
Isabelle/Isar — a generic framework
for human-readable proof documents

Makarius Wenzel

Technische Universität München
Institut für Informatik, Boltzmannstraße 3, 85748 Garching, Germany

http://www.in.tum.de/˜wenzelm/

Abstract. Isabelle/Isar is a generic framework for human-readable formal proof
documents, both like and unlike Mizar. The Isar proof language provides general
principles that may be instantiated to particular object-logics and applications.
The design of Isar has emerged from careful analysis of some inherent virtues of
the existing logical framework of Isabelle/Pure, notably composition of higher-
order natural deduction rules, which is a generalization of Gentzen’s original cal-
culus. Thus Isar proof texts may be understood as structured compositions of
formal entities of the Pure framework, namely propositions, facts, and goals.
This paper provides an extensive overview of the combined Pure + Isar frame-
work, including a full object-logic definition as a working example. Hereby we
hope to illustrate the present stage of our particular journey from insight into the
logical framework, to proofs written in Isabelle/Isar.

1 Introduction

1.1 Theory documents

Isabelle/Isar [19, 20, 8, 22] is intended as a generic framework for developing formal
mathematical documents with full proof checking. Definitions and proofs are organized
as theories; an assembly of theory sources may be presented as a printed document
(using PDF-LATEX). The present paper is an example of the result of processing formally
checked sources by the Isabelle/Isar document preparation system.

The main objective of Isar is the design of a human-readable structured proof lan-
guage, which is called the “primary proof format” in Isar terminology. Such a primary
proof language is somewhere in the middle between the extremes of primitive proof
objects and actual natural language. In this respect, Isar is a bit more formalistic than
Mizar [18, 16, 23, 25], using logical symbols for certain reasoning schemes where
Mizar would prefer English words; see [26] for further comparisons of these systems.

So Isar challenges the traditional way of recording informal proofs in mathematical
prose, as well as the common tendency to see fully formal proofs directly as objects of
some logical calculus (e.g. λ-terms in a version of type theory). In fact, Isar is better
understood as an interpreter of a simple block-structured language for describing data
flow of local facts and goals, interspersed with occasional invocations of proof methods.
Everything is reduced to logical inferences internally, but these steps are somewhat
marginal compared to the overall bookkeeping of the interpretation process. Thanks to

http://www.in.tum.de/~wenzelm/

careful design of the syntax and semantics of Isar language elements, a formal record
of Isar instructions may later appear as an intelligible text to the attentive reader.

Isabelle/Isar is based on the existing logical framework of Isabelle/Pure [11, 12],
which provides a generic environment for higher-order natural deduction. The approach
of generic inference systems in Pure is continued by Isar towards actual proof texts.
Concrete applications require another intermediate layer: an object-logic. Isabelle/HOL
[9] (simply-typed set-theory) is being used most of the time; Isabelle/ZF is less exten-
sively developed, although it would probably fit better for classical mathematics.

After the pioneering approach of Mizar [18] towards mathematical proofs on the
machine has become more widely acknowledged around 1995, some existing interac-
tive theorem provers have been extended to support a similar “declarative mode”, such
as “a Mizar mode for HOL” [5] or [24]. The design of Isar draws both on Mizar and
various Mizar modes, but the resulting Isabelle/Isar is a well-integrated system that
continues the original Isabelle tradition. Consequently, Isabelle/Isar is neither another
version of Mizar, nor a “declarative mode” for Isabelle. The distinctive style of the log-
ical framework is preserved, and Isar works for all of the usual Isabelle object-logics,
such as FOL, ZF, HOL, HOLCF.

This paper is dedicated to elements of structured proofs. We shall briefly give a
flavor of plain specifications in Isabelle just now, both axiomatic and definitional ones.
For example, in Isabelle/HOL three distinct natural numbers can be postulated like this:

axiomatization a b c :: nat where a 6= b and b 6= c and a 6= c

Stating arbitrary axioms is convenient, but also dangerous. Isabelle methodology fol-
lows traditional mathematics in preferring proper definitions. For example:

definition a :: nat where a = 1
definition b :: nat where b = 2
definition c :: nat where c = 3

Definitions like this occasionally have the disadvantage of over-specification: we have
introduced particular natural numbers instead of three “arbitrary” ones.

Alternatively we may use the locale mechanism of Isabelle [6, 1], which combines
both specification paradigms conveniently: a given axiomatization is wrapped into a
predicate definition, subsequent definitions and proofs depend on the resulting context.
Viewed from outside, any consequences become relative to explicit assumptions. E.g.

locale distinct-nats = fixes a b c :: nat assumes a 6= b and b 6= c and a 6= c

Many interesting questions arise from advanced specifications. We shall occasion-
ally return to such issues, when there is an immediate impact on proof composition.

1.2 Proof texts

The Isar proof language offers common principles that are parameterized by entities of
the object-logic and application context. This includes declarations for various classes
of rules, such as logical introductions / eliminations, and transitivity / symmetry rules.
General reasoning mechanisms refer to such declarations from the context, performing

2

“obvious” reasoning steps in a very elementary sense. Moreover, the system admits
arbitrarily complex proof methods to be added later, for example specific support for
induction proofs [21]. Automated reasoning tools may be integrated as well [14, 15].

