
SML with antiquotations
embedded into Isabelle/Isar

Makarius Wenzel? and Amine Chaieb

Technische Universität München
Institut für Informatik, Boltzmannstraße 3, 85748 Garching, Germany

Abstract. We report on some recent experiments with SML embedded
into the Isabelle/Isar theory and proof language, such that the program
text may again refer to formal logical entities via antiquotations. The
meaning of our antiquotations within SML text observes the different
logical environments at compile time, link time (of theory interpreta-
tions), and runtime (within proof procedures). As a general design prin-
ciple we neither touch the logical foundations of Isabelle, nor the SML
language implementation. Thus we achieve a modular composition of
the programming language and the logic within the Isabelle/Isar frame-
work. Our work should be understood as a continuation and elaboration
of the original “LCF system approach”, which has introduced ML as a
programming language for theorem proving in the first place.

1 Introduction

An interesting observation about LCF like theorem provers is the presence of
several layers of languages: the implementation language, the meta-language
(ML) and the object language (logic). In contrast to the original LCF system
[9, 10], the implementation language coincides with ML in most present LCF-
style provers. The meta-language of LCF [9] already allowed to “quote” (i.e.
refer to) logical entities, which is a very natural requirement on ML. Curiously,
all subsequent attempts realized this embedding in the very same manner: they
quote the logic inside ML. In this concern, Isabelle made no exception until
the advent of Isar [19], which replaced ML as a primary input language and
provided a quotation mechanism for SML within this new environment. This
reversed embedding of languages turns out to be very important, since it allows
to interpret SML code relative to a logical context. In general the dependence on
a logical environment can be observed at compile time, link time (e.g. of theory
interpretations), or runtime (within proof procedures).

This paper presents recent experiments in elaborating SML quotations within
Isar, with support for antiquotations that refer to logical entities and system
values. So far, antiquotations in Isabelle/Isar have appeared only in preparing
LATEX documents from formal theories, see [14, §4]. An example document is the
one you are reading now.
? Supported by BMBF project “Verisoft”.



An important design principle we follow is to leave both the logical founda-
tions of Isabelle and the SML language implementation (parser, compiler and
runtime system) intact. This separation of concerns economizes the implemen-
tation of the overall system architecture. It also means that these ideas can in
principle be transferred to other programming languages and other logic imple-
mentations, by reproducing parts of the integrative Isabelle/Isar infrastructure.

Overview. In §2 we survey some prominent variations on the LCF system archi-
tecture; despite its historical flavor, this section is important to highlight some
decisive design issues in Isar and the quotation mechanism. In §3 we present the
embedding of SML into Isar. In §4 we review some selected antiquotations. §5
shows a further example.

2 Variations on the LCF system architecture

We briefly review the main characteristics of the LCF system family, with special
focus on programming support for conducting logical developments.

2.1 Original LCF

The idea of coupling a full functional programming language with a theorem
prover was pioneered by the LCF prover [9, 10]. The original system consists
of three language layers: LISP, ML (the “meta-language”), and the logic (the
“object-language”). LISP serves as implementation platform for basic function-
ality of symbolic logic (primitive operations on types and terms) and to im-
plement an ML interpreter. When the latter has been bootstrapped, further
development of LCF uses the strongly-typed environment of ML, operating on
concrete datatypes of types and terms, and an abstract datatype of theorems. By
restricting theorem operations to a predefined interface of primitive inferences,
further derivations are guaranteed to be “correct-by-construction” thanks to the
ML type discipline.

The logic of LCF (“Logic of Computable Functions”) describes computa-
tional entities, but this does not mean that concrete programs may be run within
the logical system. There is a difference in modeling computation abstractly and
executing concrete programs. This is where ML takes its part as LCF system
programming language, providing access to the logic implementation.

