Quotients of Bounded Natural Functors

9 D'gltaIA ss Andreas Lochbihler
et

o

< U/" /C/)

Basil Fiirer

Joshua Schneider Dmitriy Traytel)

Dramatis personae

[\

Andreas Dmiti‘iy Isabelle
Isabelle Expert ~ Working Formalizer Proof Assistant
and Narrator

The characters and incidents portrayed and the names used herein are fictitious and any re-
semblance to the names, character, or history of any person is coincidental and unintentional.

A formalization problem

datatype o re = Atom a | Alt (a re) (a re) | Conc (a re) (a re) | Star (are)

A formalization problem

datatype o re = Atom a | Alt (a re) (a re) | Conc (a re) (a re) | Star (are)

datatype /d/ = Prop string | And Idl Idl | Neg Idl | Match (/dl re)

A formalization problem

datatype o re = Atom a | Alt (a re) (a re) | Conc (a re) (a re) | Star (are)

inductive ~ac1 where

Alt (Altrs) t ~acr Altr (Alt s t) Altrs ~acr Altsr Altrr~pcr
r~ac1l’ S~pacrs' r~act!’ S~pacs' r~pct I’
Altrs ~pct Altr's’ Concrs~pcr Concr’'s” Starr ~pc Starr’

I ~ac1 S r~actS S~act
M~ac1l
S~acl r~act t

datatype /d/ = Prop string | And Idl Idl | Neg Idl | Match (/dl re)

A formalization problem

datatype o re = Atom a | Alt (a re) (a re) | Conc (a re) (a re) | Star (are)

inductive ~ac1 where

Alt (Altrs) t ~acr Altr (Alt s t) Altrs ~acr Altsr Altrr~acr
r~ac1l’ S~pacrs' r~act!’ S~pacs' r~pct I’
Altrs ~pct Altr's’ Concrs~pcr Concr’'s” Starr ~pc Starr’

I ~ac1 S r~actS S~act
M~ac1l —
S~acl r~act t

quotient_type areaci =a I’E’/ ~ACI

datatype /d/ = Prop string | And Idl Idl | Neg Idl | Match (/dl reacr)

A formalization problem

datatype o re = Atom a | Alt (a re) (a re) | Conc (a re) (a re) | Star (are)

inductive ~ac1 where

£ Unsupported recursive occurrence rs~cAltsr Altrr~pcrr
of type /dl/ via type constructor
reacr in type expression /d/reac;. 1 S ~Ac1S F~act

) S~pct Concr’'s’ Starr ~pcr Starr’
Use the bnf command to register

reac: as a bounded natural functor | I ~ac1 S r~actS S~act
to allow nested (co)recursion S~acrl r~act
through it.

qu —=J RCT T ACI

datatype /d/ = Prop string | And Idl IdI | Neg Idl | Match (/dl reacr)

Interlude: Contribution

Identified sufficient conditions on
when quotients of BNFs are BNFs

Relevant for (co)datatypes, relational parametricity, refinement

Interlude: Contribution

Identified sufficient conditions on
when quotients of BNFs are BNFs

Relevant for (co)datatypes, relational parametricity, refinement

Automated BNF preservation
proofs via lift_bnf command in @ﬁ}

Datatype recursion worries

Higher Order Logic Theorem Proving and its Applications (A-20)
LJ M. Clacsen and M.J.C. Gordon (Editors)

Elsevier Science Publishers B.V. (North-Holland) 561
© 1993 IFIP. Al rights reserved.

Why We Can’t have SML Style datatype Declarations
in HOL

Elsa L. Gunter

AT&T Bell Laboratories, Rm. #2A-432, Murray Hill, NJ, 07974-0636, USA

Unsupported recursive occurrence
of type /dl via type constructor
reacr in type expression /dl reacs.

Use the bnf command to register
reacr as a bounded natural functor
to allow nested (co)recursion
through it.

Datatype recursion worries

Unsupported recursive occurrence
of type /dl via type constructor
reacr in type expression /dl reacs.

Higher Order Logic Theorem Proving and its Applications (A-20)

(Editors)
ls V. (North-Holland) 561
© 1993 IFIP. Al rights

Why ‘We Can’t have SML Style datatype Declarations Use the bnf Command to rengter

in HOL react as a bounded natural functor
Blsa L. Gunter to allow nested (co)recursion
through it.

AT&T Bell Laboratories, Rm. #2A-432, Murray Hill, NJ, 07974-0636, USA

datatype bad = C (bad set) | ...

