Y) € A} © {x. 3y. y ~uiist X A setyst (71 Y) €[S}
3. SAE{}—NS£{}t—

) {x. Y.y ~ulist X Aoy €AY € {X. 3y. Y ~uiist X A2y €[S}
AeS
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lift_bnf in action
codatatype a /list = LNil | LCons a (a llist)

definition ~yst:: a llist x b = a llist x b = bool where
(XS, @) ~iist (YS,8) «— XS =YyS A (|xs| <00 — a =p)
quotient_type (a,b) tllist = a llist x b [ ~jist
lift_bnf (a,b) tllist
subgoal by (auto 0 4 simp: ~uyist _def ...)
subgoal by (auto simp: ~ist _def)

subgoal by (auto 6 0 simp: ~ujist _def)
done

datatype foo = E | C ((foo, foo) tllist)
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Subdistributivity via rewrite relation

Sufficient conditions:

m BNF F with equivalence relation ~

B X~Yy—>mapgfX~mapgfy Asete x =setgy
m Rewrite relation ~» over-approximates ~

X mape 7;
* * X —— X
m ~ confluent: vy z and factors through projections:
B ’
W Yy —Y
Distinct lists: XS+yS~ xs-[x]-ys if x€ys

Proof effort: 50% shorter (58 instead of 126 lines)
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inductive ~sacr where

r MACI Alt l’ r

a réeacy is a BNF

—1\* _
W (wact U= )" = (~ac1)
m ~c iS confluent
B Map,, w1l ~pac1 S— Jt. t ~aci ' AS=map, mt

B map, m M wactS— dt.t~acirASs=map, 2t



a reac is a BNF

inductive ~» where —
ACI W (wact Uw 1)* = (~acr)
m ~c1 is confluent
B Map,, w1l ~pac1 S— dt.t~aciFrAS= map,. 1 t

B mMap,mMwact S— At t~acirAS=map,m t

lift_bnf a reac: (proof)

I~ ac1 Altrr



a reac is a BNF

inductive where —
ACT W (wact Uw 1)* = (~acr)
m ~c1 is confluent
B Map,, w1l ~pac1 S— Jt. t ~aci T AS=map, m4 t

B mMap,mMwact S— At t~acirAS=map,m t

lift_bnf a reac: (proof)

datatype /d/ = Prop string | And Idl Id/ | Neg /d/

r~spacr Altrr | Match (ldl reacr)
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