Quotients of Bounded Natural Functors

Basil Fürer

Digital Asset

Joshua Schneider

Digital Asset

Dmitriy Traytel

Dramatis personae

Andreas Isabelle Expert

DmitriyWorking Formalizer
and Narrator

Isabelle Proof Assistant

The characters and incidents portrayed and the names used herein are fictitious and any resemblance to the names, character, or history of any person is coincidental and unintentional.

datatype $a re = \text{Atom } a \mid \text{Alt } (a re) (a re) \mid \text{Conc } (a re) (a re) \mid \text{Star } (a re)$

3

datatype a re = Atom a | Alt (a re) (a re) | Conc (a re) (a re) | Star (a re)

datatype | dl = Prop string | And | dl | dl | Neg | dl | Match (| dl | re)

 $\frac{r \sim_{ACI} s}{s \sim_{ACI} r} \qquad \frac{r \sim_{ACI} s \quad s \sim_{ACI} t}{r \sim_{ACI} t}$

 $\begin{aligned} & \textbf{datatype} \ a \ re = \text{Atom} \ a \ | \ \text{Alt} \ (a \ re) \ (a \ re) \ | \ \text{Conc} \ (a \ re) \ | \ \text{Star} \ (a \ re) \end{aligned}$ $\begin{aligned} & \textbf{inductive} \ \sim_{\mathsf{ACI}} \ \textbf{where} \\ & \text{Alt} \ (\mathsf{Alt} \ r \ s) \ t \sim_{\mathsf{ACI}} \ \mathsf{Alt} \ r \ (\mathsf{Alt} \ s \ t) \qquad \mathsf{Alt} \ r \ s \sim_{\mathsf{ACI}} \ \mathsf{Alt} \ s \ r \qquad \mathsf{Alt} \ r \ r \sim_{\mathsf{ACI}} r \end{aligned}$ $& \frac{r \sim_{\mathsf{ACI}} \ r' \ s \sim_{\mathsf{ACI}} \ s'}{\mathsf{Alt} \ r \ s \sim_{\mathsf{ACI}} \ \mathsf{Alt} \ r' \ s'} \qquad \frac{r \sim_{\mathsf{ACI}} \ r'}{\mathsf{Conc} \ r \ s \sim_{\mathsf{ACI}} \ \mathsf{Conc} \ r' \ s'} \qquad \frac{r \sim_{\mathsf{ACI}} \ r'}{\mathsf{Star} \ r \sim_{\mathsf{ACI}} \ \mathsf{Star} \ r'}$

datatype *IdI* = Prop *string* | And *IdI* | Neg *IdI* | Match (*IdI re*)

r~aci r

```
datatype a re = Atom \ a \ | \ Alt \ (a re) \ (a re) \ | \ Conc \ (a re) \ (a re) \ | \ Star \ (a re)
inductive \sim_{ACI} where
  Alt (Altrs) t \sim_{ACI} Altr(Altst) Altrs \sim_{ACI} Altsr Altrr \sim_{ACI} r
          r \sim_{ACI} r' s \sim_{ACI} s' \qquad r \sim_{ACI} r' s \sim_{ACI} s'
                                                                                       r \sim_{ACI} r'
          Alt r > ACI Alt r' > S' Conc r > ACI Conc r' > S' Star r > ACI Star r'
                                                        \frac{r \sim_{ACI} s}{s \sim_{ACI} r} \qquad \frac{r \sim_{ACI} s s \sim_{ACI} t}{r \sim_{ACI} t}
                  r~aci r
quotient type a re_{\Delta CI} = a re / \sim_{\Delta CI}
datatype |d| = Prop string | And |d| |d| | Neg |d| | Match (|d| re<sub>ACI</sub>)
```

3

datatype $a re = \text{Atom } a \mid \text{Alt } (a re) (a re) \mid \text{Conc } (a re) (a re) \mid \text{Star } (a re)$

inductive ~ACI where

Onsupported recursive occurrence of type *IdI* via type constructor *re*_{ACI} in type expression *IdI re*_{ACI}.