C:: badset = bad injective

Datatype recursion worries

Unsupported recursive occurrence
e oy oo i (i, o0 (420 of type /dl via type constructor
Elsevier Science Publishers B.V. (North-Holland) 561

reacr in type expression /dl reacs.

© 1993 IFIP. Al rights reserved.

yVhy ‘We Can’t have SML Style datatype Declarations Use the bnf Command to regISter

in HOL react as a bounded natural functor
Blsa L. Gunter to allow nested (co)recursion
through it.

AT&T Bell Laboratories, Rm. #2A-432, Murray Hill, NJ, 07974-0636, USA

datatype bad = C (bad set) | ... Datatypes may recurse

ly th h BNF
C:: badset = bad injective only throuig >

[1] (]
[2,3] [3,3]
[1,2,3]

Bounded Natural Functors (BNF)

Bounded Natural Functors (BNF)
B

F(B)

Bounded Natural Functors (BNF)

A B Functor
mapg id = id
——————————— mapg g e mapg f = mapg (g o f)

Bounded Natural Functors (BNF)

Functor
mapg id = id
mapg g o mapg f = mapg (g of)

Bound
[sete x| < R

Bounded Natural Functors (BNF)

Functor

mapg id = id

mapg g o mapg f = mapg (g of)
Bound

[sete x| < R

Natural

setg (mapg f x) = f(setg x)

Vx € setg x. f X =g X

7 0. ral
[b,b] [a,b]
[a,b,b]

mapg f X = mapg g X

Bounded Natural Functors (BNF)

Functor
mapg id = id
mapg g o mapg f = mapg (g of)
Bound
[sete x| < R

F(()A)=()F(A
Natural (m) ﬂ (A)

setg (mapg f x) = f(setg x)

Vx € setg x. f X =g X

7 0. ral
[b,b] [a,b]
[a,b,b]

mapg f X = mapg g X

Bounded Natural Functors (BNF)

Functor
mapg id = id
mapg g o mapg f = mapg (g of)
Bound
[sete x| < R

F((1A) =()F{A
Natural (N4 =FA)

setg (mapg f x) = f(setg x)
Vx € setg x. f X =g X

SN
[2,3] [3,3]
[1,2,3] Relator
(X,y) €relrR=3z€ F(R). mapg 11 z=X A
mapg 2 2 =Y
relrRerelrS=relr (ReS)

mapg f X = mapg g X

Closure properties of BNF

Basic BNFs
+ _ X _
T= _

set =>7T

Non-BNFs

Closure properties of BNF
Derived BNFs

Basic BNFs
+ _ _X _ composition

unit + codatatypes

T=_ _ stream

datatypes

e subtypes*

_ balanced-tree
_set =7

Non-BNFs * Conditions apply.

Viewing reacr as a subtype

fun nfacy :: c re = a re where ...
lemmar ~pc1 S «— nfacr r = nfacr s (proof)

typedef a react = {nfacir| r:: are} by auto

NF

Viewing reacr as a subtype

fun nfacy :: c re = a re where ...
lemmar ~pc1 S «— nfacr r = nfacr s (proof)

typedef a react = {nfacir| r:: are} by auto

NF

lift_bnf a react

1. s€ NF— map,, fs €NF
2. ...

Viewing reacr as a subtype

fun nfacy :: c re = a re where ...
lemmar ~pc1 S «— nfacr r = nfacr s (proof)

typedef a react = {nfacir| r:: are} by auto

NF

lift_bnf a reac: unlikely for non-injective f

1. s € NF— map,, fs €NF
2. ...

Viewing reacr as a subtype

fun nfacy :: c re = a re where ...
lemmar ~pc1 S «— nfacr r = nfacr s (proof)

typedef a react = {nfacir| r:: are} by auto

NF

lift_bnf a reac: unlikely for non-injective f

1. s€ NF— map, fs €NF
2. ...

Quotients can be viewed as subtypes via representatives
but we cannot lift the BNF structure along this view.

