
Object-Oriented Verification based on

Record Subtyping in Higher-Order Logic

Wolfgang Naraschewski and Markus Wenzel

Technische Universität München
Institut für Informatik, Arcisstraße 21, 80290 München, Germany

http://www4.informatik.tu-muenchen.de/~narasche/

http://www4.informatik.tu-muenchen.de/~wenzelm/

8th June 1998

Abstract

We show how extensible records with structural subtyping can be rep-
resented directly in Higher-Order Logic (HOL). Exploiting some speci�c
properties of HOL, this encoding turns out to be extremely simple. In par-
ticular, structural subtyping is subsumed by naive parametric polymor-
phism, while overridable generic functions may be based on overloading.
Taking HOL plus extensible records as a starting point, we then set out
to build an environment for object-oriented speci�cation and veri�cation
(HOOL). This framework o�ers several well-known concepts like classes,
objects, methods and late-binding. All of this is achieved by very simple
means within HOL.

1 Introduction

Higher-order Logic (HOL) [2, 1, 3] is a rather simplistic typed system, Church
originally even called it “Simple Theory of Types”. At first sight, it might seem
futile attempting to use HOL to represent extensible records with structural
subtyping, or even object-oriented concepts. One might expect that this requires
more advanced concepts at the level of types. The more surprising that HOL is
perfectly capable of providing extensible record types. The encoding even turns
out to be very simple and natural.

Extensible records in HOL give rise to applications in general mathematical
modeling. We will hint at these by an example of simple abstract algebra.

Taking HOL plus extensible records as a basis we develop an object-oriented
specification and verification environment (HOOL). This provides several well-
known object-oriented concepts like classes, objects, methods and late-binding.
On top of these basic concepts we could even achieve abstract classes and en-
capsulation (hiding), just by employing some mechanism of abstract theories
like axiomatic type classes [14].

1

http://www4.informatik.tu-muenchen.de/~narasche/
http://www4.informatik.tu-muenchen.de/~wenzelm/

While this work has originated in the context of Isabelle/HOL [11], in prin-
ciple its results carry over to other HOL implementations as well. Subsequently
we will always refer to “HOL” in a generic sense.

A note on implementation: the latest official Isabelle release (Isabelle98)
includes a prototypical package for extensible records. While demonstrating the
basic ideas, it is not quite suited for real applications. You should get a more
recent (probably unofficial) release for your own experiments.

This paper is structured as follows. Section 2 gives some impression on how
to use extensible records in general mathematical modeling. We present a sim-
ple example of abstract algebra. Section 3 is foundational: after introducing
the HOL logic to some extent, we present our particular encoding of extensible
records. Section 4 introduces an environment for object-oriented specification
and verification (HOOL). We demonstrate its main features by the running ex-
ample of coloured points and rectangles. Section 5 explains how the HOOL
concepts can be represented in HOL. Section 6 discusses object-oriented verifi-
cation within the HOOL environment.

2 Basic use of extensible records

2.1 What are extensible records anyway?

2.1.1 Tuples and records

We briefly review some basic notions and notations.
Ordinary tuples and tuple types, which are taken for granted, are written as

usual in mathematics, e. g. a triple (a, b, c) of type A×B × C.
Records are a minor generalization of tuples, where components may be

addressed by arbitrary labels (strings, identifiers, etc.) instead of just position.
Our concrete record syntax is borrowed from ML: e. g. {x = a, y = b, z = c}
denotes an individual record of labels x, y, z and values a, b, c, respectively.
The corresponding record type would be of the form {x :: A, y :: B, z :: C}.
Note that the labels contribute to record identity, consequently {x = 3, y = 5}
is completely different from {foo = 3, bar = 5}.

2.1.2 Record schemes

Unlike ordinary tuples, records are better suited to a property oriented view
in the sense of “record r has field l”. As a concise means to refer to classes
of records featuring certain fields we introduce schemes, both on the level of
records and record types. Patterns of the form {x = a, y = b, . . .} refer to any
record having at least fields x, y of value a, b, respectively. The corresponding
type scheme is written as {x :: A, y :: B, . . .}. The dots “. . .” are actually part
of our notation and are pronounced “more”. The more part of record schemes
may be instantiated by zero or more further components. In particular, the
concrete record {x = a, y = b} is considered a (trivial) instance of the scheme
{x = a, y = b, . . .}.

As an example of relating records consider schemes {x = a, y = b, . . .} and
{x = a, y = b, z = c, . . .}. These are related in the sense that the latter is
an extension of the former by addition of field z = c. On the level of types,

2

one might say that any {x :: A, y :: B, z :: C, . . .} is a structural subtype of
{x :: A, y :: B, . . .}. Note that (in our framework) record subtyping may only
hold if the parent is an extensible record scheme. As a counterexample, instances
of {x :: A, y ::B, z :: C, . . .} are not considered extensions of the concrete record
type {x :: A, y :: B}.

With record schemes at the term and type level we have already “extensible
records” at our disposal. In particular, we can define functions that operate on
whole classes of records schematically, like f {x = a, y = b, . . .} ≡ t. Here the
l. h. s. is supposed to bind variables a, b and “. . .” by pattern matching. To im-
prove readability, we occasionally abbreviate {x = x, y = y, . . .} by {x, y, . . .},
even on the r. h. s. provided this does not cause any ambiguity.

Before discussing encodings of this general concept of extensible records in
formal logical systems we demonstrate its use by an example.

2.2 Example: abstract algebraic structures

Consider some bits of group theory: A monoid is a structure with carrier α and
operations ◦ :: α → α → α and 1 :: α such that ◦ is associative and 1 is a left
and right unit element (w.r.t. ◦). A group is a monoid with additional operation
inv :: α → α such that inv is left inverse (w.r.t. ◦ and 1). An agroup (abelian
group) is a group where ◦ is commutative.

