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Abstract. We reconsider the well-known concept of Haskell-style type classes
within the logical framework of Isabelle. So far, axiomatic type classes in Isabelle
merely account for the logical aspect as predicates over types, while the opera-
tional part is only a convention based on raw overloading. Our more elaborate ap-
proach to constructive type classes provides a seamless integration with Isabelle
locales, which are able to manage both operations and logical properties uni-
formly. Thus we combine the convenience of type classes and the flexibility of
locales. Furthermore, we construct dictionary terms derived from notions of the
type system. This additional internal structure provides satisfactory foundations
of type classes, and supports further applications, such as code generation and
export of theories and theorems to environments without type classes.

1 Introduction

The well-known concept of type classes [18, 15, 6, 13, 10, 19] offers a useful structuring
mechanism for programs and proofs, which is more light-weight than a fully featured
module mechanism. Type classes are able to qualify types by associating operations
and logical properties. For example, class eq could provide an equivalence relation =
on type α, and class ord could extend eq by providing a strict order < etc.

Programming languages like Haskell merely handle the operational part [18, 15, 6].
In contrast, type classes in Isabelle [14, 12] directly represent the logical properties, but
the associated operations are treated as a mere convention imposed on the user.

Recent Isabelle add-ons have demanded more careful support of type classes, most
notably code generation from Isabelle/HOL to SML, or conversion of Isabelle/HOL
theories and theorems to other versions of HOL. Here the target language lacks direct
support for type classes, so the source representation in the Isabelle framework some-
how needs to accommodate this, using similar techniques as those performed by the
static analysis of Haskell.

How does this work exactly? Haskell is not a logical environment, and internal
program transformations are taken on faith without explicit deductions. In traditional
Isabelle type classes, the purely logical part could be directly embedded into the logic
[19], although some justifications were only done on paper. The operational aspect,
which cannot be fully internalized into the logic, was explained by raw overloading.
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Furthermore, the key disadvantage of raw type classes as “little theories” used to be
the lack of flexibility in the signature part: operations being represented by polymorphic
constants are fixed for any given type. On the other hand, in recent years the Isabelle
infrastructure for structured specifications and proofs has been greatly improved, thanks
to the Isar proof language [20, 21, 11] and locales [8, 1, 2]. We think it is time to
reconsider the existing type class concepts, and see how they can benefit from these
improvements without sacrificing their advantages.

The present work integrates Isabelle type classes and locales (by means of locale
interpretation), and provides more detailed explanations of type classes with operations
and logical propositions within the existing logical framework. Here we heavily re-use
a careful selection of existing concepts, putting them into a greater perspective. We
also reconstruct the essential relationship between the type system and its constructive
interpretation by producing dictionary terms for class operations. The resulting concept
of “constructive type classes” in Isabelle is both more convenient for the user, and more
satisfactory from the foundational viewpoint.

2 Example

We demonstrate common elements of structured specifications and abstract reasoning
with type classes by the algebraic hierarchy of semigroups and groups. Our background
theory is that of Isabelle/HOL [12], which uses fairly standard notation from mathemat-
ics and functional programming. We also refer to basic vernacular commands for defi-
nitions and statements, e.g. definition and lemma; proofs will be recorded using struc-
tured elements of Isabelle/Isar [20, 21, 11], notably proof/qed and fix/assume/show.

Our main concern are the new class and instance elements used below — they will
be explained in terms of existing Isabelle concepts later (§5). Here we merely present the
look-and-feel for end users, which is quite similar to Haskell’s class and instance
[6], but augmented by logical specifications and proofs.

2.1 Class definition

Depending on an arbitrary type α, class semigroup introduces a binary operation ◦ that
is assumed to be associative:

class semigroup =
fixes mult :: α⇒ α⇒ α (infix ◦ 70)
assumes assoc: (x ◦ y) ◦ z = x ◦ (y ◦ z)

This class specification consists of two parts: the operational part names the class oper-
ation (fixes), the logical part specifies properties on them (assumes). The local fixes
and assumes are lifted to the theory toplevel, yielding the global operation mult ::
α::semigroup⇒ α⇒ α and the global theorem semigroup.assoc:

∧
x y z::α::semigroup.