Quotients of Polynomial Functors

Data Types as Quotients of Polynomial Functors

Jeremy Avigad

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA
http://uww . andrew. cmu. edu/user/avigad/

avigad@cmu.edu

Mario Carneiro
Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA

di.gama@igmail.com

Simon Hudon

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA

https://www. cau phy/people/p %20 ntml
simon.hudon@gmail.com

—— Abstract
A broad class of data
be represented as quotients of polynomial functors. This provides perspicuous ways
of constructing them and reasoning about them in an interactive theorem prover

icluding arbitrary nestings of inductive types, coinductive types, and

quotients,

F(A) F(B)

Quotients of Polynomial Functors

Data Types as Quotients of Polynomial Functors

Jeremy Avigad

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA
http://uww . andrew. cmu. edu/user/avigad/

avigad@cmu.edu

Mario Carneiro
Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA
di.gamaGgmail.com

Simon Hudon

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA

Retps: //wws cnu people/p %20 .html
simon.hudon@gmail.com

—— Abstract
A broad class of data tyy
quotients, can be represente provides perspicuous w
f constructing them and reasoning about them in an interactive theorem prover.

includ

arbitrary nestings o
quotients of polynomial functors. This

ductive types, coinductive types,

~

F(A)/~

Quotients of Polynomial Functors

Data Types as Quotients of Polynomial Functors

Jeremy Avigad

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA
http://uww . andrew. cmu. edu/user/avigad/

avigadGemu.cdu

Mario Carneiro

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA
di gamaGgmail.com

Simon Hudon

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA
Retps: //wws cnu
simon.hudon@gmail.com

people/p 120 htal

—— Abstract

A broad class of data 1
quotients, can be represented as quotients of polynomial functors. This provides perspicuous
f constructing them and reasoning about them in an interactive theorem prover.

icluding arbitrary nestings of inductive types, coinductive types,

~

F(A)/~

X ~Yy—>mapg f X ~mapgfy

Quotients of Polynomial Functors

Data Types as Quotients of Polynomial Functors

Jeremy Avigad

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA
http://uww . andrew. cmu. edu/user/avigad/

avigad@cmu.edu

Mario Carneiro

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA
di gamaGgmail.com

Simon Hudon

Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA
Retps: //wws cnu
simon.hudon@gmail.com

people/p 120 htal

—— Abstract

A broad class of data typ

including arbitrary nestings of inductive types, coinductive types, and
quotients, can be represented as quotionts of polynomial functors. This provides perspicuous ways
f constructing them and reasoning about them in an interactive theorem prover.

F(A)/~

X ~Yy—>mapg f X ~mapgfy
X~Yy—setp X =setpy

Quotients of Polynomial Functors

Data Types as Quotients of Polynomial Functors

Jeremy Avigad
De

X~y —>setp X =setpy
~ preserves wide intersections

~ preserves weak pullbacks

~A |1 &] TTTTRTTTTTEEEEEEEETE T

F(A)/~ F(B)/~

(]
[b,b]
[a,b,b]

[a]
[a,b]

Distinct Lists

(]
[b,b]
[a,b,b]

[a]
[a,b]

Distinct Lists

typedef a dlist =
{xs :: a list | distinct xs}

(]
[b,b]
[a,b,b]

[a]
[a,b]

Distinct Lists

typedef a dlist =
{xs :: a list | distinct xs}

L

map (1_. a)
[a,a]

Distinct Lists

typedef a dlist =
{xs :: a list | distinct xs}

(] [a]
[bb] [a,b]
[a,b,b]

[a,a]

quotient_type a dlist =
a list / (Axs ys. remdups xs = remdups ys)

v
~dlist

map (1_. a)

Distinct Lists

typedef a dlist =
{xs :: a list | distinct xs}

(] [a]
[bb] [a,b]
[a,b,b]

map (1_. a)
[a,a]

quotient_type a dlist =
a list / (Axs ys. remdups xs = remdups ys)

v
~dlist

/XS ~diist Y5 —> set xs = set ys
J/ ~dist preserves wide intersections
/ ~dist preserves weak pullbacks

Terminated Lazy Lists

[] [a]
[b,b] [a,b]
[a,b,...

codatatype a llist = LNil | LCons a (a llist)

Terminated Lazy Lists

[] [a]
[b,b] [a,b]
[a,b,...

codatatype a llist = LNil | LCons a (a llist)

codatatype (a, b) tllist = TLNil b | TLCons a ((a, b) tllist)

Terminated Lazy Lists

[]
[b,b]
[a,b,...

codatatype a llist = LNil | LCons a (a llist)

codatatype (a, b) tllist = TLNil b | TLCons a ((a, b) tllist)

[a]
[a,b]

Terminated Lazy Lists

(] [a]
[bb] [a,b]{
[a,b,...)

codatatype a llist = LNil | LCons a (a llist)

codatatype (a, b) tllist = TLNil b | TLCons a ((a, b) tllist)

Terminated Lazy Lists

(] [a] _
[bb] [ably
[a,b,... B

codatatype a llist = LNil | LCons a (a llist)

codatatype (a, b) tllist = TLNil b | TLCons a ((a, b) tllist)

Terminated Lazy Lists

(] [a]
[b,b]

codatatype a llist = LNil | LCons a (a llist)

codatatype (a, b) tllist = TLNil b | TLCons a ((a, b) tllist)

[a,b]y.