Use the **bnf** command to register *re*_{ACI} as a bounded natural functor to allow nested (co)recursion through it.

```
rs \sim_{ACI} Alt sr Alt rr \sim_{ACI} r

\sim_{CI} r' s \sim_{ACI} s' \sim_{ACI} r'

s \sim_{ACI} Conc r' s' Star r \sim_{ACI} Star r'

\sim_{ACI} s \sim_{ACI} t

\sim_{ACI} s \sim_{ACI} t
```

datatype |dl = Prop string | And |dl |dl | Neg |dl | Match (|dl re_{ACI})

Interlude: Contribution

Identified sufficient conditions on when quotients of BNFs are BNFs

Relevant for (co)datatypes, relational parametricity, refinement

Interlude: Contribution

Identified sufficient conditions on when quotients of BNFs are BNFs

Relevant for (co)datatypes, relational parametricity, refinement

Automated BNF preservation proofs via **lift_bnf** command in

Datatype recursion worries

Higher Order Logic Theorem Proving and its Applications (A-20) L.J.M. Claesen and M.J.C. Gordon (Editors) Elsevier Science Publishers B.V. (North-Holland)

561

Why We Can't have SML Style datatype Declarations in HOL

Elsa L. Gunter

@ 1993 IFIP. All rights reserved.

AT&T Bell Laboratories, Rm. #2A-432, Murray Hill, NJ, 07974-0636, USA

Unsupported recursive occurrence of type ldl via type constructor re_{ACI} in type expression ldl re_{ACI} .

Use the **bnf** command to register re_{ACI} as a bounded natural functor to allow nested (co)recursion through it.

Datatype recursion worries

Higher Order Logic Theorem Proving and its Applications (A-20) L.J.M. Claesen and M.J.C. Gordon (Editors) Elsovier Science Publishers B.V. (North-Holland)

561

Why We Can't have SML Style datatype Declarations in HOL

Elsa L. Gunter

@ 1993 IFIP. All rights reserved.

AT&T Bell Laboratories, Rm. #2A-432, Murray Hill, NJ, 07974-0636, USA

Unsupported recursive occurrence of type ldl via type constructor re_{ACI} in type expression ldl re_{ACI} .

Use the **bnf** command to register re_{ACI} as a bounded natural functor to allow nested (co)recursion through it.

datatype $bad = C(bad set) | \dots$

 $C :: bad set \Rightarrow bad injective$

Datatype recursion worries

Higher Order Logic Theorem Proving and its Applications (A-20) L.J.M. Claesen and M.J.C. Gordon (Editors) Elsevier Science Publishers B.V. (North-Holland)

561

Why We Can't have SML Style datatype Declarations in HOL

Elsa L. Gunter

@ 1993 IFIP. All rights reserved.

AT&T Bell Laboratories, Rm. #2A-432, Murray Hill, NJ, 07974-0636, USA

Unsupported recursive occurrence of type *ldl* via type constructor re_{ACI} in type expression *ldl* re_{ACI} .

Use the **bnf** command to register re_{ACI} as a bounded natural functor to allow nested (co)recursion through it.

datatype $bad = C(bad set) | \dots$

 $C :: bad set \Rightarrow bad$ injective

Datatypes may recurse only through BNFs

6

$\begin{aligned} & \textbf{Functor} \\ & \text{map}_{\textbf{F}} \ \text{id} = \text{id} \\ & \text{map}_{\textbf{F}} \ \textbf{g} \circ \text{map}_{\textbf{F}} \ \textbf{f} = \text{map}_{\textbf{F}} \ (\textbf{g} \circ \textbf{f}) \end{aligned}$


```
\begin{aligned} & \textbf{Functor} \\ & \text{map}_{\textbf{F}} \ \text{id} = \text{id} \\ & \text{map}_{\textbf{F}} \ \textbf{g} \circ \text{map}_{\textbf{F}} \ \textbf{f} = \text{map}_{\textbf{F}} \ (\textbf{g} \circ \textbf{f}) \end{aligned}
```

Bound $|set_F x| < \aleph$

Functor

 $\begin{aligned} \mathsf{map}_{\mathsf{F}} \ \mathsf{id} &= \mathsf{id} \\ \mathsf{map}_{\mathsf{F}} \ \mathsf{g} \circ \mathsf{map}_{\mathsf{F}} \ \mathsf{f} &= \mathsf{map}_{\mathsf{F}} \ (\mathsf{g} \circ \mathsf{f}) \end{aligned}$