(x ◦ y) ◦ z = x ◦ (y ◦ z).
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2.2 Class instantiation

The concrete type int is made a semigroup instance by providing a suitable definition
for the class operation mult and a proof for the specification of assoc.

instance int :: semigroup
mult-int-def :

∧
i j :: int. i ◦ j ≡ i + j

proof
fix i j k :: int have (i + j) + k = i + (j + k) by simp
then show (i ◦ j) ◦ k = i ◦ (j ◦ k) unfolding mult-int-def .

qed

From now on, the type-checker will consider int as a semigroup automatically, i.e. any
general results are immediately available on concrete instances.

2.3 Subclasses

We define a subclass group by extending semigroup with additional operations neutral
and inverse, together with the usual left-neutral and left-inverse properties.

class group = semigroup +
fixes neutral :: α (1)

and inverse :: α⇒ α ((-−1) [1000] 999)
assumes left-neutral: 1 ◦ x = x

and left-inverse: x−1 ◦ x = 1

Again, type int is made an instance, by providing definitions for the operations and
proofs for the axioms of the additional group specification.

instance int :: group
neutral-int-def : 1 ≡ 0
inverse-int-def : i−1 ≡ − i

proof
fix i :: int have 0 + i = i by simp
then show 1 ◦ i = i unfolding mult-int-def and neutral-int-def .
have −i + i = 0 by simp
then show i−1 ◦ i = 1 unfolding mult-int-def and neutral-int-def and inverse-int-def .

qed

2.4 Abstract reasoning

Abstract theories enable reasoning at a general level, while results are implicitly trans-
ferred to all instances. For example, we can now establish the left-cancel lemma for
groups, which states that the function (x ◦) is injective:

lemma (in group) left-cancel: x ◦ y = x ◦ z ↔ y = z
proof

assume x ◦ y = x ◦ z
then have x−1 ◦ (x ◦ y) = x−1 ◦ (x ◦ z) by simp
then have (x−1 ◦ x) ◦ y = (x−1 ◦ x) ◦ z using assoc by simp
then show y = z using left-neutral and left-inverse by simp
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next
assume y = z
then show x ◦ y = x ◦ z by simp

qed

Here the “in group” target specification indicates that the result is recorded within that
context for later use. This local theorem is also lifted to the global one group.left-cancel:∧

x y z::α::group. x ◦ y = x ◦ z ↔ y = z. Since type int has been made an instance of
group before, we may refer to that fact as well:

∧
x y z::int. x ◦ y = x ◦ z ↔ y = z.

3 Logical foundations

We briefly review fundamental concepts of the Isabelle/Isar framework, from the Pure
logic to Isar proof contexts (structured proofs) and locales (structured specifications).

3.1 The Isabelle/Pure framework

The Pure logic [14] is an intuitionistic fragment of higher-order logic. In type-theoretic
parlance, there are three levels of λ-calculus with corresponding arrows: ⇒ for syntac-
tic function space (terms depending on terms),

∧
for universal quantification (proofs

depending on terms), and =⇒ for implication (proofs depending on proofs).
Types are formed as simple first-order structures, consisting of type variables α or

type constructor applications κ τ1 . . . τk (where κ has always k arguments).
Term syntax provides explicit abstraction λx :: α. b(x) and application t u, while

types are usually implicit thanks to type-inference; terms of type prop are called propo-
sitions. Logical statements are composed via

∧
x :: α. B(x) and A =⇒ B. Primitive

reasoning operates on judgments of the form Γ ` ϕ, with standard introduction and
elimination rules for

∧
and =⇒ that refer to fixed parameters x and hypotheses A from

the context Γ . The corresponding proof terms are left implicit, although they could be
exploited separately [3].

The framework also provides definitional equality ≡ :: α⇒ α⇒ prop, with αβη-
conversion rules. The internal conjunction & :: prop⇒ prop⇒ prop allows to represent
simultaneous statements with multiple conclusions.

Derivations are relative to a given theory Θ, which consists of declarations for type
constructors κ (constructor name with number of arguments), term constants c :: σ
(constant name with most general type scheme), and axioms ` ϕ (proposition being
asserted). Theories are always closed by type-instantiation: arbitrary instances c :: τ of
c :: σ are well-formed; likewise for axiom schemes. Schematic polymorphism carries
over to term formation and derivations, i.e. it is admissible to derive any type instance
Γ ` B(τ) from Γ ` B(α), provided that α does not occur in the hypotheses of Γ .