A well-known approach to abstract theories in HOL [3] uses n-ary predicates
over the structures’ operations (carrier types are included implicitly via poly-
morphism). Then monoid would be a predicate on pairs and group, agroup on
triples as follows (below we use fancy syntax ◦, 1 for variables):

defs
monoid :: (α→ α→ α)× α→ bool
monoid (◦, 1) ≡ ∀x y z. (x ◦ y) ◦ z = x ◦ (y ◦ z) ∧ 1 ◦ x = x ∧ x ◦ 1 = x

group :: (α→ α→ α)× α× (α→ α)→ bool
group (◦, 1, inv) ≡ monoid (◦, 1) ∧ ∀x. (inv x) ◦ x = 1

agroup :: (α→ α→ α)× α× (α→ α)→ bool
agroup (◦, 1, inv) ≡ group (◦, 1, inv) ∧ ∀x y. x ◦ y = y ◦ x

Note that monoid and group, acting on different signatures, do not admit an
immediate notion of inclusion. To express that any group is a monoid one
has to apply an appropriate forgetful functor first, mapping (◦, 1, inv) to (◦, 1).
Operations on monoids cannot be applied to groups without this coercion.

We now use extensible records instead of fixed tuples to model algebraic
structures. This will eliminate above problem of incompatible signatures, as
record subtyping automatically takes care of this. Monoids are defined as fol-
lows:

record αmonoid-sig =
◦ :: α→ α→ α (infix)
1 :: α

defs
monoid :: {◦ :: α→ α→ α, 1 :: α, . . .} → bool
monoid {◦, 1, . . .} ≡
∀x y z. (x ◦ y) ◦ z = x ◦ (y ◦ z) ∧ 1 ◦ x = x ∧ x ◦ 1 = x

3

The record declaration introduces type scheme {◦ :: α → α → α, 1 :: α, . . .}
together with several basic operations like constructors, selectors and updates
(with the usual properties). Selectors are functions of the same name as the
corresponding fields, e. g. 1 :: {◦ :: α → α → α, 1 :: α, . . .} → α. Thus (1 M)
refers to the unit element of structure M . To improve readability, we also write
selector application in subscript (1M). The update operation for any field x is
called update-x .

Based on this abstract theory of monoids, we may now introduce derived
notions and prove generic theorems. For example, consider the following defini-
tion of exponentiation (by primitive recursion), together with an obvious lemma
stating that xm+n = xm ◦ xn holds in monoids:

defs
pow :: {◦ :: α→ α→ α, 1 :: α, . . .} → nat → α→ α
pow {◦, 1, . . .} 0 x ≡ 1
pow {◦, 1, . . .} (Suc n) x ≡ x ◦ (pow {◦, 1, . . .} n x)

lemmas
monoid M ⇒ powM (m+ n) x = (powM m x) ◦M (powM n x)

Next we define groups as an extension of monoids as follows:

record α group-sig = αmonoid-sig +
inv :: α→ α

defs
group, agroup :: {◦ :: α→ α→ α, 1 :: α, inv :: α→ α, . . .} → bool
group {◦, 1, inv , . . .} ≡ monoid {◦, 1, inv , . . .} ∧ ∀x. (inv x) ◦ x = 1
agroup {◦, 1, inv , . . .} ≡ group {◦, 1, inv , . . .} ∧ ∀x y. x ◦ y = y ◦ x

The group-sig type scheme has been defined as child of monoid-sig and directly
inherits all primitive and derived operations (in particular selectors etc.). Ap-
parently, any {◦, 1, inv , . . .} is also an instance of {◦, 1, . . .}. Therefore, func-
tions operating on the latter, also work on the former. For example consider
the instance pow {◦, 1, inv , . . .} for exponentiation on group structures.

By using extensible records we got for free what had to be done by explicit
coercions (type casts) in other systems. Even more: apart from adapting argu-
ment types, result types are instantiated as well in our setting. As an example
consider the following “functor” that reverses the binary operation of monoids:

defs
rev {◦, 1, . . .} ≡ {◦ = λx y. y ◦ x, 1 = 1, . . .}

This function generically maps objects of type monoid-sig to monoid-sig and
group-sig to group-sig :

rev :: {◦ :: α→ α→ α, 1 :: α, . . .} → {◦ :: α→ α→ α, 1 :: α, . . .}
rev :: {◦ :: α→ α→ α, 1 :: α, inv :: α→ α, . . .}

→ {◦ :: α→ α→ α, 1 :: α, inv :: α→ α, . . .}

Note that a naive approach with type casts would have yielded only group-sig
to monoid-sig in the latter case.

In our setting, the type system will always take care of adapting the sig-
natures of the mathematical structures automatically. Actual structures are
restricted by additional logical properties, though, as expressed by the predi-
cates monoid , group, agroup. Using simple properties of monoids and groups,

4

like x ◦ (inv x) = (inv x) ◦ x, we may actually prove that all three kinds of
structures are logically invariant under the rev functor:

lemmas
monoid M ⇒ monoid (rev M)
group G⇒ group (rev G)
agroup G⇒ agroup (rev G)

In general, functors may not propagate that nicely down the hierarchy of alge-
bras. If so, one might want to consider changing the meaning of such operations
depending on the actual type of the argument structure. For example, some
functor on monoids might be redefined on groups in order to take the additional
inv field into account. Redefining functions this way amounts to overriding
methods in object-oriented parlance (see §4 of how to achieve this).

3 Extensible records with structural subtyping
in HOL

3.1 The HOL logic

3.1.1 Syntax and semantics

The syntax of HOL is that of simply-typed λ-calculus with a first-order language
of types. Types are either variables α, or applications (τ1, . . . , τn) t; we drop
the parentheses for n ∈ {0, 1}. Binary constructors are often written infix,
e. g. function types τ1 → τ2 (associating right). There is no way to bind type
variables or make types depend on terms in HOL.