In an LCF-style system, a theorem is an abstract value of type thm, and a
derived rule is a function that transforms proven theorems into proven theorems,
such as thm → thm (unary rules), thm → thm → thm (binary rules) or term
→ thm → thm (parameterized rules). For example, the rule modus-ponens: thm
→ thm → thm maps A −→ B and A to B. In LCF, the user is granted full
access to the ML programming environment (to implement proof tools, derived
specification mechanisms etc.) without affecting soundness. In fact, from the ML
level upwards, developers and end-users are treated as equal.
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Early on [9], the meta-language of LCF has also supported a quotation mech-
anism for embedding terms and formulas into programs conveniently, by using
concrete syntax of the logical environment. For example, the rule for specializing
a universal quantifier could be an ML function forall-spec: term → thm → thm
that maps a term t and a theorem ∀ x . P x to a theorem P t. Then the particular
instance of a + b for x is written in ML with embedded terms as forall-spec pa
+ bq my-thm. Note that only concrete syntactic entities are quoted directly here,
while theorems remain abstract ML entities without external representation.

2.2 Modifications introduced by HOL, Coq, and Isabelle

The LCF approach has spun off a family of successors, with various modifica-
tions and further elaboration of the original system architecture. Today, the main
representatives of this ongoing process are the HOL familiy [11] (represented by
HOL Light, HOL4, and ProofPower), Coq [17, 1], and the Isabelle/Isar frame-
work [21, 20] with Isabelle/HOL [14] as its main application. We shall look into
particular aspects of the Isabelle/Isar system architecture in more detail later
(§3.1). Here we briefly review some general modifications of the original LCF
approach introduced by either of these systems.

ML as implementation language. The original design of the LCF “meta-
language” has proven quite successful as general-purpose programming language,
thanks to its selection of innovative concepts (algebraic datatypes, higher-order
values, let-polymorphism etc.). Independent implementations of ML as a stan-
dalone programming language have appeared early on, eventually replacing the
original interpreter within LISP. Subsequent generations of LCF-style provers
have been implemented directly on top of such ML implementations, notably
Coq (OCaml), HOL4 (first SML/NJ then Moscow ML), HOL Light (first Caml-
light then OCaml), and Isabelle (mainly Poly/ML and SML/NJ).

Even though the meta-language now coincides with the implementation
platform, its role as system extension language is still maintained, although
in different degrees. Today, the HOL family and Isabelle still adhere to the
strict “correctness-by-construction” paradigm in implementing the logical ker-
nel around an abstract type thm, although the version of HOL Light is much
smaller than that of Isabelle, for example. In Coq, the kernel is even harder to
delimit, and the notion of primitive inferences via an abstract type has been
superseded by explicitly stored proof terms that can in principle be checked sep-
arately by a small trusted component (cf. the “de Bruijn principle”). Since ex-
plicitly stored proof terms can pose resource problems, Coq also provides means
to reduce proof terms, notably those stemming from internal computation (cf.
the “Poincaré principle”).

Simplified user command languages. The full programmability of the sys-
tem by ML has proven both successful and inaccessible to most users. LCF
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“system programming” is often perceived as an arcane discipline exercised by
a few initiates. Today, regular end-users rarely need to build their own tools
before commencing the actual work in producing definitions and proofs. Sim-
plified tactic languages have been implemented on top of the ML kernel of the
prover, usually with separate concrete syntax and a separate read-eval-print loop
replacing the one of ML.

The systems of the HOL family provide numerous ready-to-use tactics and
definitional mechanisms, but only as ML library functions without concrete syn-
tax. In contrast, Coq has provided its own toplevel early on, with specific sup-
port for a “mathematical vernacular” (for specifications) and a simple language
of tactics (for proof scripts). This restricted language of tactic combinators was
later replaced by the more elaborate Ltac [7], which has been carefully designed
as an intermediate between full programmability and dumb tactic application.
Ltac is especially interesting here, because it has also been embedded into the
underlying OCaml implementation language: Ltac expressions may be quoted
within OCaml, and OCaml may be quoted within Ltac.

Isabelle has initially followed the same approach as the HOL family, with
a collection of library functions for predefined tactics in ML. With the advent
of Isar [19], ML was discontinued as the primary input language. Isar provides
separate concrete syntax for specifications and proofs (with special focus on
human-readable proof texts). The Isar language replaces free programmability
by a specific framework with plugins being categorized explicitly as command,
method, attribute etc. This arrangement provides some general guidelines, while
still leaving sufficient freedom in inventing new concepts within the existing
system. In particular, there is no fixed syntax (or datatype representation) for
Isar entities — the main concepts are modeled semantically via functions on
abstract types.