In order to illustrate typical natural deduction reasoning in Isar, we assume the back-
ground theory and library of Isabelle/HOL [9]. This includes common notions of pred-
icate logic, naive set-theory etc. using fairly standard mathematical notation. From the
perspective of generic natural deduction there is nothing special about the logical con-
nectives of HOL (∧, ∨, ∀ , ∃ , etc.), only the resulting reasoning principles are relevant
to the user. There are similar rules available for set-theory operators (∩, ∪,

⋂
,
⋃

, etc.),
or any other theory developed in the library (lattice theory, topology etc.).

Subsequently we briefly review fragments of Isar proof texts corresponding directly
to such general natural deduction schemes. The examples shall refer to set-theory.

The following deduction performs ∩-introduction, working forwards from assump-
tions towards the conclusion. We give both the Isar text, and depict the primitive rule
involved, as determined by unification of the problem against rules from the context.

assume x ∈ A and x ∈ B
then have x ∈ A ∩ B ..

x ∈ A x ∈ B
x ∈ A ∩ B

Note that assume augments the context, then indicates that the current facts shall be
used in the next step, and have states a local claim. The mysterious “..” above is a
complete proof of the claim, using the indicated facts and a canonical rule from the
context. We could have been more explicit here, writing “by (rule IntI)” instead.

The format of the ∩-introduction rule represents the most basic inference, which
proceeds from given premises to a conclusion, without any additional context involved.

The next example performs backwards introduction on
⋂
A, the intersection of all

sets within a given set. This requires a nested proof of set membership within a local
context of an arbitrary-but-fixed member of the collection:

have x ∈
⋂
A

proof
fix A
assume A ∈ A
show x ∈ A 〈proof 〉

qed

[A][A ∈ A]....
x ∈ A

x ∈
⋂
A

This Isar reasoning pattern again refers to the primitive rule depicted above. The system
determines it in the “proof” step, which could have been spelt out more explicitly as
“proof (rule InterI)”. Note that this rule involves both a local parameter A and an as-
sumption A ∈A in the nested reasoning. This kind of compound rule typically demands
a genuine sub-proof in Isar, working backwards rather than forwards as seen before. In
the proof body we encounter the fix-assume-show skeleton of nested sub-proofs that is
typical for Isar. The final show is like have followed by an additional refinement of the
enclosing claim, using the rule derived from the proof body.

The next example involves
⋃
A, which can be characterized as the set of all x such

that ∃A. x ∈ A ∧ A ∈ A. The elimination rule for x ∈
⋃
A does not mention ∃ and

∧ at all, but admits to obtain directly a local A such that x ∈ A and A ∈ A hold. This
corresponds to the following Isar proof and inference rule, respectively:

3

assume x ∈
⋃
A

then have C
proof

fix A
assume x ∈ A and A ∈ A
show C 〈proof 〉

qed

x ∈
⋃
A

[A][x ∈ A, A ∈ A]....
C

C

Although the Isar proof follows the natural deduction rule closely, the text reads not
as natural as anticipated. There is a double occurrence of an arbitrary conclusion C,
which represents the final result, but is irrelevant for now. This issue arises for any
elimination rule involving local parameters. Isar provides the derived language element
obtain, which is able to perform the same elimination proof more conveniently:

assume x ∈
⋃
A

then obtain A where x ∈ A and A ∈ A ..

Here we avoid to mention the final conclusion C and return to plain forward reasoning.
The rule involved in the “..” proof is the same as before.

1.3 Overview

The rest of the paper is structured as follows: §2 reviews the Pure logical framework of
Isabelle, §3 covers the main aspects of the Isar proof language, and §4 demonstrates the
combined Pure + Isar framework by first-order predicate logic as object-language.

2 The Pure framework

The Pure logic [11, 12] is an intuitionistic fragment of higher-order logic [3]. In type-
theoretic parlance, there are three levels of λ-calculus with corresponding arrows: ⇒
for syntactic function space (terms depending on terms),

∧
for universal quantification

(proofs depending on terms), and =⇒ for implication (proofs depending on proofs).
On top of this, Pure implements a generic calculus for nested natural deduction

rules, similar to [17]. Here object-logic inferences are internalized as formulae over
∧

and =⇒. Combining such rule statements may involve higher-order unification [10].

2.1 Primitive inferences

Term syntax provides explicit notation for abstraction λx :: α. b(x) and application b a,
while types are usually implicit thanks to type-inference; terms of type prop are called
propositions. Logical statements are composed via

∧
x :: α. B(x) and A =⇒ B. Primitive

reasoning operates on judgments of the form Γ ` ϕ, with standard introduction and
elimination rules for

∧
and =⇒ that refer to fixed parameters x1, . . ., xm and hypotheses

A1, . . ., An from the context Γ ; the corresponding proof terms are left implicit. The
subsequent inference rules define Γ ` ϕ inductively, relative to a collection of axioms:

(A axiom)
` A A ` A

4

Γ ` B(x) x /∈ Γ

Γ `
∧

x. B(x)
Γ `

∧
x. B(x)

Γ ` B(a)

Γ ` B
Γ − A ` A =⇒ B

Γ 1 ` A =⇒ B Γ 2 ` A
Γ 1 ∪ Γ 2 ` B

Furthermore, Pure provides a built-in equality ≡ :: α ⇒ α ⇒ prop with axioms for
reflexivity, substitution, extensionality, and αβη-conversion on λ-terms.