Terms are either typed constants cτ or variables xτ , applications t u or
abstractions λx. t. As usual, application associates to the left and binds most
tightly. An abstraction body ranges from the dot as far to the right as possible.
Nested abstractions like λx. λ y. t are abbreviated to λx y. t. Terms have to
be well-typed according to a standard set of typing rules.

HOL can be understood as a very simple version of typed set theory, with
two distinct kinds of objects: terms denoting set theoretic individuals (numbers,
tuples, functions etc.) and types denoting corresponding sets classifying the
individuals. In ordinary untyped set theory everything is just a set, of course.

3.1.2 Theories

HOL theories consist of a signature (declaring type constructors (α1, . . . , αn) t
and polymorphic constant schemes c :: σ) and axioms. All theories are assumed
to contain a certain basis, including at least types bool and α → β and several
constants like logical connectives ∧ , ∨ ,⇒ :: bool → bool → bool , quantifiers
∀,∃ :: (α→ bool)→ bool and equality = :: α→ α→ bool .

Any theory induces a set of derivable theorems, depending on a fixed set of
deduction rules that state several “obvious” facts of classical set theory.

Arbitrary axiomatizations are considered anathema in the HOL context.
It is customary to use only definitional extensions (guaranteeing certain nice
deductive and semantic properties) and honestly toil in deriving the desired
properties from the definitions. HOL offers definition schemes for constants and
types [13].

5

3.1.3 Constant definitions

The basic mechanism only admits introducing some axiom ` c ≡ t for a new
constant c not occurring in t (and some further technical restrictions). We
generalize the pure scheme to admit arguments of function definitions applied
on the l. h. s. rather than abstracted on the r. h. s.: ` f x y ≡ t instead of
` f ≡ λx y. t. Furthermore, tuple abstraction, definitions by cases etc. may be
written using ML-style pattern matching, e. g. ` f (x, y) ≡ t (which applies the
pair eliminator split :: α× β → (α→ β → γ)→ γ behind the scenes).

Later we will also use a proper extension of the HOL constant definition
scheme, namely overloading [14]. Currently only Isabelle/HOL implements this.
Here is a sample overloaded definition of some polymorphic constant 0:

defs
0 :: α
0nat ≡ zero
0α list ≡ nil
0α×β ≡ (0α, 0β)
0α→β ≡ λxα. 0β

Note that we do not have to cover all types of 0 here; additional clauses may be
added later, provided overall consistency of the set of equations is preserved.

3.1.4 Type definitions

New polymorphic type schemes may be introduced in HOL systematically as
follows: exhibiting a non-empty representing subset A of an existing type (with
further technical restrictions) one may introduce a new axiom stating that
(α1, . . . , αn) t, for a new type constructor t, is in bijection with A. This ba-
sically identifies the new type with the representing subset.

HOL type definitions are peculiar as they only state equivalence up to iso-
morphism. There is no way to enforce actual equality, as do type conversions in
type theories. As a consequence, the HOL algebra of types can be considered as
freely generated (without loss of generality), always admitting an initial model
where types of different names denote different sets. This freeness property
will be quite important later for distinctness of record types (§3.2). Even more
fundamental, it underlies overloading [14], which is used in §4 to implement
methods.

Paradoxically, more powerful logical systems like full set theory or the HOL-
version underlying PVS are not quite suitable for our way of encoding extensible
records, mainly because they no longer admit the freeness assumption of types.

3.2 Encoding extensible records

3.2.1 A representation in untyped set theory

Thinking in ordinary mathematics one may model extensible records as follows
[7, §2.7.2]: fixing a set L of labels and a family of sets of values (Al)l∈L, the set
of extensible records over these shall be the (dependent) partial function space
l ∈ L ⇀ Al. That is, any record r is a partial function such that r(l) ∈ Al,
if r(l) is defined. For example, record {x = 3, y = 5} would be the function
r:x 7→ 3, y 7→ 5, undefined elsewhere.

6

This encoding is rather “deep”, labels and values are both first class individ-
uals. We can express many notations of extensible records directly within the
system as set theoretic functions or predicates. In particular, the relation “r
has component l” would be “r(l) is defined”. Furthermore, relation “r′ extends
r” and operations “add component l = x to r”, “merge r and r′” could be
expressed via set inclusion, insertion, union, respectively. Also note that these
records are commutative: {x = 3, y = 5} and {y = 5, x = 3} are equal.

3.2.2 A deep encoding in HOL?

Above encoding of records would in principle also work in HOL. We could encode
partial functions as relations, or total functions to a range type with explicit
undefined element. There is a snag, though, making this version of records
very awkward to use in practice: it doesn’t fit very well within the HOL type
system. In particular, the sets of values Al from above would have to be within
the same type! If one wanted to have different HOL types for different fields,
explicit injections were required (via disjoint sums).

A better encoding of records in HOL should try to exploit the type system
as much as possible. Such a representation would be much preferable even if it
lost some of the properties and expressiveness of the set theoretic version. This
is yet another example of applied logic within a concrete working environment
where pure expressiveness may be quite unrelated to usefulness.

3.2.3 Shallow encoding of records in HOL

To make a long story short, extensible records are basically just tuples that
contain an extra “more” variable for possible extensions. Ignoring the fact
that field names contribute to record identity for a while, the representation
of {x = 3, y = 5, f = true, . . .} is just (3, (5, (true,more))) where more is a
suitable term variable. The corresponding type {x :: int , y :: int , f :: bool , . . .}
is a nested product (int × (int × (bool × α))), for some free type variable α.