Bound

|set_F x| < ℵ

Natural

 $set_F (map_F f x) = f \langle set_F x \rangle$

 $\forall x \in set_F \ x. \ f \ x = g \ x$

 $\mathsf{map}_F \: f \: x = \mathsf{map}_F \: g \: x$

Functor

 $map_F id = id$ $map_F g \circ map_F f = map_F (g \circ f)$

Bound

|set_F x| < ℵ

Natural

 $set_F (map_F f x) = f(set_F x)$

 $\frac{\forall x \in set_F \ x. \ f \ x = g \ x}{map_F \ f \ x = map_F \ q \ x}$

Relator

 $(x, y) \in rel_F R = \exists z \in F(R). map_F \pi_1 z = x \land map_F \pi_2 z = y$ $rel_F R \bullet rel_F S = rel_F (R \bullet S)$

 $\mathsf{F}(\bigcap \mathcal{A}) = \bigcap \mathsf{F}\langle \mathcal{A} \rangle$

Closure properties of BNF

Closure properties of BNF

* Conditions apply.

```
fun nf_{ACI} :: a re \Rightarrow a re \text{ where } ...

lemma r \sim_{ACI} s \longleftrightarrow nf_{ACI} r = nf_{ACI} s \quad \langle proof \rangle

typedef a re_{ACI} = \underbrace{\{nf_{ACI} r \mid r :: a re\}}_{NF} by auto
```

```
fun nf_{ACI} :: a re \Rightarrow a re where ...
lemma r \sim_{ACI} s \longleftrightarrow nf_{ACI} r = nf_{ACI} s \quad (proof)
typedef a re_{ACI} = \underbrace{\{ nf_{ACI} r \mid r :: a re \}}_{} by auto
lift bnf a react
       1. s \in NF \longrightarrow map_{re} f s \in NF
```

```
fun nf_{ACI} :: a re \Rightarrow a re where ...
lemma r \sim_{ACI} s \longleftrightarrow nf_{ACI} r = nf_{ACI} s \quad (proof)
typedef a re_{ACI} = \{ nf_{ACI} r | r :: a re \} by auto
                                   unlikely for non-injective f
lift bnf a react
      1. s \in NF \longrightarrow map_{re} f s \in NF
```

```
fun nf_{ACI} :: a re \Rightarrow a re where ...
lemma r \sim_{ACI} s \longleftrightarrow nf_{ACI} r = nf_{ACI} s \quad (proof)
typedef a re_{ACI} = \{ nf_{ACI} r \mid r :: a re \} by auto
                                   unlikely for non-injective f
lift bnf a react
      1. s \in NF \longrightarrow map_{re} f s \in NF
```

Quotients can be viewed as subtypes via representatives but we cannot lift the BNF structure along this view.

Data Types as Quotients of Polynomial Functors

Jeremy Avigad 0

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA http://www.andrew.cmu.edu/user/avigad/av

Mario Carneiro ©

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA di.gama@gmail.com

Simon Hudon

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA https://www.cmu.edu/dietrich/philosophy/people/postdoc-fellows/simon-hudon%20.html

— Abstract

Data Types as Quotients of Polynomial Functors

Jeremy Avigad 0

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA http://www.andrew.cmu.edu/user/avigad/av

Mario Carneiro ©

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA di.gama@gmail.com

Simon Hudon

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA https://www.cmu.edu/dietrich/philosophy/people/postdoc-fellows/simon-hudon%20.html

- Abstract

Data Types as Quotients of Polynomial Functors

Jeremy Avigad ©

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA http://www.andrew.cmu.edu/user/avigad/

avigad@cmu.edu Mario Carneiro

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA di.gama@gmail.com

Simon Hudon

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA https://www.cmu.edu/dietrich/philosophy/people/postdoc-fellows/simon-hudon%20.html

— Abstract

$$x \sim y \longrightarrow map_F f x \sim map_F f y$$

Data Types as Quotients of Polynomial Functors

Jeremy Avigad 0

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA http://www.andrew.cmu.edu/user/avigad/

avigad@cmu.edu Mario Carneiro

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA di.gama@gmail.com

Simon Hudon

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA https://www.cau.edu/dietrich/philosophy/people/postdoc-fellows/simon-hudon%20.html

___ Abstract

$$x \sim y \longrightarrow map_F f x \sim map_F f y$$

 $x \sim y \longrightarrow set_F x = set_F y$

Data Types as Quotients of Polynomial Functors

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA http://www.andrew.cmu.edu/user/avigad/

avigad@cmu.edu

Mario Carneiro © Department of Philosophy

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA di.gama@gmail.com

Simon Hudon

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA https://www.cmu.edu/dietrich/philosophy/people/postdoc-fellows/simon-hudon%20.html