3.2 Isar proof contexts

In judgments Γ ` ϕ of the primitive framework, Γ essentially acts like a proof context.
Isar elaborates this idea towards a higher-level notion, with separate information for
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type-inference, term abbreviations, local facts, and generic hypotheses (parameterized
by specific discharge rules). For example, the context element assumes A introduces
a hypothesis with =⇒ introduction as discharge rule; notes a = b defines local facts;
defines x ≡ a and fixes x :: α introduce local terms.

Top-level theorem statements may refer directly to Isar context elements to establish
a conclusion within an enriched environment; the final result will be in discharged form.
For example, proofs of

∧
x. B x, and A =⇒ B, and B a can be written as follows:

lemma
fixes x
shows B x 〈proof 〉

lemma
assumes A
shows B 〈proof 〉

lemma
defines x ≡ a
shows B x 〈proof 〉

There are separate Isar commands to build contexts within a proof body, notably fix,
assume etc. These elements have essentially the same effect, only that the result lives
still within a local proof body rather than the target theory context. For example:

{
fix x
have B x 〈proof 〉

}

{
assume A
have B 〈proof 〉

}

{
def x ≡ a
have B x 〈proof 〉

}

Building on top of structured proof contexts, the Isar proof engine now merely im-
poses a certain policy for interpreting formal texts, in order to support structured proof
composition [21, Chapter 3]. The very same notion of contexts may be re-used a second
time for structured theory specifications, namely by Isabelle locales (see below).

3.3 Locales

Isabelle locales [8, 1] provide a powerful mechanism for managing local proof context
elements, most notably fixes and assumes. For example:

locale l =
fixes x
assumes A x

This defines both a predicate l x ≡ A x (by abstracting the body of assumptions over the
fixed parameters), and provides some internal infrastructure for structured reasoning. In
particular, consequences of the locale specification may be proved at any time, e.g.:

lemma (in l)
shows b: B x 〈proof 〉

The result b: B x is available for further proofs within the same context. There is also a
global version l.b:

∧
x. l x =⇒ B x, with the context predicate being discharged.

Locale expressions provide means for high-level composition of complex proof con-
texts from basic principles (e.g. locale ring = abelian-group R + monoid R + . . .).
Expressions e are formed inductively as e = l (named locale), or e = e ′ x1 . . . xn (re-
naming of parameters), or e = e1 + e2 (merge). Locale merges result in general acyclic
graphs of sections of context elements — internally, the locale mechanism produces a
canonical order with implicitly shared sub-graphs.
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Locale interpretation is a separate mechanism for applying locale expressions in the
current theory or proof context [2]. After providing terms for the fixes and proving the
assumes, the corresponding instances of locale facts become available. For example:

interpretation m: l [a]
proof (rule l.intro)

show A a 〈proof 〉
qed

Here the previous locale fact l.b:
∧

x. l x =⇒ B x becomes m.b: B a. The link between
the interpreted context and the original locale acts like a dynamic subscription: any
new results emerging within l will be automatically propagated to the theory context by
means of the same interpretation. For example:

lemma (in l)
shows c: C x 〈proof 〉

This makes both l.c:
∧

x. l x =⇒ C x and m.c: C a available to the current theory.

4 Type classes and disciplined overloading

Starting from well-known concepts of order-sorted algebra, we recount the existing
axiomatic type classes of Isabelle. Then we broaden the perspective towards explicit
construction of dictionary terms, which explain disciplined overloading constructively.

4.1 An order-sorted algebra of types

The well-known concepts of order-sorted algebra (e.g. [17]) have been transferred early
to the simply-typed framework of Isabelle [13, 10].

A type class c is an abstract entity that describes a collection of types. A sort s is a
symbolic intersection of finitely many classes, written as expression c1 ∩ . . . ∩ cm (note
that Isabelle uses the concrete syntax {c1, . . ., cm}). We assume that type variables are
decorated by explicit sort constraints αs, while plain α refers to a vacuous constraint of
the empty intersection of classes (the universal sort). An order-sorted algebra consists
of a set C of classes, together with an acyclic subclass relation <, and a collection of
type constructor arities κ :: (s1, . . ., sk)c (for constructor κ with k arguments). This
induces an inductive relation τ : c on types τ and classes c by the rules given below (on
sorts τ : c1 ∩ . . . ∩ cm is defined as τ : ci for all i = 1, . . ., m collectively).