Internalized natural deduction. This is a specialty of the Isabelle/Pure
framework [16]. The idea is to represent (derived) rules not as ML functions, but
as first-class theorems within a slightly generalized logical framework. To this
end, Isabelle/Pure provides the quantifier “

∧
” (to express arbitrary, but fixed

entities) and the connective “=⇒” (to express entailment from assumptions to
conclusions). For example, modus ponens is represented as

∧
A B . (A −→ B)

=⇒ A =⇒ B (it is important to distinguish the framework connective “=⇒”
from the one of the object-logic “−→” here). Isabelle also represents goals as
theorems of the framework: A1 =⇒ . . . =⇒ An =⇒ C means that n pending
sub-goals need to be solved in order to establish the main conclusion C ; for n =
0 the result emerges as a theorem as expected.

The minimal logic of Isabelle/Pure allows to represent rules in the style of
Gentzen’s natural deduction [8] conveniently, both the traditional ones for the
usual logical connectives (∧, ∨, ∀ , ∃ etc.), and any further derived ones emerging
in user applications. Instead of a host of primitive ML functions (or tactics),
Isabelle provides only a few basic principles to compose rules in a Prolog-like
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fashion [15], with resolution: thm → thm → thm to back-chain a rule from a goal,
and assumption: thm → thm to finish a pending branch of a goal by assumption.

Internalized rules impact programmability in the sense that fewer operational
instructions are required in order to conduct basic inferences. Compared to the
HOL family, Isabelle tactic scripts appear more stylized, naming mostly the rules
(theorems) to apply. In the Isar proof language [19] this is continued even fur-
ther towards actual human-readable proof texts. Here programming of proofs
has been replaced by textual composition of natural deduction proof schemes.
Thus large proofs may be conducted without any programming involved, similar
to the Mizar system [18], which lacks programmability altogether. Neverthe-
less, building add-on tools will require programming again. We shall see later
(§3.2), how to re-use some of the infrastructure for Isar proof texts in processing
embedded SML sources.

Internalized computation. This works particularly well in the type-theory
of Coq. The idea is to use the existing principles of δι-reduction (expansion
of primitive and inductive definitions) as a reasonably efficient computational
mechanism within the main logical calculus. Thus ML essentially degenerates
into a mere implementation platform, and the user works mostly with the logic
and its internal programming language.

Sophisticated proof procedures can be modeled, proven correct, and results
evaluated — all within the main type-theory of Coq. An important effect of
the general correctness proof being provided by the tool implementor is that
the proof terms stemming from concrete applications are reduced to equational
reflexivity. Since the logic cannot be aware of its own syntactic representation,
this approach of internalized computations needs to be combined with an extra-
logical mechanism to “reify” formulae as explicit syntactic entities. Note that this
idea has been pioneered in [4], where the authors rely on the quoting mechanism
of LISP.

There are ongoing efforts to incorporate more and more advanced functional
programming technology (taken from OCaml) into the Coq reduction engine.
Thus the user is enabled to use internalized proof tools at a realistic scale. On
the other hand, this approach demands formal correctness proofs everywhere.
Note that the original LCF approach was able to avoid this by checking primitive
inferences explicitly at runtime: unproven user tools may fail unexpectedly, but
never produce wrong results.

Apart from proof procedures, another important class of system extensions
are derived specification mechanisms (called “definitional packages” in Isabelle
jargon). Complex packages are presently outside the scope of internalized compu-
tations. For example, in Isabelle and the HOL family, higher concepts of induc-
tive sets and types, recursive functions etc. are constructed explicitly from basic
logical primitives. This is based on sophisticated ML code outside the main ker-
nel: new definitional principles may be added without affecting the logical foun-
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dations. This is in contrast to Coq, which starts with an elaborate type-theory
from the very beginning (including inductive constructions as primitives).

3 Isabelle/Isar versus SML

After pointing out the main concepts of Isabelle/Isar, we explain how to embed
SML code into the formal text, which in turn may refer to Isabelle entities via
antiquotations.