An object-logic introduces another layer on top of Pure, e.g. with types i for indi-
viduals and o for propositions, term constants Tr :: o ⇒ prop as (implicit) derivability
judgment and connectives like ∧ :: o ⇒ o ⇒ o or ∀ :: (i ⇒ o) ⇒ o, and axioms for
object rules such as conjI: A =⇒ B =⇒ A ∧ B or allI: (

∧
x. B x) =⇒ ∀ x. B x. Derived

object rules are represented as theorems of Pure.

2.2 Reasoning with rules

Primitive inferences mostly serve foundational purposes. The main reasoning mecha-
nisms of Pure operate on nested natural deduction rules expressed as formulae, using∧

to bind local parameters and =⇒ to express entailment. Multiple parameters and
premises are represented by repeating these connectives in a right-associative fashion.

Since
∧

and =⇒ commute thanks to (A =⇒ (
∧

x. B x))≡ (
∧

x. A =⇒ B x), we may
assume w.l.o.g. that rule statements always observe the normal form where quantifiers
are pulled in front of implications at each level of nesting. This means that any Pure
proposition may be presented as a Hereditary Harrop Formula [7] which is of the form∧

x1 . . . xm. H1 =⇒ . . . Hn =⇒ A for m, n ≥ 0, and H1, . . ., Hn being recursively of
the same format, and A atomic. Following the convention that outermost quantifiers are
implicit, Horn clauses A1 =⇒ . . . An =⇒ A are a special case of this.

Goals are also represented as rules: A1 =⇒ . . . An =⇒ C states that the sub-goals
A1, . . ., An entail the result C; for n = 0 the goal is finished. To allow C being a rule
statement itself, we introduce the protective marker # :: prop ⇒ prop, which is defined
as identity and hidden from the user. We initialize and finish goal states as follows:

C =⇒#C
(init)

#C
C

(finish)

Goal states are refined in intermediate proof steps until a finished form is achieved.
Here the two main reasoning principles are resolve, for back-chaining a rule against
a sub-goal (replacing it by zero or more sub-goals), and close, for solving a sub-goal
(finding a short-circuit with local assumptions). Below x stands for x1, . . ., xn (n ≥ 0).

rule: A a =⇒ B a

goal: (
∧

x. H x =⇒ B ′ x) =⇒ C
goal unifier: (λx. B (a x)) θ = B ′θ

(
∧

x. H x =⇒ A (a x)) θ =⇒ C θ
(resolve)

5

goal: (
∧

x. H x =⇒ A x) =⇒ C
assm unifier: A θ = Hi θ (for some Hi)

C θ
(close)

The following trace illustrates goal-oriented reasoning in Isabelle/Pure:

(A ∧ B =⇒ B ∧ A) =⇒ #(A ∧ B =⇒ B ∧ A) (init)
(A ∧ B =⇒ B) =⇒ (A ∧ B =⇒ A) =⇒ #. . . (resolve B =⇒ A =⇒ B ∧ A)

(A ∧ B =⇒ A ∧ B) =⇒ (A ∧ B =⇒ A) =⇒ #. . . (resolve A ∧ B =⇒ B)
(A ∧ B =⇒ A) =⇒ #. . . (close)

(A ∧ B =⇒ B ∧ A) =⇒ #. . . (resolve A ∧ B =⇒ A)
#. . . (close)

A ∧ B =⇒ B ∧ A (finish)

Compositions of close after resolve occurs quite often, typically in elimination
steps. Traditional Isabelle tactics accommodate this by a combined elim-resolve prin-
ciple. In contrast, Isar uses a slightly more refined combination, where the assumptions
to be closed are marked explicitly, using again the protective marker #:

sub-proof : G a =⇒ B a

goal: (
∧

x. H x =⇒ B ′ x) =⇒ C
goal unifier: (λx. B (a x)) θ = B ′θ

assm unifiers: (λx. Gj (a x)) θ = #Hi θ (for each marked Gj some #Hi)

(
∧

x. H x =⇒ G ′ (a x)) θ =⇒ C θ
(refine)

Here the sub-proof rule stems from the main fix-assume-show skeleton of Isar (cf.
§3.3): each assumption indicated in the text results in a marked premise G above.

3 The Isar proof language

Structured proofs are presented as high-level expressions for composing entities of Pure
(propositions, facts, and goals). The Isar proof language allows to organize reasoning
within the underlying rule calculus of Pure, but Isar is not another logical calculus!

Isar is an exercise in sound minimalism. Approximately half of the language is in-
troduced as primitive, the rest defined as derived concepts. The following grammar de-
scribes the core language (category proof), which is embedded into theory specification
elements such as theorem; see also §3.2 for the separate category statement.

theory-element = theorem statement proof | definition . . . | . . .
proof = prefix∗ proof method? element∗ qed method?

prefix = using facts and . . .

| unfolding facts and . . .

6

element = { element∗ }
| next
| note name = facts and . . .
| let pattern = term and . . .
| fix vars and . . .
| assm �rule� name: props and . . .
| then? claim

claim = have name: props and . . . proof
| show name: props and . . . proof

Here the and keyword separates simultaneous elements of the same kind.

The syntax for terms and propositions is inherited from Pure (and the object-logic).
A pattern is a term with schematic variables, to be bound by higher-order matching.