τ : c1 c1 < c2
τ : c2

(classrel)

τ1 : s1 . . . τk : sk κ :: (s1, . . ., sk)c
κ τ1 . . . τk : c (constructor)

αc1 ∩ ... ∩ cm : ci
(variable)

We also define canonical subclass and subsort relations on top of this: c1 ⊆ c2 iff
∀α. α : c1 =⇒ α : c2 for classes, and s1 ⊆ s2 iff ∀α. α : s1 =⇒ α : s2 for sorts.
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Observe that class inclusion c1 ⊆ c2 is the reflexive-transitive closure of the original
relation c1 < c2. Proof: consequences α : c1 =⇒ α : c2 emerge exactly by zero or more
application of the classrel rule.

Moreover, sort inclusion s1 ⊆ s2 for s1 = c1 ∩ . . . ∩ cm and s2 = d1 ∩ . . . ∩ dn can
be characterized as ∀ j. ∃ i. ci ⊆ dj . Proof: c1 ∩ . . . ∩ cm ⊆ d1 ∩ . . . ∩ dn is equivalent
to α : c1 ∩ . . . ∩ cm =⇒ α : d1 ∩ . . . ∩ dn, i.e. (∀ i. α : ci) =⇒ (∀ j. α : dj), which is
equivalent to ∀ j. ∃ i. (α : ci =⇒ α : dj).

An order-sorted algebra is called coregular iff for all c ⊆ c ′, any κ :: (s1, . . ., sk)c
and κ :: (s′

1, . . ., s′
k)c ′ have related argument sorts ∀ i. si ⊆ s′

i. Coregularity expresses
the key correspondence of the global class hierarchy with individual type constructor
arities. This achieves most general unification and principal type schemes [17, 13].

4.2 Axiomatic type classes in Isabelle

Axiomatic type classes [10, 19] are based on a purely logical interpretation of the order-
sorted algebra of types as predicates. Any closed propositionϕ(α) depending on exactly
one type variable can be understood as a predicate on types. The trick is to represent
predicate constants adequately in order to support type class definitions and abstract
reasoning over type classes. Following [19], any type class c ∈ C of the underlying
algebra is turned into a logical constant c-class :: α itself ⇒ prop, where α itself is an
uninterpreted type with constant TYPE :: α itself as canonical representative.1 Proposi-
tions of the form c-class (TYPE :: τ itself ) shall be written as (|τ : c|).

The existing axclass mechanism defines type classes via ` (|α : c|)≡ (|α : d1|) & . . .
& (|α : dn|) & A1(α) & . . .& Am(α), where d1, . . ., dn are super-classes and A1, . . ., Am

class axioms as intended by the user. From this the system derives an introduction rule
` (|α : d1|) =⇒ . . . (|α : dn|) =⇒ A1(α) =⇒ . . . Am(α) =⇒ (|α : c|) (for instantiation
proofs), explicit class inclusions ` (|α : c|) =⇒ (|α : dj |) (added to the order-sorted type
algebra), and abstract lemmas ` (|α : c|) =⇒ Ai(α) (also called “class axioms”). The
latter are represented compactly using sort constraints ` Ai(αc). Isabelle inferences will
use order-sorted type-unification in order to produce well-sorted instantiations ` Ai(τ)
on the fly — this implicit reasoning is the main convenience of type classes.

It is easy to see that the interpretation of class membership τ : c as (|τ : c|) is correct
in the sense that the notions of order-sorted type algebra approximate Pure derivations.
In particular, the inference system for τ : c represents the following rules for (|τ : c|)
(due to modus ponens and type instantiation):

(|τ : c1|) ` (|α : c1|) =⇒ (|α : c2|)
(|τ : c2|)

(|τ1 : s1|) . . . (|τk : sk|) ` (|α1 : s1|) =⇒ . . . (|αk : sk|) =⇒ (|κ α1 . . . αk : c|)
(|κ τ1 . . . τk|) : c

(|α : c1|), . . ., (|α : cm|) ` (|α : ci|)
1 This type could be defined explicitly as datatype α itself = TYPE in ML / Haskell / HOL, but

Isabelle/Pure refrains from stating any specific properties.
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Here the rule conditions c1 < c2 and κ :: (s)c have been interpreted by schematic impli-
cations, and sort constraints of type variables have been turned into explicit hypotheses.