- Abstract

$$x \sim y \longrightarrow map_F f x \sim map_F f y$$

$$x \sim y \longrightarrow set_F x = set_F y$$

- ~ preserves wide intersections
- ~ preserves weak pullbacks


```
[] [a] typedef a dlist = {xs :: a list | distinct xs} [] [a] [a,b]
```


Terminated Lazy Lists

codatatype a $llist = LNil \mid LCons a (a llist)$

codatatype a $llist = LNil \mid LCons a (a llist)$

codatatype (a, b) tllist = TLNil b | TLCons a <math>((a, b) tllist)

codatatype a llist = LNil | LCons <math>a (a llist)

codatatype (a, b) tllist = TLNil b | TLCons a <math>((a, b) tllist)

codatatype a $llist = LNil \mid LCons a (a llist)$

 $\mathbf{codatatype}\;(a,\,b)\;\mathit{tllist} = \mathsf{TLNil}\;b\;|\;\mathsf{TLCons}\;a\;((a,\,b)\;\mathit{tllist})$

codatatype a $llist = LNil \mid LCons a (a llist)$

codatatype (a, b) tllist = TLNil b | TLCons a <math>((a, b) tllist)

[a [b,b] **codatatype** a *llist* = LNil | LCons a (a *llist*) **codatatype** (a, b) *tllist* = TLNil b | TLCons a ((a, b) *tllist*)

datatype a option = None | Some a

datatype a option = None | Some a

datatype a option = None | Some a

Preservation theorem

- BNF F with equivalence relation ~
- ~ preserves wide intersections

$$\mathcal{A} \neq \{\} \land \bigcap \mathcal{A} \neq \{\} \longrightarrow \bigcap \{[A]_{\sim} | A \in F(\mathcal{A})\} \subseteq \big[\bigcap F(\mathcal{A})\big]_{\sim}$$

■ ~ weakly preserve pullbacks

$$R \bullet S \neq \{\} \longrightarrow rel_F R \bullet \sim \bullet rel_F S \subseteq \sim \bullet rel_F (R \bullet S) \bullet \sim \{\}$$

Preservation theorem

- BNF F with equivalence relation ~
- ~ preserves wide intersections

$$\mathcal{A} \neq \{\} \land \bigcap \mathcal{A} \neq \{\} \longrightarrow \bigcap \{[A]_{\sim} | A \in F(\mathcal{A})\} \subseteq \big[\bigcap F(\mathcal{A})\big]_{\sim}$$

■ ~ weakly preserve pullbacks

$$R \bullet S \neq \{\} \longrightarrow rel_F R \bullet \sim \bullet rel_F S \subseteq \sim \bullet rel_F (R \bullet S) \bullet \sim \{\}$$