Refining the more slot yields instances with additional fields, for example
{x = 3, y = 5, f = true, z = 42, . . .} represented by (3, (5, (true, (42,more ′)))).
Containing free variables, record schemes are not basic values. Typically, they
only appear in definitions of generic functions where more is bound by functional
abstraction. On the level of types, the more position amounts to polymorphism.

Actual concrete record values can be achieved by instantiating the more slot
to (), the sole element of the unit type, thus terminating the chain properly
without affecting the semantics. For example, {x = 3, y = 5, f = true} would
be (3, (5, (true, ()))), and consequently its type {x :: int , y :: int , f :: bool} would
be (int × (int × (bool × unit))).

We now focus again on labels. These shall act as a means to distinguish
records with different field names. As we have already said earlier, HOL’s alge-
bra of types is so weak that it admits a freeness assumption: types of different
names can never be enforced to be actually the same within the logic. This
gives rise to the following technique to make field names contribute to record
identity without having to bother about labels as first-class individuals.

For any field x :: σ we introduce an isomorphic copy of the HOL pair type ×
by type definition, calling it ×x. We also obtain copies of the pair constructor
and projections etc., with their usual properties. The copied constructor shall

7

be x-field :: σ → β → σ ×x β. It is declared only at an instance of the general
scheme α → β → α ×x β in order to obey the type constraint for field x as
specified in the record type declaration.

Using a separate pair type for any field we now get the following encoding
of records: {x = 3, y = 5, f = true, . . .} is (x-field 3 (y-field 5 (f-field
true more))), its type {x :: int , y :: int , f :: bool , . . .} becomes (int ×x (int ×y
(bool ×f α))). Constructing records this way is like building inhomogeneous
lists, with a separate cons operator for each field. The system implementation
can easily provide concrete syntax for our records and do the conversion to the
representation.

There are several distinguishing features of our encoding of extensible records
in HOL, as compared to the set theoretic one presented earlier.

Most prominently, labels are not first class, but part of constant and type
names (x-field and ×x). Thus we can no longer refer directly to fields within
the logic, “record r has field l” is not a HOL relation in our setting. Yet this
does not prevent us to write generic functions f {x = a, y = b, . . .} that expect
certain fields. This is actually the way we get record subtyping for free, in the
guise of ordinary polymorphism. So we gain a lot by directly employing the
HOL type system for record types.

Also, our records are not commutative: {x = 3, y = 5} and {y = 5, x = 3}
are different, even of incompatible types. So one has to ensure that records obey
a canonical order of fields, which is not considered an actual limitation.

Furthermore, we do not provide a record merge operation. This would be
basically concatenation of record types, requiring an associative operator. HOL
with its free first-order type system cannot express this. We merely loose mul-
tiple inheritance because of this.

Note that our way of encoding extensible records via nested copies of product
types α×x β ×y · · · could be applied to functional programming languages like
ML, too. Thus one would get a form of functional object-oriented language very
easily, ML let-polymorphism would take care of schematic record subtyping in
the same way as in HOL. There would be some extra limitation in ML, though,
because HOL-style ad-hoc polymorphism is unavailable. This would prevent
the encoding of overridable methods as presented in §5.1.

Obviously one could also apply the same basic idea to co-product types,
yielding extensible co-records: disjoint sums α +x β +y · · ·. Then one could
express functions that are generic wrt. the available cases of the sum type. Note
that there is no proper way of terminating schematic sums in HOL, as the empty
type (co-unit) is unavailable; using actual unit instead might still yield a useful
concept in practice, though.

The next step beyond products and sums is recursion, namely inductive or
co-inductive datatypes. It is still to be seen if our way of internalizing “. . . ”
has any useful application in the latter area.

8

4 An environment for object-oriented verifica-
tion

We now introduce a logical environment that supports object-oriented concepts
like classes, instantiation and inheritance. Our theory syntax will be similar to
conventional object-oriented languages, like the one proposed in [10]. In this
section we will only give some hints on how all of this can be implemented in
terms of ordinary HOL declarations and definitions, see §5 for more details.

We use points, coloured points and rectangles as a running example. The
root class point has x- and y-coordinates as fields, method move for moving
points by a given offset and methods reflect-X , reflect-Y , reflect-O for reflecting
them along the abscissa, ordinate, origin, respectively. Class cpoint adds a
colour component to points. Class rectangle is a subclass of cpoint and specifies
rectangles, which are determined by a reference point (bottom-left) together
with the width and height. Rectangles are always in parallel to the x/y-axes.
We also introduce a class rectangle-hilite of rectangles that set the colour to red
when being moved.

4.1 Classes

To begin with the example, we define a root class point .

class point =

fields x, y :: int

methods
move :: {x :: int , y :: int , . . .} → int → int → {x :: int , y :: int , . . .}
move {x, y, . . .} dx dy ≡ {x+ dx , y + dy , . . .}
reflect-X :: {x :: int , y :: int , . . .} → {x :: int , y :: int , . . .}
reflect-X {x, y, . . .} ≡ this.move {x, y, . . .} 0 (−2 · y)

reflect-Y :: {x :: int , y :: int , . . .} → {x :: int , y :: int , . . .}
reflect-Y {x, y, . . .} ≡ this.move {x, y, . . .} (−2 · x) 0

final methods
reflect-O :: {x :: int , y :: int , . . .} → {x :: int , y :: int , . . .}
reflect-O ≡ this.reflect-Y ◦ this.reflect-X

specification
move p 0 0 =x,y p (1)
x (move p dx dy) = x p+ dx (2)
y (move p dx dy) = y p+ dy (3)
this.move (reflect-X p) dx dy =x,y (4)

reflect-X (this.move p dx (−dy))
reflect-Y (reflect-X p) =x,y reflect-X (reflect-Y p)
reflect-X (reflect-X p) =x,y p
reflect-Y (reflect-Y p) =x,y p
reflect-O (reflect-O p) =x,y p

We refer to methods in two ways, written with or without a prefix this. This
distinction plays a vital rôle for inheritance, but can be ignored at the moment.
Note that we use a particular equality =x,y which expresses that two points
coincide on the coordinates, but not necessarily on the remaining fields. To
improve readability, correctness proofs are not shown here. Verification issues
are discussed in §6.