The general principle above is to interpret the inductive definition of τ : c, by giving
a constructive reading to its derivations. Thus inferences taking place during internal
type-checking operations are turned into proofs of the Pure framework.

In conclusion, we observe that axiomatic type classes are able to model the logical
part (assumes) of our class mechanism. The second half is proper management of class
operations (fixes) which will be based on a disciplined version of overloaded definitions.

4.3 Disciplined overloading for Isabelle

Simple definitions essentially introduce abbreviations in terms of basic principles, by
stating definitional equalities within the formal theory. A definitional theory extension
Θ ′ = Θ ∪ c :: σ ∪ ` cσ ≡ t is well-formed iff c is a fresh constant name, t is a closed
term that does not mention c, and all type variables occurring in t also occur in σ.

The latter condition ensures ϑ(t) = ϑ ′(t) =⇒ ϑ(cσ) = ϑ ′(cσ) for arbitrary type
instantiations ϑ and ϑ ′, i.e. there is a one-to-one relationship between the LHS and
RHS. Due to substitution of ≡, this means Γ ` ϕ(ϑ(cσ)) iff Γ ` ϕ(ϑ(t)) in Θ ′.

Moreover, Γ ` ϕ(c) is derivable in Θ ′ iff Γ ` ϕ(t) is derivable in Θ. Proof: (1)
assume Γ ` ϕ(c); hence Γ ` ϕ(t) in Θ ′ by definition. Let ψ = ϕ(t), which is a formula
of Θ and theorem of Θ ′. Show by induction over derivations that Γ ∪ ϑ1(cσ ≡ t), . . .,
ϑn(cσ ≡ t) ` ψ in Θ, for some collection of type instantiations ϑ1, . . ., ϑn (stemming
from instances of the definitional axiom occurring in the proof trees). Finally discharge
these assumptions by reflexivity of ≡. (2) the other direction is trivial.

A definitional theory may be presented in an incremental fashion, where later defini-
tions refer to previously defined entities on the RHS. For example, define c1, then c2 in
terms of c1, then c3 in terms of c1, c2 etc. Formally, we introduce a dependency relation
between constant names: c → b iff constant b is mentioned on the RHS of the defini-
tion of c. Provided that → is well-founded, incremental definitions can be normalized
such that the RHSes only mention basic principles. Thus simple definitions determine
an immediate mapping from defined entities to basic principles.

Overloading (or “ad-hoc polymorphism”) means to specify constants depending on
the syntactic structure of their respective type instances. For example, 0 :: α could be
defined separately for 0nat, 0bool, 0β × γ (in terms of 0β and 0γ) etc. Unrestricted
overloading sacrifices most of the key syntactic properties sketched above.

Subsequently, we borrow some notation from System F [16], notably type schemes
∀α. σ(α) and type application f [τ ]. For example, the polymorphic identity function id
≡ λx. x can be given the most general type scheme ∀α. α⇒ α. System F also provides
explicit type abstraction Λα. t(α), although this will not be required here, because naive
polymorphism in the Pure framework is restricted to outermost constants (and axioms):
instead of id ≡ Λα. λx::α. x we write id [α] ≡ λx::α. x in applied form.
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This quasi-polymorphic perspective allows an adequate view on constant declara-
tions and type instances as required for overloading. Any declaration c :: σ can be turned
into an explicit type scheme c :: ∀α. σ(α) by presenting the type variables α of the body
σ in some canonical order. Type instances can now be written as c [τ ], where τ emerges
by matching against σ and putting the RHSes of the resulting substitution [α1 7→ τ1,
. . ., αn 7→ τn] into the same canonical order.

Linear polymorphic declarations (n = 1) are an important special case of this. Here
c :: ∀α. σ(α) acts like a function that maps a type τ to a term c [τ ] of type σ(τ).

Restricted overloading is a theory extension Θ ∪ c :: ∀α. σ(α) ∪ ` c [τ ] ≡ t ∪ . . .
that introduces a fresh constant declaration c, followed by a collection of specifications
` c [τ ]≡ t each, where t is a closed term, and all type variables of t also occur in τ . The
defining equations for c are further restricted to

c [κ α] ≡ . . . b [τ ] . . . d [αi] . . .

such that the type argument of the LHS is a constructor κ applied to distinct variables
α, and the RHS (after normalizations with respect to simple definitions) only mentions
further constants as follows:

1. arbitrary instances of constants named b, provided that c → b holds according to a
given well-founded dependency relation on constant names;

2. argument projections on overloaded constants d [αi], selecting some αi from α.