yields BNF for F/∼

- \blacksquare map_{F/~} f[x]_~ = [map_F f x]_~
- $set_{F/\sim}[x]_{\sim} = \bigcap_{y \in [map_F Some x]_{\sim}} \{a. Some a \in set_F y\}$
- $\blacksquare \ ([x]_{\sim}[y]_{\sim}) \in \operatorname{rel}_{F/\sim} R \longleftrightarrow (\operatorname{map}_F \operatorname{Some} x, \operatorname{map}_F \operatorname{Some} y) \in (\sim \bullet \operatorname{rel}_F (\operatorname{rel}_{option} R) \bullet \sim)$

```
codatatype a llist = LNil | LCons a (a llist)

definition \sim_{tllist}:: a llist × <math>b \Rightarrow a llist × <math>b \Rightarrow bool where

(xs, \alpha) \sim_{tllist} (ys,\beta) \longleftrightarrow xs = ys \land (|xs| < \infty \longrightarrow \alpha = \beta)

quotient_type (a,b) tllist = a llist × <math>b / \sim_{tllist}

lift_bnf (a,b) tllist
```

```
codatatype a llist = LNil | LCons <math>a (a llist)
definition \sim_{\text{tllist}}:: a llist \times b \Rightarrow a llist \times b \Rightarrow bool where
         (XS, \alpha) \sim_{\text{tiliet}} (VS, \beta) \longleftrightarrow XS = VS \land (|XS| < \infty \longrightarrow \alpha = \beta)
quotient type (a,b) thist = a llist \times b / \sim_{thist}
lift bnf (a,b) tllist
      1. A \bullet A' \neq \bot \longrightarrow B \bullet B' \neq \bot \longrightarrow
            rel_{\times} (rel_{llist} \land B \bullet \sim_{tllist} \bullet rel_{\times} (rel_{llist} \land A') B' \leq \sim_{tllist} \bullet rel_{\times} (rel_{llist} (A \bullet A')) (B \bullet B') \bullet \sim_{tllist}
     2. S \neq \{\} \longrightarrow \bigcap S \neq \{\} \longrightarrow
             \bigcap \{x. \exists y. y \sim_{tllist} x \land set_{llist} (\pi_1 y) \subseteq A\} \subseteq \{x. \exists y. y \sim_{tllist} x \land set_{llist} (\pi_1 y) \subseteq \bigcap S\}
     3. S \neq \{\} \longrightarrow \bigcap S \neq \{\} \longrightarrow
             \bigcap \{x. \exists y. y \sim_{tllist} x \land \pi_2 y \in A\} \subseteq \{x. \exists y. y \sim_{tllist} x \land \pi_2 y \in \bigcap S\}
```

```
codatatype a llist = LNil | LCons a (a llist)
definition \sim_{\text{tllist}}:: a llist \times b \Rightarrow a llist \times b \Rightarrow bool where
      (XS, \alpha) \sim_{\text{tiliet}} (VS, \beta) \longleftrightarrow XS = VS \land (|XS| < \infty \longrightarrow \alpha = \beta)
quotient type (a,b) thist = a llist \times b / \sim_{thist}
lift bnf (a, b) tllist
    subgoal by (auto 0 4 simp: \sim_{tllist} _def ...)
    subgoal by (auto simp: ∼<sub>tllist</sub> _def)
    subgoal by (auto 6 0 simp: ~tilist def)
    done
```

```
codatatype a llist = LNil | LCons a (a llist)
definition \sim_{\text{tllist}}:: a llist \times b \Rightarrow a llist \times b \Rightarrow bool where
      (XS, \alpha) \sim_{\text{tllist}} (VS, \beta) \longleftrightarrow XS = VS \land (|XS| < \infty \longrightarrow \alpha = \beta)
quotient type (a,b) thist = a llist \times b / \sim_{thist}
lift bnf (a, b) tllist
    subgoal by (auto 0 4 simp: \sim_{tllist} _def ...)
    subgoal by (auto simp: ∼<sub>tllist</sub> _def)
    subgoal by (auto 6 0 simp: ~tilist def)
    done
datatype foo = E \mid C ((foo, foo) tllist)
```


Subdistributivity via rewrite relation

Sufficient conditions:

- BNF F with equivalence relation ~
- $\blacksquare x \sim y \longrightarrow map_F f x \sim map_F f y \land set_F x = set_F y$

Subdistributivity via rewrite relation

Sufficient conditions:

- BNF F with equivalence relation ~
- \blacksquare $x \sim y \longrightarrow map_F f x \sim map_F f y \land set_F x = set_F y$
- Rewrite relation → over-approximates ~

Subdistributivity via rewrite relation

Sufficient conditions:

- BNF F with equivalence relation ~
- \blacksquare $x \sim y \longrightarrow map_F f x \sim map_F f y \land set_F x = set_F y$
- Rewrite relation → over-approximates ~

Distinct lists:

$$xs \cdot ys \rightsquigarrow xs \cdot [x] \cdot ys$$
 if $x \in ys$

Proof effort: 50% shorter (58 instead of 126 lines)

a react is a BNF

inductive wacı where

```
I WACT I' S WACT S'
Altrs WACT Altr's'
r ***ACI r' S ***ACI S'
Concrs WACT Concr's'
    r *** ACT r'
Starr Starr'
r ***ACI r
r → ACT Alt r r
Altrs WACT Altsr
Alt (Alt rs) t \rightsquigarrow_{ACI} Alt r (Alt st)
Altr(Altst) --- Alt(Altrs) t
```

a re_{ACI} is a BNF


```
r → ACI r' s → ACI S'
Alt r s → ACI Alt r' s'

r → ACI r' s → ACI S'
Conc r s → ACI Conc r' s'

r → ACI r'
Star r → ACI Star r'
```

```
\blacksquare (\rightsquigarrow_{\mathsf{ACI}} \cup \leadsto_{\mathsf{ACI}}^{-1})^* = (\sim_{\mathsf{ACI}})
```