9

Since we are within a functional setting, state-modifying methods are mod-
eled as functions mapping states to states. To be more precise, methods do not
operate on particular states but on arbitrary instances of a given state scheme.

Mutual dependencies of methods are acceptable as long as they are non-
circular. Recursive definition of methods is not supported as a primitive. The
user has to express this using appropriate operators from the underlying logic
(e. g. well-founded recursion).

4.2 Objects, instantiation, and method invocation

Objects are instantiated from classes by specialization. Instantiating some con-
crete object MyPoint from class point is achieved by specializing the state-space
from {x :: int , y :: int , . . .} to {x :: int , y :: int} and determining the initial values
for the coordinates. We write MyPoint ≡ new point {x = 3, y = 5}.

Method invocation is simply achieved by function application. For example,
we can reset the object MyPoint by move MyPoint (−xMyPoint) (−yMyPoint).

4.3 Inheritance

Inheritance means being able to reuse code of superclasses in subclasses with-
out explicit alteration. At first sight, this problem seems to be trivial just by
duplicating code, but the problem is slightly more complicated. Consider, for
example, the point methods, which operate on an x- and y-coordinate whereas
the same methods (seen as methods of coloured points) have to operate on
an extended state-space, which contains a colour field, too. Using extensi-
ble records we are able to write code for point methods generically such that
the methods can operate on any state-space which contains at least x- and y-
coordinates. Hence our implementation of the point methods can be used in a
class of coloured points cpoint without alteration. This is what we achieve by
the following definition:

datatype colour = Red | Green | Blue

class cpoint = point + fields col :: colour

As suggested by above “+” notation, class cpoint includes all fields and methods
from point .

4.4 Overriding

To continue with the example, we define a new class rectangle, adding fields w, h
and method area. Reflecting a rectangle cannot be achieved by simply reflecting
the reference point. When reflecting the bottom-left point along the x-axis it
becomes the top-left point, so we have to subtract the height of the rectangle
from its y-value to fix this. An analogous correction has to be performed for

10

the reflection along the x-axis.

class rectangle = cpoint +

fields w, h :: nat

methods
area :: {x :: int , y :: int , col :: colour , w :: nat , h :: nat , . . .} → nat
area {x, y, col , w, h, . . .} ≡ w · h

override methods
reflect-X {x, y, col , w, h, . . .} ≡

this.move (point .reflect-X {x, y, col , w, h, . . .}) 0 (−h)

reflect-Y {x, y, col , w, h, . . .} ≡
this.move (point .reflect-Y {x, y, col , w, h, . . .}) (−w) 0

specification
area (move {x, y, col , w, h, . . .} dx dy) = area {x, y, col , w, h, . . .}

Apart from reflect-X and reflect-Y all methods and all lemmas of cpoint are
inherited. At first sight it appears evident what we mean by saying “all other
methods are inherited”. But life is not as easy as it seems. Recall the definition
of reflect-O in point : reflect-O ≡ this.reflect-Y ◦ this.reflect-X . On the one
hand we have inherited this method, on the other hand we have overridden the
methods reflect-X and reflect-Y in rectangle. If this.reflect-X and this.reflect-Y
referred statically to the methods defined in point the method reflect-O would
not behave as expected for rectangles. Instead, the references to reflect-X and
reflect-Y in the inherited method reflect-O must refer dynamically to the re-
defined methods. In the following section we will have a closer look at this
dynamic binding of methods which sometimes is also called late-binding.

4.5 Late-binding

Late-binding of methods is a powerful mechanism, making reuse of code very
flexible. To back up this claim we extend rectangles by a class rectangle-hilite.
The idea is that relocated rectangles are highlighted in red colour. Without late-
binding of methods we would have to redefine all methods (except for area).
The impact of these modifications on the correctness proofs would be disastrous:
almost all proofs about rectangles would have to be repeated, quite redundantly
though. Using late-binding of methods, the definition of rectangle-hilite is very
simple because all methods relocating rectangles are defined directly or indi-
rectly in terms of the generic move.

class rectangle-hilite = rectangle +

override methods
move ≡ (update-colour Red) ◦ rectangle.move

specification
col (reflect-X {x, y, col , w, h, . . .}) = Red
col (reflect-Y {x, y, col , w, h, . . .}) = Red
col (reflect-O {x, y, col , w, h, . . .}) = Red

The fact that we can prove these properties of reflect-X , reflect-Y and reflect-O
is remarkable. Without having redefined any of these methods, the change of
the move method has been propagated automatically. This demonstrates that
object-oriented verification really does work in our environment.

11

Now we have arrived at a point where we can clarify the distinction between
those methods prefixed by this and those which are not. Methods prefixed by
this are late-bound and may change in subclasses whereas the others are fixed.
For a better understanding of the distinction recall equation (4) from point :

this.move (reflect-X p) dx dy =x,y reflect-X (this.move p dx (−dy))

This equation expresses that all implementations of the late-bound method
this.move in subclasses are well behaved together with the particular implemen-
tation reflect-X of point . Expanding the definition of reflect-X — we cannot
expand any definition of this.move since it is late-bound — in point yields:

this.move (this.move p 0 (−2 · (y p))) dx dy =x,y

this.move (this.move p dx (−dy)) 0 (−2 · (y (this.move p dx (−dy))))

Of course, there are implementations of this.move invalidating this equation.
However, it is true for all those implementations satisfying the equations for
move given in point . Assuming that equations (1)–(3) hold for all implementa-
tions of this.move in subclasses, we can always show equation (4). This implies
that (4) can be inherited in rectangle-hilite although method move has been
overridden. Of course, we do not get all proofs for free. Since we have overrid-
den move, we have to redo the proofs for all equations containing a particular
implementation of move (without prefix this, that is).