Facts may be referenced by name or proposition. E.g. the result of “have a: A
〈proof 〉” becomes available both as a and 〈A〉. Moreover, fact expressions may involve
attributes that modify either the theorem or the background context. For example, the
expression “a [OF b]” refers to the composition of two facts according to the resolve
inference of §2.2, while “a [intro]” declares a fact as introduction rule in the context.

The special name “this” always refers to the last result, as produced by note, assm,
have, or show. Since note occurs frequently together with then we provide some ab-
breviations: “from a” for “note a then”, and “with a” for “from a and this”.

The method category is essentially a parameter and may be populated later. Methods
use the facts indicated by then or using, and then operate on the goal state. Some basic
methods are predefined: “−” leaves the goal unchanged, “this” applies the facts as rules
to the goal, “rule” applies the facts to another rule and the result to the goal (both “this”
and “rule” refer to resolve of §2.2). The secondary arguments to “rule” may be specified
explicitly as in “(rule a)”, or picked from the context. In the latter case, the system first
tries rules declared as [elim] or [dest], followed by those declared as [intro].

The default method for proof is “rule” (arguments picked from the context), for
qed it is “−”. Further abbreviations for terminal proof steps are “by method1 method2”
for “proof method1 qed method2”, and “..” for “by rule”, and “.” for “by this”. The
unfolding element operates directly on the current facts and goal by applying equalities.

Block structure can be indicated explicitly by “{ . . . }”, although the body of a sub-
proof already involves implicit nesting. In any case, next jumps into the next section of
a block, i.e. it acts like closing an implicit block scope and opening another one.

The remaining elements fix and assm build up a local context (see §3.1), while
show refines a pending sub-goal by the rule resulting from a nested sub-proof (see
§3.3). Further derived concepts will support calculational reasoning (see §3.4).

3.1 Context elements

In judgments Γ ` ϕ of the primitive framework, Γ essentially acts like a proof context.
Isar elaborates this idea towards a higher-level notion, with separate information for
type-inference, term abbreviations, local facts, hypotheses etc.

7

The element fix x :: α declares a local parameter, i.e. an arbitrary-but-fixed entity of
a given type; in results exported from the context, x may become anything. The assm
element provides a general interface to hypotheses: “assm �rule� A” produces A ` A
locally, while the included inference rule tells how to discharge A from results A ` B
later on. There is no user-syntax for �rule�, i.e. assm may only occur in derived ele-
ments that provide a suitable inference internally. In particular, “assume A” abbreviates
“assm �discharge#� A”, and “def x ≡ a” abbreviates “fix x assm �expand� x ≡ a”,
involving the following inferences:

Γ ` B
Γ − A `#A =⇒ B

(discharge#)
Γ ` B x

Γ − (x ≡ a) ` B a
(expand)

The most interesting derived element in Isar is obtain [20, §5.3], which supports
generalized elimination steps in a purely forward manner. This is similar to consider
in Mizar [18, 16, 23, 25], although the way to get there is quite different, and the result
is not tied to particular notions of predicate logic (such as ∧, ∃).

The obtain element takes a specification of parameters x and assumptions A to be
added to the context, together with a proof of a reduction rule stating that this extension
is conservative (i.e. may be removed from closed results later on):

〈facts〉 obtain x where A x 〈proof 〉 ≡
have reduction:

∧
thesis. (

∧
x. A x =⇒ thesis) =⇒ thesis〉

proof −
fix thesis
assume [intro]:

∧
x. A x =⇒ thesis

show thesis using 〈facts〉 〈proof 〉
qed
fix x assm �eliminate reduction� A x

reduction: Γ `
∧

thesis. (
∧

x. A x =⇒ thesis) =⇒ thesis
result: Γ ∪ A y ` B

Γ ` B
(eliminate)

Here the name “thesis” is a specific convention for an arbitrary-but-fixed proposition;
in the primitive natural deduction rules shown before we have occasionally used C.
The whole statement of “obtain x where A x” may be read as a claim that A x may
be assumed for some arbitrary-but-fixed x. Also note that “obtain A and B” without
parameters is similar to “have A and B”, but the latter involves multiple sub-goals.

The subsequent Isar proof texts explain all context elements introduced above using
the formal proof language itself. After finishing a local proof within a block, we indi-
cate the exported result via note. This illustrates the meaning of Isar context elements
without goals getting in between.
{

fix x
have B x
〈proof 〉

}
note 〈

∧
x. B x〉

{
def x ≡ a
have B x
〈proof 〉

}
note 〈B a〉

{
assume A
have B
〈proof 〉

}
note 〈A =⇒ B〉

{
obtain x

where A x 〈proof 〉
have B 〈proof 〉

}
note 〈B〉

8

3.2 Structured statements

The category statement of top-level theorem specifications is defined as follows:

statement ≡ name: props and . . .
| context∗ conclusion

context ≡ fixes vars and . . .
| assumes name: props and . . .

conclusion ≡ shows name: props and . . .
| obtains vars and . . . where name: props and

A simple statement consists of named propositions. The full form admits local context
elements followed by the actual conclusions, such as “fixes x assumes A x shows B x”.
The final result emerges as a Pure rule after discharging the context:

∧
x. A x =⇒ B x.