Moreover the following global conditions have to be observed:

– There is at most one specification c [κ α] ≡ . . . for each type constructor κ.
– Overloaded specifications are upwards-complete: for any c1 →+ c2, the presence

of c1 [κ α] ≡ . . . implies the presence of c2 [κ α] ≡ . . ..

Note that the restriction of c → b is independent of actual type instances and essen-
tially decouples general interdependencies from overloading. For example, the specifi-
cation of c [nat] ≡ . . . b [bool] . . . and b [nat] ≡ . . . c [bool] . . . is ruled out, due to the
cycle c → b → c on constant names.

The following example illustrates restricted overloading of constants eq and ord for
types nat and ×:

eq :: ∀α. α⇒ α⇒ bool
eq [nat] ≡ λm n. m = n
eq [β × γ] ≡ λp q. eq [β] (fst p) (fst q) ∧ eq [γ] (snd p) (snd q)
ord :: ∀α. α⇒ α⇒ bool
ord [nat] ≡ λm n. m < n
ord [β × γ] ≡ λp q. ord [β] (fst p) (fst q) ∨

eq [β] (fst p) (fst q) ∧ ord [γ] (snd p) (snd q)

In general, restricted overloading and simple definitions may be presented incre-
mentally, with alternating dependencies of overloaded vs. non-overloaded constants.
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The resulting theory still describes a mapping from defined entities to basic principles
— as sketched before for simple definitions alone. The key idea is to traverse the sys-
tem along the lexicographic product of the global dependency relation c → b and the
substructural order on types κ α→ αi, which is also well-founded.

Overloading as order-sorted type-algebra is a slightly more abstract view on the
structure of interdependent overloaded specifications. After expanding all simple (non-
overloaded) definitions, the resulting algebra of overloading is achieved as follows.

Classes: Each overloaded operation is turned into a type class of the same name.2

Class relation: The global dependency relation → is restricted to overloaded con-
stants, i.e. c1 < c2 iff c1 →+ c2 on classes.

Constructor arities: The local dependencies of definitional equations are turned into
constructor arities, i.e. κ :: (s1, . . ., sk)c for each constructor κ and class c, where
si =

⋂
d such that d[αi] occurs on the RHS of some specification c ′ [κ α1 . . . αk]

≡ . . . for some c ′⊇ c.

Observe that this algebra is coregular by construction, because the argument sorts
of type arities account for the upwards-completion of definitions explicitly.

For example, the previous overloaded definitions of eq and ord result in the algebra
consisting of classes ord < eq with constructor arities nat :: eq, and× :: (eq, eq)eq, and
nat :: ord, and × :: (eq ∩ ord, eq ∩ ord)ord.

We now employ the order-sorted algebra to expand disciplined overloading: for any
` ϕ mentioning well-defined instances c [τ ] of overloaded constants, we produce ` ϕ ′

that refers only to basic principles. In the first stage, we normalize by all definitional
equalities, which removes non-overloaded constants and reduces overloaded ones to
occurrences cα on type variables. In the second stage we construct dictionary terms.

A dictionary δ for class c is a collection of terms [t1, . . ., tn] that provide imple-
mentations for the class operations [c1, . . ., cn], for the collection of classes c ′ ⊇ c
presented in canonical order. The construction works by interpreting the derivation of
τ : c for each c [τ ] occurring in ` ϕ. The base case refers to locally fixed dictionary
parameters pc :: σ(α) for each c [α] :: σ(α) in ` ϕ. The type constructor case refers
to the collection % of RHSes of all specifications c ′ [κ α ≡ . . .] for c ′ ⊇ c, as in the
construction of type arities κ :: (s)c above. The notation {|δ : c|} means that δ contains
a dictionary term for c. We now get the following rules:

{|δ : c1|} c1 < c2

{|δ : c2|}
(classrel)

{|δ1 : s1|} . . . {|δk : sk|} κ :: (s1, . . ., sk)c
{|%(δ1, . . ., δk) : c|}

(constructor)

{|[pc1 , . . ., pcm ] : ci|}
(variable)

2 We essentially assume that each type class corresponds to exactly one operation of the same
name. Minor re-formulations will admit the more liberal scheme seen in practice (e.g. §2).
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For example, ` P (ord [β × γ]) can be expanded to ` P (λp q. ord1 (fst p) (fst q) ∨
eq1 (fst p) (fst q) ∧ ord2 (snd p) (snd q)), for new local variables eq1, eq2, ord1, ord2.