5 Encoding of object-oriented concepts in HOL

We now show that the object-oriented concepts presented in §4 are only a stone’s
throw away from a rigorous encoding in HOL.

States are represented as extensible records and methods as state transform-
ing functions. As we have already seen, we can achieve inheritance simply by
record subtyping. Things are getting much more complicated when taking late-
binding into account. What makes it hard to model is that the semantics of
late-bound methods changes relatively to the position in the inheritance hierar-
chy. Assuming different field types for different levels of the hierarchy, we can
use overloading to achieve different meaning of methods in different contexts.
Assuming different field types for different levels is no real restriction, since we
can always enforce them by adding dummy fields.

5.1 Classes

First of all, the fields of any class definition become a record type definition:

record point =
x, y :: int

Methods are more involved. The simplest method of point is move, because it
is not late-bound.

First attempt One might try to realize method move in HOL directly as
suggested in the point class definition:

defs
move :: {x :: int , y :: int , . . .} → int → int → {x :: int , y :: int , . . .}
move {x, y, . . .} dx dy ≡ {x+ dx , y + dy , . . .}

12

The problem with this definition is that it is too generic. Since move is defined
for all records containing x- and y-coordinates, we cannot override this definition
in subclasses any more.

Second attempt To remedy this problem one might declare the method gener-
ically, but define it on concrete records only:

defs
move :: {x :: int , y :: int , . . .} → int → int → {x :: int , y :: int , . . .}
move {x, y} dx dy ≡ {x+ dx , y + dy}

With this definition we are able to express overriding and late-binding. Over-
riding is achieved simply by defining move on a different concrete instance of
the scheme {x :: int , y :: int , . . .}, say on {x :: int , y :: int , col :: colour}. To
see, how we can achieve late-binding consider the definition of a method reset
which sets points to the origin:

defs
reset :: {x :: int , y :: int , . . .} → {x :: int , y :: int , . . .}
reset {x, y, . . .} ≡ move {x, y, . . .} (−x) (−y)

Since we have given no definition of move on the extensible record type, its
semantics and hence the semantics of reset is unspecified. Restricting the ex-
tensible record type to the concrete one {x :: int , y :: int}, determines a meaning
as given by definition of move. Restricting it to a different concrete record may
result in a different meaning, depending on the definition of move given there.

There is still a snag: we have ruled out inheritance. By defining move on a
concrete record type we lose the ability to reuse code in subclasses.

The solution To achieve both overriding and inheritance, we define two con-
stants point .move and this.move rather than a single constant move, allowing
the character “.” to be part of identifiers. The actual implementation of the
move method in HOL is as follows:

defs
point .move, this.move ::
{x :: int , y :: int , . . .} → int → int → {x :: int , y :: int , . . .}

point .move {x, y, . . .} dx dy ≡ {x+ dx , y + dy , . . .}
this.move {x, y} ≡ point .move {x, y}

Apart from reflect-O , the remaining methods are defined analogously. Since
reflect-O is a final method, we have to guarantee that it cannot be overridden.
Defining it on an extensible record type achieves this:

defs
point .reflect-O , this.reflect-O ::
{x :: int , y :: int , . . .} → {x :: int , y :: int , . . .}

point .reflect-O ≡ this.reflect-Y ◦ this.reflect-X
this.reflect-O ≡ point .reflect-O

The need of two definitions for one method is no real problem for the user.
These definitions can be generated automatically by some extra-logical system
support.

13

5.2 Objects and instantiation

Instantiation is trivial in our framework: let MyPoint ≡ {x = 3, y = 5}. The
simplicity of instantiation stems from the fact that we generate both generic
class methods and concrete object methods in classes. In a sense, we have antic-
ipated instantiation already by the way we define classes.

5.3 Inheritance

Inheritance is just as simple as instantiation. For inheritance, all we have to do
is specialize the class methods of the superclass to concrete object methods of
the subclass. Class cpoint leads to the following definitions in HOL:

record cpoint = point +
col :: colour

defs
this.move {x, y, col} ≡ point .move {x, y, col}
this.reflect-X {x, y, col} ≡ point .reflect-X {x, y, col}
this.reflect-Y {x, y, col} ≡ point .reflect-Y {x, y, col}

Interestingly, we do not have to give a definition for reflect-O once more. Since
reflect-O was defined for the scheme {x :: int , y :: int , . . .} its definition works
equally well on the concrete type {x :: int , y :: int , col :: colour}.

Since the methods have not been altered in cpoint , lemmas proved for points
also hold for coloured points. Sticking to object-oriented terminology, we might
say that the proofs are inherited. In a type-theoretic framework with explicit
proof-terms this terminology fits perfectly well (see also [5]).