The obtains variant is another abbreviation defined below; unlike obtain (cf. §3.1)
there may be several “cases” separated by “ ”, each consisting of several parameters
(vars) and several premises (props). This specifies multi-branch elimination rules.

obtains x where A x . . . ≡
fixes thesis
assumes [intro]:

∧
x. A x =⇒ thesis and . . .

shows thesis

Presenting structured statements in such an “open” format usually simplifies the
subsequent proof, because the outer structure of the problem is already laid out directly.
E.g. consider the following canonical patterns for shows and obtains, respectively:

theorem
fixes x and y
assumes A x and B y
shows C x y

proof −
from 〈A x〉 and 〈B y〉
show C x y 〈proof 〉

qed

theorem
obtains x and y
where A x and B y

proof −
have A a and B b 〈proof 〉
then show thesis ..

qed

Here local facts 〈A x〉 and 〈B y〉 are referenced immediately; there is no need to decom-
pose the logical rule structure again. In the second proof the final “then show thesis ..”
involves the local reduction rule

∧
x y. A x =⇒ B y =⇒ thesis for the particular instance

of terms a and b produced in the body.

3.3 Structured proof refinement

By breaking up the grammar for the Isar proof language, we may understand a proof text
as a linear sequence of individual proof commands. These are interpreted as transitions
of the Isar virtual machine (Isar/VM), which operates on a block-structured configura-
tion in single steps. This allows users to write proof texts in an incremental manner, and
inspect intermediate configurations for debugging.

9

The basic idea is analogous to evaluating algebraic expressions on a stack machine:
(a + b) · c then corresponds to a sequence of single transitions for each symbol (, a, +,
b,), ·, c. In Isar the algebraic values are facts or goals, and the operations are inferences.

The Isar/VM state maintains a stack of nodes, each node contains the local proof
context, the linguistic mode, and a pending goal (optional). The mode determines the
type of transition that may be performed next, it essentially alternates between for-
ward and backward reasoning. For example, in state mode Isar acts like a mathematical
scratch-pad, accepting declarations like fix, assume, and claims like have, show. A goal
statement changes the mode to prove, which means that we may now refine the problem
via unfolding or proof. Then we are again in state mode of a proof body, which may
issue show statements to solve pending sub-goals. A concluding qed will return to the
original state mode one level upwards. The subsequent Isar/VM trace indicates block
structure, linguistic mode, goal state, and inferences:

have A → B
proof

assume A
show B
〈proof 〉

qed

begin

begin
end
end

prove
state
state
prove
state
state

(A → B) =⇒#(A → B)
(A =⇒ B) =⇒#(A → B)

#(A → B)
A → B

(init)
(resolve (A =⇒ B) =⇒ A → B)

(refine #A =⇒ B)
(finish)

Here the refine inference from §2.2 mediates composition of Isar sub-proofs nicely.
Observe that this principle incorporates some degree of freedom in proof composition.
In particular, the proof body allows parameters and assumptions to be re-ordered, or
commuted according to Hereditary Harrop Form. Moreover, context elements that are
not used in a sub-proof may be omitted altogether. For example:

have
∧

x y. A x =⇒ B y =⇒ C x y
proof −

fix x and y
assume A x and B y
show C x y 〈proof 〉

qed

have
∧

x y. A x =⇒ B y =⇒ C x y
proof −

fix x assume A x
fix y assume B y
show C x y 〈proof 〉

qed

have
∧

x y. A x =⇒ B y =⇒ C x y
proof −

fix y assume B y
fix x assume A x
show C x y 〈proof 〉

qed

have
∧

x y. A x =⇒ B y =⇒ C x y
proof −

fix y assume B y
fix x
show C x y 〈proof 〉

qed

Such “peephole optimizations” of Isar texts are practically important to improve
readability, by rearranging contexts elements according to the natural flow of reasoning
in the body, while still observing the overall scoping rules.

This illustrates the basic idea of structured proof processing in Isar. The main mech-
anisms are based on natural deduction rule composition within the Pure framework. In
particular, there are no direct operations on goal states within the proof body. Moreover,
there is no hidden automated reasoning involved, just plain unification.

10

3.4 Calculational reasoning

The present Isar infrastructure is sufficiently flexible to support calculational reasoning
(chains of transitivity steps) as derived concept. The generic proof elements introduced
below depend on rules declared as [trans] in the context. It is left to the object-logic to
provide a suitable rule collection for mixed =, <, ≤, ⊂, ⊆ etc. Due to the flexibility
of rule composition (§2.2), substitution of equals by equals is covered as well, even
substitution of inequalities involving monotonicity conditions; see also [20, §6] and [2].

The generic calculational mechanism is based on the observation that rules such
as x = y =⇒ y = z =⇒ x = z proceed from the premises towards the conclusion in
a deterministic fashion. Thus we may reason in forward mode, feeding intermediate
results into rules selected from the context. The course of reasoning is organized by
maintaining a secondary fact called “calculation”, apart from the primary “this” already
provided by the Isar primitives. In the definitions below, OF is resolve (§2.2) with
multiple rule arguments, and trans refers to a suitable rule from the context:

also0 ≡ note calculation = this
alson+1 ≡ note calculation = trans [OF calculation this]

finally ≡ also from calculation

The start of a calculation is determined implicitly in the text: here also sets calculation
to the current result; any subsequent occurrence will update calculation by combination
with the next result and a transitivity rule. The calculational sequence is concluded via
finally, where the final result is exposed for use in a concluding claim.