3.1 Isabelle/Isar concepts

Fig. 1 gives an overview of the main concepts of the Isabelle/Isar system. In
this diagram a solid line means structural containment (reading downwards, e.g.
a term is contained in a thm), while dashed lines link operand-operation pairs
(e.g. a method operates on a proof-state).

term

thm

attribute

methodproof−state

theory

context

toplevel command

Fig. 1. Isabelle/Isar concepts

These categories are modeled as abstract SML types, except for term which
provides a concrete syntactic model of λ-terms (with simple types). A thm rep-
resents a derived proposition as in LCF, but with an explicit theory certificate.

A theory holds global declarations (e.g. types, constants, axioms), and main-
tains a unique identification to serve as certificate; there is an efficient sub-theory
relation. A context models the deductive environment at an arbitrary position
in an Isar text (specifications and proofs). The context may hold any kind of lo-
cal declarations (e.g. type variables, term variables, assumptions). A proof-state
models an intermediate situation within a block-structured proof; it consists of
a stack over context × goal?, where the optional goal is a traditional tactical
goal state. The toplevel configuration manages a disjoint sum over theory or
proof-state, with additional history information to enable unlimited undo.

The main “active” language elements are attribute (subsuming small forward
rules and context declarations), method (a structured version of traditional tac-
tics, with explicit indication of the proof context), and command (typed toplevel
transactions). There are separate versions for theory specification commands
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(theory → theory), proof commands (proof-state → proof-state) etc. Users may
define their own attributes, methods, commands, while referring to arbitrary
user data that is maintained within the theory or context in a strongly-typed
fashion.

3.2 Quoting SML — antiquoting Isabelle

Runtime evaluation. In order to embed SML into Isabelle/Isar, we require
some minimal support for “multi-stage” programming from the implementation
platform. We shall employ a version of the old-fashioned EVAL of LISP, which
takes some source code at run-time, and compiles-evaluates it in the toplevel
environment, and continues execution of the caller. Thus EVAL acts pretty much
like a regular function, but may affect the global compiler environment and mu-
table variables of the runtime environment. In SML this facility may be provided
as use-string : string → unit, similar to the better-known use function that loads
source files. Despite being outside the scope of the official SML standard, this
facility is available in all SML implementations (Poly/ML, SML/NJ, Moscow
ML etc.) that are in the tradition of incremental compilation, as opposed to the
separate compilation of most other programming languages available these days.

This enables the Isar toplevel loop to invoke SML at runtime, although re-
stricted to global side effects so far. For example, the Isar command ML evalu-
ates any SML toplevel declarations, without affecting the Isar toplevel configura-
tion yet. To pass proper values in and out of evaluated code, the usual trick is to
manipulate a global reference hidden somewhere in an appropriate module. For
example, operating on a context works via Context .poke: context → unit and
Context .peek : unit → context. Then some source that compiles to a function of
type context → context may be presented as a semantic function as follows:

fun eval_context src =

fn ctxt =>

(Context.poke ctxt;

use_string

("let val f = " ^ src ^

"val ctxt = Context.peek () in Context.poke (f ctxt) end");

Context.peek ());

This pasting of source strings is horrible typeless programming! There are inter-
esting research prototypes for strongly typed multi-stage programming in ML
(such as MetaOCaml [12]), but this technology is unavailable in mainstream im-
plementations. Luckily the above glue code is only required for setting up the
general infrastructure. Users will later encounter properly typed SML elements
within Isabelle/Isar, e.g. the method tactic that expects source of type tactic, or
the command simproc-setup [6, §2.2] that expects morphism → term → thm.

Expanding antiquotations. Embedded source consists of a list of chunks that
alternate between literal text and antiquoted material. Our concrete syntax in
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Isabelle/Isar uses 〈〈 . . . 〉〉 for outermost quoting of source, and @{name args}
for antiquoted material inside. We maintain a mapping from name to parser
functions that turn the given args into SML text, depending on the Isar context
available at expansion time (even before the SML compiler is invoked on the
generated code).

The most basic antiquotation facility would merely produce literal replace-
ment text for the original source position. The LATEX antiquotations of the
Isabelle document preparation work like that: e.g. @{term t} reads term t in
the current context and pretty-prints the result into the LATEX source. For SML
antiquotations there are further demands, though, to achieve tight coupling with
logical concepts (for proof producing functions etc.). We identify the following
main categories tailored to the particular task of LCF system programming :

Inline antiquotations represent the most basic concept of replacing text directly
in-place. For example, @{term t} produces a literal SML source representa-
tion using the underlying datatype constructors.