We see that disciplined overloading can be linked to the order-sorted type-algebra
quite naturally. The key benefit is that well-definedness of c [τ ] is reduced to well-
sortedness τ : c, while a constructive reading provides the dictionary expansion.

Thus we have managed to make “ad-hoc polymorphism less ad-hoc”, although by
quite different means than the original Haskell type class system [18]. In more gen-
eral versions of type theory, the reconstruction of dictionary terms (for the operations)
and proof terms (for the logical part) would have coincided anyway, but Pure has two
distinctive categories of formal entities that appear to the user as fixes and assumes.

5 Integration

We are ready to integrate the concepts of §3 and §4 to explain our version of class
and instance. Essentially, we shall introduce (I) a locale that manages both the fixes
and assumes explicitly, (II) type class infrastructure that replaces the fixes by global
operations according to disciplined overloading, and (III) a formal link between the
locale and type class by locale interpretation. We illustrate this by the example from §2.

5.1 Class definition

(I) The syntax for class specifications is the same as for locale, restricted to exactly
one type variable α. Thus a class is literally made a locale of the same name. E.g.

locale semigroup =
fixes mult :: α⇒ α⇒ α (infix ◦ 70)
assumes assoc: (x ◦ y) ◦ z = x ◦ (y ◦ z)

(II) The same specification is turned into type class infrastructure as follows.

1. For all class operations (fixes) introduce global operations (consts) with the same
name and type. E.g.

consts
mult :: α⇒ α⇒ α (infix ◦ 70)

2. Introduce an axiomatic type class whose axioms are the class premises (assumes),
applied to the newly introduced consts. Since a locale definition already defines a
predicate corresponding to the body, we can use a compact representation. E.g.

axclass semigroup
axiom: semigroup (mult :: α⇒ α⇒ α)

3. Restrict subsequent uses of the global operations to the new type class. E.g.
constraints

mult :: α::semigroup ⇒ α⇒ α

This is merely an extra-logical hint for type-inference, which ensures that oc-
currences of the operations will be well-defined.

11



(III) Finally link the locale and type class infrastructure by means of locale interpre-
tation: the global operations (consts) are inserted for the local ones (fixes), and the
(already derived) class axiom is inserted for the locale premises (assumes). E.g.

interpretation semigroup [mult :: α::semigroup ⇒ α⇒ α]
by (rule semigroup-class.axiom)

This reduces the generality of locale results by fixing the operations, but α remains free.

5.2 Class instantiation

An instance provides term definitions and proofs on particular type patterns κ α. The
class operations are introduced by the existing primitive for overloaded definitions,
which is only used in the restricted sense of §4.3. E.g.

defs (overloaded)
mult-int-def : (i::int) ◦ j ≡ i + j

The actual instance proof uses the original axclass instantiation mechanism. E.g.

instance int :: semigroup — (existing version of axclass instance)
proof

fix i j k :: int have (i + j) + k = i + (j + k) by simp
then show (i ◦ j) ◦ k = i ◦ (j ◦ k) unfolding mult-int-def .

qed

5.3 Subclasses

(I) In order to derive a new class c from existing super-classes b1, . . ., bn we simply
produce parallel hierarchies of locales and type classes. For locales this means to import
the merge b1 + . . . + bn of the corresponding parent locales. E.g.

locale group = semigroup +
fixes neutral :: α (1)

and inverse :: α⇒ α ((-−1) [1000] 999)
assumes left-neutral: 1 ◦ x = x

and left-inverse: x−1 ◦ x = 1

(II) The type class setup is analogous; axclass treats super-classes as expected. E.g.

consts
neutral :: α (1)
inverse :: α⇒ α ((-−1) [1000] 999)

axclass group < semigroup
axiom: group mult neutral inverse

constraints
neutral :: α::group
inverse :: α::group ⇒ α

12



(III) The link between locale and class definition is again by interpretation. The implicit
import of results established in parent locales [2] works without further ado. E.g.

interpretation
group [mult :: α::group ⇒ α⇒ α neutral :: α::group inverse :: α::group ⇒ α]

by (rule group-class.axiom)

5.4 Abstract reasoning

Nothing special needs to be done here — we benefit directly from the existing mecha-
nisms of locale lemmas. E.g. “lemma (in group) . . .” refers to the target locale group,
even if this happens to be related to a type class of the same name. Abstract reasoning
is performed in full generality at the locale level relative to fixes and assumes.