Terminated Lazy Lists

(] [a]
[b,b] [a,b]

codatatype a llist = LNil | LCons a (a llist)

quotient_type (a, b) tllist =
allist x b/ (A(xs,a) (YS,B)- XS =YS A (|xs| < 00 — o =p))

v
~tllist

Terminated Lazy Lists

(] [a]
[b,b] [a,b]

codatatype a llist = LNil | LCons a (a llist)

quotient_type (a, b) tllist =
allist x b/ (A(xs,a) (YS,B)- XS =YS A (|xs| < 00 — o =p))

v
~tllist

(XS, @) ~ist (YS,B) — setyist XS = setyst YS
(xs, @) ~ist (yS,8) — {a} = {8}

~tllist preserves wide intersections

~tlist preserves weak pullbacks

Terminated Lazy Lists

(] [a]
[b,b] [a,b]

codatatype a llist = LNil | LCons a (a llist)

quotient_type (a, b) tllist =
allist x b/ (A(xs,a) (YS,B)- XS =YS A (|xs| < 00 — o =p))

-~

Vv (XS, @) ~uiist (¥S,8) — setuist XS = setyist YS
X (xs,@) ~uiist (¥s,8) — {a} = {8}

/ ~tllist preserves wide intersections

/ ~tlist preserves weak pullbacks

F(A)

How to correct?

(]

o
[1]
[1.2]
(2]
[2,2]

[3]
F(A)/~

How to correct?

How to correct?

datatype a option = None | Some a

[1]

[1 |12 mapg Some

[S 2] |
[S2,S2],

S [83]

F(ome[i)

How to correct?

datatype a option = None | Some a

[1]

(1 2] [S1,S2]

[3] [S2,S 2]

F(Some[A])

How to correct?

datatype a option = None | Some a

setp/n [X]~ = N {a.Some a € setr y}
y€[mapg Some x|~

N/'
[1]
[1,2]
1 |[2] __Mmapg Some [S1,S 2]
22,
(3] [S 2,5 2]
\
F(A)/~

F(Some[A])

Preservation theorem

m BNF F with equivalence relation ~
m ~ preserves wide intersections
A#£ L ANAE T — N{AIAeFA} S [NFA)]L
m ~ weakly preserve pullbacks
ReS#£{}—relrRe~erelrSC ~erelr (ReS)e~

Preservation theorem

m BNF F with equivalence relation ~
m ~ preserves wide intersections
A#£ L ANAE T — N{AIAeFA} S [NFA)]L
m ~ weakly preserve pullbacks
ReS#£{}—relrRe~erelrSC ~erelr (ReS)e~

yields BNF for F/~
m mapg, f [X]~ = [mapg f X]~

B setp/~ [X]~ = N {a.Some a € setf y}
y€[mapg Some X]~

B ([X]~[Y]~) € relf/~ R «— (mapg Some X, mapg Some y) € (~ o relg (relgption R) ® ~)

lift_bnf in action
codatatype a /list = LNil | LCons a (a llist)

definition ~yst:: a llist x b = a llist x b = bool where
(XS, @) ~iist (YS,B) «— XS =VYs A (|xs] <00 — o =p)

quotient_type (a,b) tllist = a llist x b [~jist
lift_bnf (a,b) tllist

lift_bnf in action
codatatype a /list = LNil | LCons a (a llist)
definition ~yst:: a llist x b = a llist x b = bool where
(XS, @) ~iist (YS,8) «— XS =YyS A (|xs| <00 — a =p)
quotient_type (a,b) tllist = a llist x b [~jist
lift_bnf (a,b) tllist
1. AeA'#£ 1 —>BeB £1—»
relx (relyist A) B @ ~yist o relx (relyst A') B” < ~tiist @ relx (relyst (Ao A”)) (BeB’) @ ~yist