Value antiquotations refer to abstract values taken from the Isabelle/Isar con-
text available at compile time. For example, @{thm a} produces code to
refer to a theorem from the context, which is bound temporarily within the
SML environment; the body code merely refers to a named value, without
executing anything at runtime.

Environment markup delimits ranges in the source text that correspond to
an implicit λ/let binding; the expansion time context also follows the indi-
cated block structure. For example, @{begin ϕ} . . . @{end ϕ} produces an
SML function depending on a morphism [6].

Dependent value antiquotations refer to the specified abstractum of a cor-
responding environment markup. The generated code inserts an additional
projection to apply values of a particular SML type to the given environment.
For example, we use @{thm (ϕ) a} to refer to the theorem a abstractly as be-
fore, but also to apply the morphism ϕ provided by the current environment
abstraction.

The “compiler technology” required for this model of expanding antiquota-
tions is still fairly simple: we maintain a stack of open environment markups, to-
gether with the expansion-time context at each stage; we collect named abstract
values to be added either to a global compile-time closure, or the local versions
relative the functional abstractions stemming from environment markups. User-
defined antiquotations are maintained globally as a table of functions that pro-
duce source code depending on the expansion-time context (which may also be
augmented locally during expansion). Note that unlike Camlp4 [13], our expan-
sion mechanism is ignorant of the structure of any literal SML text surrounding
the antiquotations.

We illustrate the resulting SML code layout by a schematic example. Consider
the following source code within Isabelle/Isar, which indicates antiquotations
of all categories introduced above, while any surrounding literal SML code is
omitted:
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〈〈 . . .
@{inline a}
. . .
@{value b}
. . .
@{begin env}

. . .
@{value (env) c}
. . .

@{end env}
. . . 〉〉

In the expanded code given below we consider the name prefix Isabelle as
reserved, it should never occur in user code! The initial structure Isabelle
serves as global compile time closure; it is discarded later. In contrast, the local
environment closures use plain let expressions.

structure Isabelle =

struct

val ctxt = Context.peek ()

val valB = B ctxt

val valC = C ctxt

end

...

A

...

Isabelle.valB

...

(fn Isabelle_env =>

let

val Isabelle_valC’ = ApplyEnv.value Isabelle_env Isabelle.valC

in

... Isabelle_valC’ ...

end)

...

structure Isabelle = struct end

Here the individual results produced by the parser functions associated with
inline and value have produced expressions A, B and C, respectively. A is already a
constant SML expression, there are no further dependencies. B and C are retrieved
from the context available at compile time (via lookup of thm values etc.). C is a
dependent value, i.e. it is modified further by a specific environment projection
inserted into the code. (The collection of projection functions for each kind
of environment is maintained together with the antiquotations known to the
system.)
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3.3 Examples

To illustrate both some basic concepts of Isabelle/Isar (§3.1) and embedded SML
with antiquotations (§3.2), we consider proofs of A ∧ B −→ B ∧ A given as
structured text and unstructured script side-by-side:

lemma A ∧ B −→ B ∧ A
proof
assume A ∧ B
then obtain B and A ..
then show B ∧ A ..

qed

lemma A ∧ B −→ B ∧ A
apply (rule impI )
apply (erule conjE)
apply (rule conjI )
apply assumption+
done

The second version is already close to internal machine operations. To get
even further down to traditional ML tactics, we use the method tactic that takes
SML code representing an expression of type tactic. Observe also the references
to facts from the current Isar context appearing within the SML source below.

lemma A ∧ B −→ B ∧ A
apply (tactic 〈〈 resolve_tac [@{thm impI }] 1 〉〉 )
apply (tactic 〈〈 eresolve_tac [@{thm conjE}] 1 〉〉 )
apply (tactic 〈〈 resolve_tac [@{thm conjI }] 1 〉〉 )
apply (tactic 〈〈 REPEAT (assume_tac 1) 〉〉 )
done