5.4 Overriding

Class cpoint serves as an example for inheritance, but it does not demonstrate
overriding. Overriding is achieved simply by defining new methods. In case of
class rectangle we define methods rectangle.reflect-X and rectangle.reflect-Y :

record rectangle = cpoint +
w, h :: nat

defs
rectangle.reflect-X {x, y, col , w, h, . . .} ≡

this.move (point .reflect-X {x, y, col , w, h, . . .}) 0 (−h) (5)
this.reflect-X {x, y, col , w, h} ≡ rectangle.reflect-X {x, y, col , w, h}
rectangle.reflect-Y {x, y, col , w, h, . . .} ≡

this.move (point .reflect-Y {x, y, col , w, h, . . .}) (−w) 0
this.reflect-Y {x, y, col , w, h} ≡ rectangle.reflect-Y {x, y, col , w, h}

5.5 Late-binding

Class rectangle-hilite is a good example for late-binding of methods. Apart from
late-binding, class rectangle-hilite is interesting because it introduces no new
fields. Since we have identified class membership with field types, we have to tell

14

the field types of rectangle-hilite and rectangle apart by adding an artificial field
dummy of type unit . For simplicity we omit some obvious method definitions.

record rectangle-hilite = rectangle +
dummy :: unit

defs
rectangle-hilite.move ::
{x :: int , y :: int , col :: colour , w :: nat , h :: nat , dummy :: unit , . . .} →
{x :: int , y :: int , col :: colour , w :: nat , h :: nat , dummy :: unit , . . .}

rectangle-hilite.move ≡ (update-col Red) ◦ rectangle.move (6)

this.move {x, y, col , w, h, dummy} ≡
rectangle-hilite.move {x, y, col , w, h, dummy} (7)

this.reflect-X {x, y, col , w, h, dummy} ≡
rectangle.reflect-X {x, y, col , w, h, dummy} (8)

In this class, method move additionally sets the colour to Red . All methods
defined in terms of move show the same effect, as can be seen by expansion
of their definitions. Take for example method this.reflect-X (we abbreviate the
term point .reflect-X {x, y, col , w, h, dummy} by ∆):

proof
this.reflect-X {x, y, col , w, h, dummy} = by (8)
rectangle.reflect-X {x, y, col , w, h, dummy} = by (5)
this.move � 0 (−h) = by (7)
rectangle-hilite.move � 0 (−h) = by (6)
((update-col Red) ◦ rectangle.move) � 0 (−h)

Be aware, that this.reflect-X may have a completely different meaning on dif-
ferent state spaces.

6 Object-oriented verification in HOOL

Subsequently we investigate up to what extent object-oriented concepts, devel-
oped to structure programs, provide means to structure verification, too. Since
we have introduced two kinds of methods, class methods and object methods,
we naturally expect two kinds of lemmas. In the end, though, we are only
interested in those lemmas about object methods.

Object methods What distinguishes object methods and class methods, any-
how? There are two main characteristics for object methods: they are prefixed
by this (which is merely a syntactic convention) and they are only defined on
concrete records. Proving lemmas about object methods does not require any
particular methodology. Take for example the following equation

this.move {x, y} 0 0 =x,y {x, y}

which is immediately proven by rewriting. Proving lemmas on object methods
directly, though possible in principle, is not very clever: we do not exploit object-
oriented structuring principles for verification. We argue now that verification
of class methods entails abstract and thus structured verification.

Class methods There are both late-bound and fixed class methods. Late-
bound methods are prefixed by this (again, this is only a syntactic convention).
More importantly, they are only predeclared, without fixing a definition yet,

15

e. g this.move :: {x :: int , y :: int , . . .} → int → int → {x :: int , y :: int , . . .}.
Fixed class methods are prefixed by class names, declared and defined on ex-
tensible record types and may use late-bound methods for definition. As an
example consider:

defs
point .reflect-X :: {x :: int , y :: int , . . .} → {x :: int , y :: int , . . .}
point .reflect-X {x, y, . . .} ≡ this.move {x, y, . . .} 0 (−2 · y)

For fixed methods not referring to late-bound methods we can prove lemmas
directly. Take for example equation (1) with every occurrence of move replaced
by point .move — we write (1)[point .move/move]. This lemma is immediately
proven by rewriting. Since the lemma expresses a property for all state-spaces
which contain at least x- and y-coordinates, this lemma holds in all subclasses
as long as method point .move is inherited. The same holds for the next three
equations. By restricting the state-space to concrete records, we get the corre-
sponding lemmas for object methods for free (by HOL type instantiation).

What happens if fixed methods refer to late-bound methods? Since late-
bound methods are only declared, we cannot expect non-trivial lemmas to hold
for such methods. To prove interesting lemmas we have to assume properties
of the late-bound methods. For class definitions we apply the convention that
the lemmas are ordered by position and (implicitly) have the preceding lemmas
as assumptions. To be precise, the n-th lemma of point is translated to the
following formula in HOL (where (i) stands for the i-th lemma of point , and
[this.m/m] or [point .m/m] for prefixing all non-prefixed methods by this or
point , respectively):

n−1∧
i=1

(i)[this.m/m]⇒ (n)[point .m/m]

The question arising immediately is how to get rid of assumptions. On the
one hand, we cannot discharge them in classes (which are basically abstract
theories). On the other hand, assumptions can be eliminated in any concrete
instance, where class methods are specialized to object methods.

Finally, we explain observational equality =x,y which is defined as follows:

defs
=x,y :: {x :: int , y :: int , . . .} → {x :: int , y :: int , . . .} → bool
p =x,y q ≡ (x p) = (x q) ∧ (y p) = (y q)

We use observational equality =x,y rather than ordinary equality for specifi-
cation in cases when we only want to fix the meaning of methods on the co-
ordinates. To see why this is more appropriate than actual equality, recall the
definition of move in rectangle-hilite: for full equality, equation (1) would no
longer hold in rectangle-hilite because the col field is manipulated there.

Let us leave our running example and see what we have achieved. We can
specify non-late-bound class methods generically and thus inherit the proofs
in subclasses immediately. To deal with late-bound methods we have to add
assumptions to the equations to be proven. But we know that in all subclasses
we can discharge the assumptions.

What happens if we override methods? Depending on which kind of method
is used we get different consequences. If a method is late-bound, we cannot use
any information about its implementation for the correctness proof and hence

16

we can inherit the proof even if the method is overridden. If a method occurs
non-late-bound at least once, we have to perform a new proof.

So to cut a long story short, appropriate use of late-bound methods does
not only cater for flexible reuse of code, it also provides a mechanism for generic
and thus reusable correctness proofs.