6 Conclusion

Stocktaking. The present approach to constructive type classes in Isabelle integrates
a fair amount of existing concepts into a coherent mechanism for the end-user, with-
out having to extend the underlying logical foundations. Apart from collecting existing
concepts, our main contribution is twofold: (1) explicit reconstruction of proofs and
dictionary terms, guided by constructive interpretation of order-sorted type algebras,
(2) relating locale and class concepts by means of interpretation.

The first aspect has foundational impact, the formal content of type classes is ex-
plained more thoroughly in terms of basic principles. Moreover, applications that build
on the internal representations of theories and proofs may benefit from this additional
structure (e.g. code generation for ML or proof export for other versions of HOL).

The second aspect is very important for user-level reasoning with type classes within
the formal system. Our link to the locale mechanism [8, 1, 2] overcomes the former
restriction of axiomatic type-classes to a fixed “signature” of overloaded constants. Our
classes admit abstract reasoning in the general locale context, where operations are local
parameters; results are implicitly passed down to the actual type class thanks to locale
interpretation. Thus we essentially combine the best of both worlds.

Even more, several type classes can be linked to the same locale, using the additional
includes element to refer to a renamed locale specification: e.g. class abelian-group
= includes group add (infix + 60) assumes commute: . . . etc. General lemmas estab-
lished in group will then become available for both type classes group and abelian-group.

The present work has resulted in clarification of various Isabelle internals3. In par-
ticular, the constructive interpretation of order-sorted type-algebra is now explicit in the
internal workings of axclass, so far some justifications have been only on paper [19].
There is now also a separation of constant declarations c :: ∀α. σ(α), and extra-logical
type-inference constraints c :: ∀α::c. σ(α).

3 See http://isabelle.in.tum.de/devel/ for a development snapshot.
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Related work. Module systems (especially for theorem provers) provide a more gen-
eral perspective on our work. Roughly speaking, the huge amount of existing approaches
can be categorized as follows: (1) full / explicit module languages vs. (2) restricted / im-
plicit structuring mechanisms. ML functors [16] and Coq modules [4, 5] represent the
first kind, type classes in Haskell or Isabelle the second, more light-weight one. Our
work helps to bridge the gap between these two extremes, by enhancing the basic type
class concepts towards a more explicit notion of modules, thanks to the underlying lo-
cale infrastructure.

Compared to a full-grown module system, locales do have some limitations: no truly
polymorphic parameters, no type-constructors as parameters. For example, a theory of
monads would be hard to formalize. However, explaining locales (and classes) in terms
of existing Isabelle/Pure concepts avoids tinkering with the logic itself.

Type classes have first appeared in Haskell [18, 15, 6], to make “ad-hoc polymor-
phism less ad-hoc”. The underlying ideas have later been rephrased as a problem of
Hindley-Milner type-checking within an order-sorted algebra of types [13], and inte-
grated into the Isabelle/Pure type-checker [10]. Isabelle type classes acquired their first
logical interpretation in [19]. Note that more recent extensions of the original Haskell
type classes (including constructor classes and multi-parameter classes [7]) are not
covered in this work, mostly due to fundamental limitations of the underlying logic.

Future work. Our constructive combination of type classes and locales essentially or-
ganizes lemmas (proofs) that emerge in related contexts. This principle could be trans-
ferred to derived operations (terms). Recent experiments on “definition (in l)” for lo-
cales could be generalized to handle classes as well, by producing parallel definitions
internally that refer either to locale parameters (fixes) or overloaded operations (consts).

Further considerations need to be spent on instance definitions. So far this is limited
to simple definitions of Pure, but realistic applications demand more flexibility. The key
question is how to combine derived definitional mechanisms with class instantiations in
a modular fashion, without hardwiring one into the other. Then a package like [9] for
general recursive functions could be used to specify class operations.

Acknowledgment. Alexander Krauss and Tobias Nipkow have commented on draft
versions of this paper.
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