Next we show how to inspect internal structures of the above Isar text using
the elementary ML command. Recall that ML does not affect the Isar toplevel
state, only the one of SML.

lemma A ∧ B −→ B ∧ A
ML 〈〈 val goal_ctxt = @{context} 〉〉

proof
assume A ∧ B
then obtain B and A ..
then show res: B ∧ A ..
ML 〈〈 val res_ctxt = @{context} and res = @{thm res} 〉〉

qed

Here we have picked the Isar proof context of a goal statement and the ex-
tended body context of its proof (which contains additional assumptions to be
discharged eventually). The local result retrieved from the body may be exported
back into the enclosing context as follows, yielding the rule A ∧ B =⇒ B ∧ A:

ML 〈〈 ProofContext.export res_ctxt goal_ctxt [res] 〉〉

The Isar machinery has used this very rule after finishing the show statement,
in order to solve the pending subgoal. This example also illustrates how tool
developers may learn about the workings of higher-level Isar concepts.
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4 An overview of selected SML antiquotations

We now review various concrete antiquotations that are implemented within the
framework presented in §3.2. Most of these have already been tried in practical
examples, excluding the ideas sketched in §4.6.

4.1 Abstract logical entities

The main logical concepts of Isabelle/Isar are abstract values, which are pro-
duced from the static compile-time context of the present position in the formal
text. The most commonly used value antiquotations are listed in Fig. 2.

Antiquotation Result

@{context} the compile-time context
@{theory} . . . its background theory
@{simpset} . . . its default simplification set
@{simproc a} the simplification procedure named a
@{thm a} the theorem named a
@{thms a} the theorem list named a
@{cterm t} term t certified against the theory
@{ctyp T} type T certified against the theory

Fig. 2. Abstract logical entities

All these antiquotations refer to abstract values produced in the static compile-
time context. For theorems, this means a name lookup. For certified terms and
types, this means that a concrete datatype representation is checked against the
declarations in the present background theory. This slightly inefficient kernel
operation is also performed at compile-time, so there is no runtime penalty for
code using @{cterm} or @{ctyp}.

4.2 Compile-time expressions and patterns

Concrete terms and types may be inlined into the code using @{term t} and
@{typ T}, respectively. Here the given objects are parsed and checked in the
compile-time context. In this basic form, the result is a concrete constructor
expression in SML.

Being a little more ambitious, we can also produce SML expressions depend-
ing on SML values, or even SML fun/case patterns that bind variables. We
merely need some notational device to indicate term variables as representing
SML variables. This works similarly for expressions and patterns alike, although
there are some notable differences: patterns are restricted to linear occurrences
of variables, but may mention dummies (written with underscore). Since our
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Antiquotation Result

@{typ T} literal type T
@{term t} literal term t
@{term t for x y z} term expression over SML variables x, y, z
@{bterm t for x y z} term pattern over SML variables x, y, z

Fig. 3. Expressions and patterns

expansion mechanism is ignorant of the surrounding SML syntax, we need to
provide separate antiquotations for either situation.

For instance @{bterm x + y for x y} expands to a pattern that binds x and
y in SML; the remaining structure (an application of constant +) is matched lit-
erally. By tweaking the Isabelle/Isar term syntax we can easily support dummy-
patterns and as-patterns, too, e.g. @{bterm x + - + (y

as (a + b)) for x}. While x is specified as SML variable as before, y is
implicitly declared due to its unique role within the as-pattern.

An interesting extension of this scheme would handle naive-polymorphism of
the logical framework conveniently. The examples above only work properly for
monomorphic +, say on natural numbers. With + :: ∀α. α ⇒ α ⇒ α we need
to take care of the actual type instance as well. This works as follows: @{bterm
x + y for x :: T and y} matches against the operator’s term arguments x and
y as before. The type information is stored within the operator, i.e. a particular
instance of the polymorphic +. The specification of x :: T indicates that we wish
to bind the type of the first argument position of + to an SML variable T. This
information about typing of constant operators is available from the compile-
time context — there is no need to insert code to recompute the type of the
actual term x.