Here is a canonical proof pattern, using have to establish the intermediate results:

have a = b 〈proof 〉
also have . . . = c 〈proof 〉
also have . . . = d 〈proof 〉
finally have a = d .

The term “. . .” above is a special abbreviation provided by the Isabelle/Isar syntax
layer: it statically refers to the right-hand side argument of the previous statement given
in the text. Thus it happens to coincide with relevant sub-expressions in the calculational
chain, but the exact correspondence is dependent on the transitivity rules being involved.

Symmetry rules such as x = y =⇒ y = x are like transitivities with only one premise.
Isar maintains a separate rule collection declared via [sym], to be used in fact expressions
“a [symmetric]”, or single-step proofs “assume x = y then have y = x ..”.

4 Example: First-order Predicate Logic

In order to commence a new object-logic within Isabelle/Pure we introduce abstract
syntactic categories i for individuals and o for object-propositions. The latter is embed-
ded into the language of Pure propositions by means of a separate judgment.

typedecl i
typedecl o

11

judgment
Tr :: o ⇒ prop (- 5)

Note that the object-logic judgement is implicit in the syntax: writing A produces Tr A
internally. From the Pure perspective this means “A is derivable in the object-logic”.

4.1 Equational reasoning

Equality is axiomatized as a binary predicate on individuals, with reflexivity as intro-
duction, and substitution as elimination principle. Note that the latter is particularly
convenient in a framework like Isabelle, because syntactic congruences are implicitly
produced by unification of B x against expressions containing occurrences of x.

axiomatization
equal :: i ⇒ i ⇒ o (infix = 50)

where
refl [intro]: x = x and
subst [elim]: x = y =⇒ B x =⇒ B y

Substitution is very powerful, but also hard to control in full generality. We derive some
common symmetry / transitivity schemes of as particular consequences.

theorem sym [sym]:
assumes x = y
shows y = x

proof −
have x = x ..
with 〈x = y〉 show y = x ..

qed

theorem forw-subst [trans]:
assumes y = x and B x
shows B y

proof −
from 〈y = x〉 have x = y ..
from this and 〈B x〉 show B y ..

qed

theorem back-subst [trans]:
assumes B x and x = y
shows B y

proof −
from 〈x = y〉 and 〈B x〉
show B y ..

qed

theorem trans [trans]:
assumes x = y and y = z
shows x = z

proof −

12

from 〈y = z〉 and 〈x = y〉
show x = z ..

qed

4.2 Group theory

As an example for equational reasoning we consider some bits of group theory. The
subsequent locale definition postulates group operations and axioms; we also derive
some consequences of this specification.

locale group =
fixes prod :: i ⇒ i ⇒ i (infix ◦ 70)

and inv :: i ⇒ i ((-−1) [1000] 999)
and unit :: i (1)

assumes assoc: (x ◦ y) ◦ z = x ◦ (y ◦ z)
and left-unit: 1 ◦ x = x
and left-inv: x−1 ◦ x = 1

begin

theorem right-inv: x ◦ x−1 = 1
proof −

have x ◦ x−1 = 1 ◦ (x ◦ x−1) by (rule left-unit [symmetric])
also have . . . = (1 ◦ x) ◦ x−1 by (rule assoc [symmetric])
also have 1 = (x−1)−1 ◦ x−1 by (rule left-inv [symmetric])
also have . . . ◦ x = (x−1)−1 ◦ (x−1 ◦ x) by (rule assoc)
also have x−1 ◦ x = 1 by (rule left-inv)
also have ((x−1)−1 ◦ . . .) ◦ x−1 = (x−1)−1 ◦ (1 ◦ x−1) by (rule assoc)
also have 1 ◦ x−1 = x−1 by (rule left-unit)
also have (x−1)−1 ◦ . . . = 1 by (rule left-inv)
finally show x ◦ x−1 = 1 .

qed

theorem right-unit: x ◦ 1 = x
proof −

have 1 = x−1 ◦ x by (rule left-inv [symmetric])
also have x ◦ . . . = (x ◦ x−1) ◦ x by (rule assoc [symmetric])
also have x ◦ x−1 = 1 by (rule right-inv)
also have . . . ◦ x = x by (rule left-unit)
finally show x ◦ 1 = x .

qed

Reasoning from basic axioms is notoriously tedious. Our proofs work by producing
various instances of the given rules (potentially the symmetric form) using the pattern
“have eq by (rule r)” and composing the chain of results via also/finally. These steps
may involve any of the transitivity rules declared in §4.1, namely trans in combining
the first two results in right-inv and in the final steps of both proofs, forw-subst in the
first combination of right-unit, and back-subst in all other calculational steps.
Occasional substitutions in calculations are adequate, but should not be over-emphasized.
The other extreme is to compose a chain by plain transitivity only, with replacements
occurring always in topmost position. For example:

13

have x ◦ 1 = x ◦ (x−1 ◦ x) unfolding left-inv ..
also have . . . = (x ◦ x−1) ◦ x unfolding assoc ..
also have . . . = 1 ◦ x unfolding right-inv ..
also have . . . = x unfolding left-unit ..
finally have x ◦ 1 = x .