7 Conclusions

Stocktaking

We have seen how to obtain extensible records with structural subtyping in
HOL in a very natural way. Records have been encoded as nested tuples with
a special “more” slot for extension, structural subtyping turned out to be sub-
sumed by parametric polymorphism. We also employed overloading to account
for overridable methods and late-binding. Together with concrete syntax and
some minimal extra-logical system support we arrived at an environment for
object-oriented specification and verification (HOOL).

The only major object-oriented concept we have not dealt with explicitly
in this paper is encapsulation (hiding). Due to the lack of existential types in
HOL, we cannot use the standard trick [8] for data abstraction. Any abstract
theory mechanism, e. g. axiomatic type classes [14], achieves abstraction from
concrete implementations as well.

Note that in actual verification tasks, simple concepts like type classes are
more convenient than existential types. In particular, method invocation is quite
involved in encodings based on existential types [12]: the encapsulated state has
to be opened and (in the case of state-modifying methods) be repacked again.

Related work

Modeling object-oriented concepts has become a vast field of research in itself.
We only give a few hints of how HOOL is related to other work in the context
of theorem proving in higher-order logics.

Hensel, Jacobs et al. [4, 6] define an object-oriented specification language
based on co-algebra and give a translation to generic higher-order logic, resulting
in a tool environment for object-oriented system verification (LOOP). Their
translation does not fully preserve the object-oriented structure, though, yet
it is quite independent of the underlying logic. Thus LOOP allows to do the
reasoning about classes in different target theorem proving systems (e. g. PVS,
Isabelle).

Hofmann et al. [5] employ type theory (ECC) for object-oriented verification.
They use object-oriented concepts in a very similar way. Compared with their
work, the most important contribution of HOOL is its simplicity. It does not
require any advanced type theoretical concepts such as dependent types and
Σ-types for the encoding.

Nevertheless, HOOL can compete with their approach quite well since the
resulting expressiveness is almost the same from the user’s point of view. Re-
stricting to the much simpler HOL logical framework, though, pays off by short-
ening the effort for correctness proofs substantially.

17

Naraschewski [10] proposed an environment for object-oriented verification
similar to HOOL, but based on a rather different encoding of objects in ECC.
Though Naraschewski sketched a translation from this environment to an en-
coding in LEGO, there are two drawbacks of this approach. First, translating
the proposed environment to the LEGO system would require extensive extra-
logical support. Second, the encoding in LEGO, though feasible in principle, is
not directly applicable for practical work.

Does object-oriented verification actually pay off in practice? The only case-
study performed so far deals with a hierarchy of collection classes [9]. It turned
out that late-binding of methods really helps to structure verification. Using
the complicated encoding of [5], though, it was not possible to scale up to larger
examples. With the simple encoding of object-oriented concepts in HOOL, we
expect to have overcome these limitations.

References

[1] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Academic Press, 1986.

[2] A. Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, pages 56–68, 1940.

[3] M. J. C. Gordon and T. F. Melham (editors). Introduction to HOL: A
theorem proving environment for higher order logic. Cambridge University
Press, 1993.

[4] U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes
in object-oriented languages: Logical models and tools. In Proceedings
of ESOP/ETAPS, volume 1381 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[5] M. Hofmann, W. Naraschewski, M. Steffen, and T. Stroup. Inheri-
tance of proofs. Theory and Practice of Object Systems, Special Issue on
Third Workshop on Foundations of Object-Oriented Languages (FOOL 3),
4(1):51–69, 1998.

[6] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and
H. Tews. Reasoning about Java classes (preliminary report). Technical
Report CSI-R9812, Computing Science Institute Nijmegen, April 1998.

[7] L. Lamport and L. C. Paulson. Should your specification language be
typed? Technical Report 425, University of Cambridge Computer Labora-
tory, 1997.

[8] J. C. Mitchell and G. D. Plotkin. Abstract types have existential type.
ACM Trans. Prog. Lang. Syst., 10(3):470–502, July 1988.

[9] W. Naraschewski. Object-Oriented Proof Principles using the Proof-
Assistant Lego. Diplomarbeit, Universität Erlangen, 1996.

18

[10] W. Naraschewski. Towards an object-oriented progification language. In
E. L. Gunter and A. Felty, editors, Theorem Proving in Higher Order Log-
ics: 10th International Conference, TPHOLs’97, volume 1275 of Lecture
Notes in Computer Science, pages 215–230. Springer-Verlag, 1997.

[11] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture
Notes in Computer Science. Springer-Verlag, 1994.

[12] B. C. Pierce and D. N. Turner. Simple type-theoretic foundations for object-
oriented programming. Journal of Functional Programming, 4(2):207–247,
1994.

[13] A. Pitts. The HOL logic. In Gordon and Melham [3], pages 191–232.

[14] M. Wenzel. Type classes and overloading in higher-order logic. In E. L.
Gunter and A. Felty, editors, Theorem Proving in Higher Order Logics:
10th International Conference, TPHOLs’97, volume 1275 of Lecture Notes
in Computer Science, pages 307–322. Springer-Verlag, 1997.

19

	Introduction
	Basic use of extensible records
	What are extensible records anyway?
	Tuples and records
	Record schemes

	Example: abstract algebraic structures

	Extensible records with structural subtyping in HOL
	The HOL logic
	Syntax and semantics
	Theories
	Constant definitions
	Type definitions

	Encoding extensible records
	A representation in untyped set theory
	A deep encoding in HOL?
	Shallow encoding of records in HOL

	An environment for object-oriented verification
	Classes
	Objects, instantiation, and method invocation
	Inheritance
	Overriding
	Late-binding

	Encoding of object-oriented concepts in HOL
	Classes
	Objects and instantiation
	Inheritance
	Overriding
	Late-binding

	Object-oriented verification in HOOL
	Conclusions