This idea works similarly for an expression @{term x + y for x :: T and
y}. We insert T as pro-forma type variable into the untyped term and invoke
the logic’s type-inference to propagate this information throughout the whole
term skeleton. The result is turned into an SML expression with occurrences of
variable T in all these inferred positions. If type inference invents additional type
variables this indicates an expansion error, and the user needs to specify further
type information in the “for” part.

4.3 Augmenting the expansion context

The expander state includes a full Isabelle/Isar context, which is also subject to
the block structure indicated by environment markups. Individual antiquotations
may augment that context to affect the processing of subsequent antiquotations
(which might involve operations like parsing and type-checking of terms). We
provide antiquotations (see Fig. 4) for very basic Isar context extensions of in-
troducing locally fixed variables (with optional type constraints), and binding
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term abbreviations via pattern matching. Note that there is no result code being
produced here, only the expansion context is affected.

Antiquotation Effect

@{vars x y z :: T} fixing variables x , y , z with type constraint T
@{let p = t} binding schematic variables in p by matching with t

Fig. 4. Context elements

How does this impact generated SML code? The general convention is that
any value being inlined into the resulting code is understood with respect to
the original compilation context. By augmenting the context of the expander we
essentially build up a difference between these two contexts, which is discharged
on any resulting syntactic entities (terms and types). For example, discharging
@{vars x} means to turn any occurrence in some term t into a schematic vari-
able ?x of the Isabelle framework. This impacts runtime operations based on
matching or unification.

Discharging abbreviations merely means to replace abbreviated terms by
their definitions. This provides a useful macro facility that is guaranteed to be
well-typed with respect to the logical context.

4.4 Runtime environments and projections

Many logical operations depend on certain runtime environments in a uniform
manner. Instead of writing abstractions and applications explicitly in SML,
we may use antiquotations for environment markup and dependent values as
described in §3.2. The expander maintains different kinds of runtime environ-
ments that are identified by name, like ϕ for morphism, σ for substitution etc.1

Defining a new environment requires to specify projection functions for common
Isabelle/Isar types (term, thm etc.). This enables other antiquotations to adapt
their result accordingly, achieving strongly-typed code. For a morphism, these
projections are Morphism.term: morphism → term → term, Morphism.thm:
morphism → thm → thm etc.

With this setup for morphism environments ϕ, we may rewrite the generic
simproc definition of [6, §2.2] more concisely like this:

〈〈 @{begin ϕ}
. . . @{cterm (ϕ) op ⊕} . . .
. . . @{thms (ϕ) diff-rules} . . .

@{end ϕ} 〉〉

1 We may freely use Greek letters ϕ, ψ, π etc. here, since our SML code is embedded
into Isabelle/Isar, which handles a large collection of mathematical symbols.
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without the auxiliary let expression shown in the published version.
Multiple dependencies can be easily composed, using list notation. For ex-

ample, @{term (ϕ, σ) x + y} refers to the term x + y under morphism ϕ and
substitution σ.

4.5 Runtime matching

Compiled patterns of SML (§4.2) are often insufficient when writing proof-
dedicated tools. Typical applications need to take βη-equivalence into account
or enforce additional constraints on types (via type-classes).

We can easily support runtime pattern matching by means of a few SML
combinators and simple antiquotations to produce match functions from given
terms. Technically this yields an environment transformer env → env to be com-
posed with the right hand side of type env → α, if the match succeeds. Note
that this is exactly reverse function composition #> that is a prominent combi-
nator in the Isabelle sources. Composing all these several match cases together,
with proper handling of failures, merely requires another SML combinator. In
any case, the whole expression yields a function of type env → α which can be
applied to an initial environment to form the result.

Matching works uniformly for literal terms, certified terms, and the proposi-
tion of theorems, see fig. 5 and the example in §5.

Antiquotation Result

@{match t} match function for term t
@{cmatch t} match function for certified term t
@{thmatch a} match function for proposition of theorem a

Fig. 5. Runtime match functions

4.6 Further possibilities

Here are some further ideas for potentially useful antiquotations.

– Environment markup for tactical goals. A version of @{begin goal} . . . @{end
goal} could support writing tactics conveniently in SML, with separate de-
pendent value antiquotations to match against subgoals etc.
This would approximate facilities of Ltac [7], but use SML again as program-
ming language, instead of a specialized scripting language.