Here we have re-used the built-in mechanism for unfolding definitions in order to nor-
malize each equational problem. A more realistic object-logic would include proper
setup for the Simplifier, the main automated tool for equational reasoning in Isabelle.
Then “unfolding left-inv ..” would become “by (simp add: left-inv)” etc.

end

4.3 Propositional logic

We axiomatize basic connectives of propositional logic: implication, disjunction, and
conjunction. The associated rules are modeled after Gentzen’s natural deduction [4].

axiomatization
imp :: o ⇒ o ⇒ o (infixr → 25) where
impI [intro]: (A =⇒ B) =⇒ A → B and
impD [dest]: (A → B) =⇒ A =⇒ B

axiomatization
disj :: o ⇒ o ⇒ o (infixr ∨ 30) where
disjE [elim]: A ∨ B =⇒ (A =⇒ C) =⇒ (B =⇒ C) =⇒ C and
disjI1 [intro]: A =⇒ A ∨ B and
disjI2 [intro]: B =⇒ A ∨ B

axiomatization
conj :: o ⇒ o ⇒ o (infixr ∧ 35) where
conjI [intro]: A =⇒ B =⇒ A ∧ B and
conjD1 [dest]: A ∧ B =⇒ A and
conjD2 [dest]: A ∧ B =⇒ B

The conjunctive destructions have the disadvantage that decomposing A ∧ B involves
an immediate decision which component should be projected. The more convenient
simultaneous elimination A ∧ B =⇒ (A =⇒ B =⇒ C) =⇒ C can be derived as follows:

theorem conjE [elim]:
assumes A ∧ B
obtains A and B

proof
from 〈A ∧ B〉 show A ..
from 〈A ∧ B〉 show B ..

qed

Here is an example of swapping conjuncts with a single intermediate elimination step:

assume A ∧ B
then obtain B and A ..
then have B ∧ A ..

14

Note that the analogous elimination for disjunction “assumes A ∨ B obtains A B”
coincides with the original axiomatization of disjE.

We continue propositional logic by introducing absurdity with its characteristic elimi-
nation. Plain truth may then be defined as a proposition that is trivially true.

axiomatization
false :: o (⊥) where
falseE [elim]: ⊥ =⇒ A

definition
true :: o (>) where
> ≡ ⊥→⊥

theorem trueI [intro]: >
unfolding true-def ..

Now negation represents an implication towards absurdity:

definition
not :: o ⇒ o (¬ - [40] 40) where
¬ A ≡ A →⊥

theorem notI [intro]:
assumes A =⇒⊥
shows ¬ A

unfolding not-def
proof

assume A
then show ⊥ by (rule 〈A =⇒⊥〉)

qed

theorem notE [elim]:
assumes ¬ A and A
shows B

proof −
from 〈¬ A〉 have A →⊥ unfolding not-def .
from 〈A →⊥〉 and 〈A〉 have ⊥ ..
then show B ..

qed

4.4 Classical logic

Subsequently we state the principle of classical contradiction as a local assumption.
Thus we refrain from forcing the object-logic into the classical perspective. Within that
context, we may derive well-known consequences of the classical principle.

locale classical =
assumes classical: (¬ C =⇒ C) =⇒ C

begin

15

theorem double-negation:
assumes ¬ ¬ C
shows C

proof (rule classical)
assume ¬ C
with 〈¬ ¬ C〉 show C ..

qed

theorem tertium-non-datur: C ∨ ¬ C
proof (rule double-negation)

show ¬ ¬ (C ∨ ¬ C)
proof

assume ¬ (C ∨ ¬ C)
have ¬ C
proof

assume C then have C ∨ ¬ C ..
with 〈¬ (C ∨ ¬ C)〉 show ⊥ ..

qed
then have C ∨ ¬ C ..
with 〈¬ (C ∨ ¬ C)〉 show ⊥ ..

qed
qed

These examples illustrate both classical reasoning and non-trivial propositional proofs
in general. All three rules characterize classical logic independently, but the original rule
is already the most convenient to use, because it leaves the conclusion unchanged. Note
that (¬C =⇒C) =⇒C fits again into our format for eliminations, despite the additional
twist that the context refers to the main conclusion. So we may write classical as the
Isar statement “obtains ¬ thesis”. This also explains nicely how classical reasoning
really works: whatever the main thesis might be, we may always assume its negation!

end

4.5 Quantifiers

Representing quantifiers is easy, thanks to the higher-order nature of the underlying
framework. According to the well-known technique introduced by Church [3], quanti-
fiers are operators on predicates, which are syntactically represented as λ-terms of type
i ⇒ o. Specific binder notation relates All (λx. B x) to ∀ x. B x etc.

axiomatization
All :: (i ⇒ o)⇒ o (binder ∀ 10) where
allI [intro]: (

∧
x. B x) =⇒ ∀ x. B x and

allD [dest]: (∀ x. B x) =⇒ B a

axiomatization
Ex :: (i ⇒ o)⇒ o (binder ∃ 10) where
exI [intro]: B a =⇒ (∃ x. B x) and
exE [elim]: (∃ x. B x) =⇒ (