2. SAE{}—NS£{t—
Aﬂs{x. 3y. y ~tilist X A setyise (1Y) € A} © {x. 3y. y ~uiist X A setyst (71 Y) €[S}
3. SAE{}—NS£{}t—

) {x. Y.y ~ulist X Aoy €AY € {X. 3y. Y ~uiist X A2y €[S}
AeS

lift_bnf in action
codatatype a /list = LNil | LCons a (a llist)
definition ~yst:: a llist x b = a llist x b = bool where
(XS, @) ~iist (YS,8) «— XS =YyS A (|xs| <00 — a =p)
quotient_type (a,b) tllist = a llist x b [~jist
lift_bnf (o, b) tllist

subgoal by (auto 0 4 simp: ~uyist _def ...)
subgoal by (auto simp: ~ist _def)
subgoal by (auto 6 0 simp: ~ujist _def)
done

lift_bnf in action
codatatype a /list = LNil | LCons a (a llist)

definition ~yst:: a llist x b = a llist x b = bool where
(XS, @) ~iist (YS,8) «— XS =YyS A (|xs| <00 — a =p)
quotient_type (a,b) tllist = a llist x b [~jist
lift_bnf (a,b) tllist
subgoal by (auto 0 4 simp: ~uyist _def ...)
subgoal by (auto simp: ~ist _def)

subgoal by (auto 6 0 simp: ~ujist _def)
done

datatype foo = E | C ((foo, foo) tllist)

relr R

rele S

rele S

Subdistributivity via rewrite relation

Sufficient conditions:
m BNF F with equivalence relation ~
B X~Yy—>mapgfX~mapgfy Asete x =setgy

Subdistributivity via rewrite relation

Sufficient conditions:

m BNF F with equivalence relation ~

B X~Yy—>mapgfX~mapgfy Asete x =setgy
m Rewrite relation ~» over-approximates ~

X
* *

=

w y — >

X
m ~ confluent: vy z and factors through projections:) %
y

Subdistributivity via rewrite relation

Sufficient conditions:

m BNF F with equivalence relation ~

B X~Yy—>mapgfX~mapgfy Asete x =setgy
m Rewrite relation ~» over-approximates ~

X mape 7;
* * X —— X
m ~ confluent: vy z and factors through projections:
B ’
W Yy —Y
Distinct lists: XS+yS~ xs-[x]-ys if x€ys

Proof effort: 50% shorter (58 instead of 126 lines)

inductive ~»ac1 where

I~ ac1 Altrr

a reac is a BNF

inductive ~sacr where

r MACI Alt l’ r

a réeacy is a BNF

—1* _
W (wact U=)" = (~ac1)
m ~c iS confluent
B Map,, w1l ~pac1 S— Jt. t ~aci ' AS=map, mt

B map, m M wactS— dt.t~acirASs=map, 2t

a reac is a BNF

inductive ~» where —
ACI W (wact Uw 1)* = (~acr)
m ~c1 is confluent
B Map,, w1l ~pac1 S— dt.t~aciFrAS= map,. 1 t

B mMap,mMwact S— At t~acirAS=map,m t

lift_bnf a reac: (proof)

I~ ac1 Altrr

a reac is a BNF

inductive where —
ACT W (wact Uw 1)* = (~acr)
m ~c1 is confluent
B Map,, w1l ~pac1 S— Jt. t ~aci T AS=map, m4 t

B mMap,mMwact S— At t~acirAS=map,m t

lift_bnf a reac: (proof)

datatype /d/ = Prop string | And Idl Id/ | Neg /d/

r~spacr Altrr | Match (ldl reacr)

Epilogue

lift_bnf

m part of Isabelle2020

m 1600 lines of Isabelle/ML

m generation of transfer rules
-

Epilogue

lift_bnf

m part of Isabelle2020

m 1600 lines of Isabelle/ML

m generation of transfer rules
-

Applications

m (co)datatypes
m Lifting and Transfer
m QPF

Epilogue

lift_bnf

m part of Isabelle2020

m 1600 lines of Isabelle/ML

m generation of transfer rules
-

Applications

m (co)datatypes
m Lifting and Transfer
m QPF

Limitations

m terms modulo a-equivalence
[Blanchette, Gheri, Popescu, T., POPL'19]
m signed multisets
[Blanchette, Fleury, T., FSCD’'16]
J

-

Epilogue

-

lift_bnf

m part of Isabelle2020
m 1600 lines of Isabelle/ML
m generation of transfer rules

Applications

m (co)datatypes
m Lifting and Transfer
m QPF

-

Limitations

m terms modulo a-equivalence
[Blanchette, Gheri, Popescu, T., POPL'19]
m signed multisets
[Blanchette, Fleury, T., FSCD’'16]
J

(A

Future Work

m partial quotients
m generalizations of BNFs
[L.,S., ITP'18]
[Blanchette, Gheri, Popescu, T., POPL'19]
= J

Quotients of Bounded Natural Functors

Basil Fiirer Digitc,lA Andreas Lochbihler
0 Asge, -

“Urieh” .

Joshua Schneider Dmitriy Traytel h

merci!

questions?

	Introduction