– Internalized Isabelle/Pure rules as SML functions. Antiquotation @{rule a}
could turn a named theorem into a rule in the sense of traditional LCF/HOL
systems. For example, @{rule modus-ponens}: thm → thm → thm where
modus-ponens:

∧
A B . (A −→ B) =⇒ A =⇒ B within the logical context.
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A very simple implementation would merely insert code to invoke the resolu-
tion rule of Isabelle/Pure on the specified theorem. A more ambitious solu-
tion would attempt to exploit the known theorem structure at compile-time
and produce specific code to decompose the run-time arguments, avoiding
fully general matching / unification.

– Incorporating SML code generated from Isabelle specifications or proofs.
Despite being classical by nature, Isabelle/HOL provides several SML code
generation facilities for either propositions or proof terms [3, 2].
We imagine antiquotations @{code t} and @{proof-code p} to embed the
results of code generation / program extraction into SML code that the user
writes elsewhere.

These proposed antiquotations are not as easily implemented as the ones
considered before. This probably also means that more serious facilities for writ-
ing SML generating SML programs will be required, beyond the source string
evaluation used so far.

5 Example

The following is the actual source code for the schematic implementation of the
generic quantifier elimination given in [5, §3.2], where, for the sake of presenta-
tion, the authors assume some of the facilities which we have available here in
actuality.

ML 〈〈
@{vars F G P Q :: bool

and R :: int ⇒ bool
and t}

fun qelim thy qe = divide_and_conquer (fn p =>

(empty_env, thy) |>

@{match ¬ P} p #> @{begin σ}
([@{term (σ) P}], fwd @{thm cong¬}) @{end σ}

||| @{match P ∧ Q} p #> @{begin σ}
(@{terms (σ) P and Q}, fwd @{thm cong∧}) @{end σ}

||| @{match P ∨ Q} p #> @{begin σ}
(@{terms (σ) P and Q}, fwd @{thm cong∨}) @{end σ}

||| @{match P −→ Q} p #> @{begin σ}
(@{terms (σ) P and Q}, fwd @{thm cong−→}) @{end σ}

||| @{match P ←→ Q} p #> @{begin σ}
(@{terms (σ) P and Q}, fwd @{thm cong←→}) @{end σ}

||| @{match ∃ x . R x} p #>

@{begin σ}
let val (x, px) = dest_abs @{cterm (σ) R}
in ([px], fn [th] => (empty_env, thy) |>

@{thmatch F ←→ G} th #>

@{begin σ}
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let val lift = fwd @{thm cong∃ } [gen x th]

in fwd @{thm trans} [lift, qe x @{term (σ) G}] end

@{end σ})
end

@{end σ}
||| @{match ∀ x . R x} p #>

@{begin σ} ([@{term (σ) ∃ x . ¬R x}], fwd @{thm cong∀ })
@{end σ}

||| @{match t} p #> @{begin σ} ([], fn [] => @{thm (σ) refl})
@{end σ})

〉〉

This code typechecks properly in Isabelle/Isar + SML written exactly as above.

6 Conclusion

The idea of alternating quotations / antiquotations (with slight variations of ter-
minology) is fairly old — the LISP community has accumulated such techniques
over several decades. So even in the 1978 version of LCF [9], with ML as meta-
language and the logic as object-language, quote / unquote mechanisms for the
different layers came with little surprise. Later, these preprocessing mechanism
have been heavily refined in Camlp4 [13] for Caml-Light and OCaml in partic-
ular. The SML community has dropped quotations from the official language
definition, although some implementations provide their own version (notably
SML/NJ).

Our approach is different in taking the language of Isabelle/Isar as the pri-
mary one, and quoting SML code within that. Strictly speaking, this would
make SML an object language within Isabelle/Isar, but we refrain from this ter-
minology to avoid confusion. Within these quoted pieces of SML, we then allow
antiquotations to refer to Isabelle entities from the logical context. We also care-
fully separate the different environments at compile-time and run-time, where
link-time of abstract theory interpretations may count as an additional variant.

In devising concrete SML antiquotations, we have only just started to go
beyond the most obvious elements. Further advanced ideas need to be explored
and tested with concrete applications, such as the existing code base of tools
written for Isabelle/HOL.
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