- → ACI is confluent
- $map_{re} \pi_1 r \rightsquigarrow_{ACI} s \longrightarrow \exists t. t \sim_{ACI} r \land s = map_{re} \pi_1 t$
- $\blacksquare \operatorname{\mathsf{map}}_{re} \pi_2 \operatorname{\mathsf{r}} \leadsto_{\mathsf{ACI}} \mathsf{S} \longrightarrow \exists \mathsf{t}. \operatorname{\mathsf{t}} \sim_{\mathsf{ACI}} \mathsf{r} \land \mathsf{S} = \operatorname{\mathsf{map}}_{re} \pi_2 \operatorname{\mathsf{t}}$

r → ACI Alt r r

Altrs \rightsquigarrow_{ACI} Altsr Alt (Altrs) $t \rightsquigarrow_{ACI}$ Altr (Altst) Altr (Altst) \rightsquigarrow_{ACI} Alt (Altrs) t

a re_{ACI} is a BNF


```
r → ACI r' s → ACI s'
Alt r s → ACI Alt r' s'

r → ACI r' s → ACI s'
Conc r s → ACI Conc r' s'

r → ACI r'
Star r → ACI Star r'
```

$$\blacksquare (\rightsquigarrow_{\mathsf{ACI}} \cup \rightsquigarrow_{\mathsf{ACI}}^{-1})^* = (\sim_{\mathsf{ACI}})$$

- → ACI is confluent
- $map_{re} \pi_1 r \rightsquigarrow_{ACI} s \longrightarrow \exists t. t \sim_{ACI} r \land s = map_{re} \pi_1 t$
- $map_{re} \pi_2 r \rightsquigarrow_{ACI} s \longrightarrow \exists t. t \sim_{ACI} r \land s = map_{re} \pi_2 t$

lift_bnf a re_{ACI} (proof)

```
r ***ACI r
```

r → ACI Alt r r

```
Altrs → ACI Altsr
Alt (Altrs) t → ACI Altr(Altst)
Altr(Altst) → ACI Alt(Altrs) t
```

a re_{ACI} is a BNF


```
r → ACI r' s → ACI s'
Alt r s → ACI Alt r' s'

r → ACI r' s → ACI S'
Conc r s → ACI Conc r' s'

r → ACI r'
Star r → ACI Star r'
```

r **ACI r

r WACI Alt rr

```
Altrs --- Altsr
Alt (Altrs) t --- Aci Altr (Altst)
Altr (Altst) --- Aci Alt (Altrs) t
```

```
\blacksquare (\rightsquigarrow_{\mathsf{ACI}} \cup \rightsquigarrow_{\mathsf{ACI}}^{-1})^* = (\sim_{\mathsf{ACI}})
```

- ¬→ACI is confluent
- $map_{re} \pi_1 r \rightsquigarrow_{ACI} s \longrightarrow \exists t. t \sim_{ACI} r \land s = map_{re} \pi_1 t$
- $map_{re} \pi_2 r \rightsquigarrow_{ACI} s \longrightarrow \exists t. t \sim_{ACI} r \land s = map_{re} \pi_2 t$

lift_bnf a re_{ACI} \(proof \)

```
datatype | dl = Prop string | And | dl | dl | Neg | dl | Match (| dl | re<sub>ACI</sub>)
```

lift_bnf

- part of Isabelle2020
- 1600 lines of Isabelle/ML
- generation of transfer rules

lift_bnf

- part of Isabelle2020
- 1600 lines of Isabelle/ML
- generation of transfer rules

Applications

- (co)datatypes
- Lifting and Transfer
- QPF

lift_bnf

- part of Isabelle2020
- 1600 lines of Isabelle/ML
- generation of transfer rules

Applications

- (co)datatypes
- Lifting and Transfer
- QPF

Limitations

- lacktriangle terms modulo lpha-equivalence [Blanchette, Gheri, Popescu, T., POPL'19]
- signed multisets

 [Blanchette, Fleury, T., FSCD'16]

lift_bnf

- part of Isabelle2020
- 1600 lines of Isabelle/ML
- generation of transfer rules

Limitations

- lacktriangle terms modulo lpha-equivalence [Blanchette, Gheri, Popescu, T., POPL'19]
- signed multisets

 [Blanchette, Fleury, T., FSCD'16]

Applications

- (co)datatypes
- Lifting and Transfer
- QPF

Future Work

- partial quotients
- generalizations of BNFs

[L., S., ITP'18]

[Blanchette, Gheri, Popescu, T., POPL'19]

Quotients of Bounded Natural Functors