∧
x. B x =⇒ C) =⇒ C

16

The exE rule corresponds to an Isar statement “assumes ∃ x. B x obtains x where B x”.
In the following example we illustrate quantifier reasoning with all four rules:

theorem
assumes ∃ x. ∀ y. R x y
shows ∀ y. ∃ x. R x y

proof — ∀ introduction
obtain x where ∀ y. R x y using 〈∃ x. ∀ y. R x y〉 .. — ∃ elimination
fix y have R x y using 〈∀ y. R x y〉 .. — ∀ destruction
then show ∃ x. R x y .. — ∃ introduction

qed

4.6 Further definitions

Real applications routinely work with derived concepts defined in terms of existing
principles. This is illustrated below by an artificial notion of frob P Q for logical predi-
cates P and Q, where frob P Q holds whenever P x and Q y hold for some x and y. The
most basic definition rephrases this idea in terms of connectives of predicate logic:

definition frob P Q ≡ ∃ x y. P x ∧ Q y

Reasoning with frob P Q demands characteristic rules, which are derived as follows:

theorem frobI [intro]:
assumes P x and Q y
shows frob P Q

proof −
from 〈P x〉 and 〈Q y〉 have P x ∧ Q y ..
then have ∃ y. P x ∧ Q y ..
then have ∃ x y. P x ∧ Q y ..
then show frob P Q unfolding frob-def .

qed

theorem frobE [elim]:
assumes frob P Q
obtains x and y where P x and Q y

proof −
from 〈frob P Q〉 have ∃ x y. P x ∧ Q y unfolding frob-def .
then obtain x where ∃ y. P x ∧ Q y ..
then obtain y where P x ∧ Q y ..
then obtain P x and Q y ..
then show thesis ..

qed

Now we can use frob in applications, without appealing to the primitive definition again:

assume P a and Q b
then have frob P Q ..

assume frob P Q
then obtain x y where P x and Q y ..

17

The above transformation of a definition into canonical reasoning patterns works,
but is still somewhat cumbersome. This is typically the place to ask for automated
reasoning support to deduce frobI and frobE from frob-def in a single invocation each.
For example, the following typically appears in applications of Isabelle/HOL [9]:

definition frob P Q ≡ ∃ x y. P x ∧ Q y

theorem frobI [intro]: P x =⇒ Q y =⇒ frob P Q
unfolding frob-def by blast

theorem frobE [elim]: frob P Q =⇒ (
∧

x y. P x =⇒ Q y =⇒ C) =⇒ C
unfolding frob-def by blast

Here the blast method refers to generic Classical Reasoning facilities of Isabelle [15]
which may be instantiated to object-logics that provide a rule for classical contradiction.
Any realistic object-logic would certainly incorporate such proof tools.

Nevertheless we argue that automated reasoning does not address the above issue
adequately. First, there are still three variants of essentially the same logical specifica-
tion (definition / introduction / elimination). Second, unbounded proof search tends to
introduce a factor of uncertainty (it may fail unexpectedly for bigger applications).

Going beyond predicate logic, we propose to use inductive definitions to express the
original idea of frob P Q more directly. The set-theoretic version of inductive definitions
in Isabelle/HOL [13] has been recently refined by Stefan Berghofer to work directly
with predicates. So we define frob P Q as a proposition depending on parameters:

inductive frob for P Q where P x =⇒ Q y =⇒ frob P Q

Isabelle/HOL turns this specification into a primitive definition and recovers the in-
troduction rule and its inversion (the elimination rule) as theorems. Since these are
declared as [intro] and [elim], we may reason with frob P Q immediately as seen be-
fore. The inductive element uses deterministic proof construction inside, which means
it scales up to larger applications, avoiding the dangers of full automated reasoning.

Inductive definitions are far more powerful than illustrated here. More advanced
applications involve recursive occurrences of the inductive property, and induction be-
comes the primary proof principle. Inductive proofs of structured statements raise some
additional questions that are addressed by the induct method of Isabelle/Isar [21].

5 Conclusion

Isabelle/Isar has been successfully used in much larger applications than the examples
presented here. The general concepts for producing theories bit-by-bit are essentially
the same, starting from primitive notions and continuing towards complex formaliza-
tions. So the common style of Isar proof texts has been represented adequately here.

More elaborate applications will require advanced proof methods (like the generic
Simplifier and Classical Reasoner included in Isabelle, specific procedures for frag-
ments of arithmetic etc.), and further derived specification mechanism (like inductive
shown above). The Isar framework is sufficiently flexible to incorporate such additional
components built around the Pure framework.

18

Apart from gaining this flexibility, the impact of Pure on Isar goes even further: the
very idea of composing Isar sub-proofs stems from rule refinement in Pure. In retro-
spection, structured natural deduction appears to have been present in Pure all the time,
we only had make it accessible to the user. Thus the original idea of Isabelle [11, 12] to
challenge the predominance of classical first-order logic is continued by Isabelle/Isar.

This “puristic” approach to reasoning, without auxiliary logical connectives getting
in between, can be observed in the obtain / obtains element in its extreme. Here the
user works directly with collections of local parameters and premises, without having
to introduce and eliminate auxiliary propositions involving ∃ , ∧, ∨ first.

On the other hand, if such conglomerates of logical connectives need to be accom-
modated by single steps, Isar will require extra verbosity in repeating some intermedi-
ate statements. In this respect, Isar is “declarative” in an extreme sense, where Mizar
proofs would admit immediate transformations of the pending problem. Consequently,
Mizar usually proceeds quicker in decomposing statements of predicate logic, but Isar
does not require any such decomposition, if problems are presented in Pure form. Apart
from being theoretically pleasing, the Pure approach also turns out as a genuine practi-
cal advantage, e.g. in structured induction proofs involving compound statements [21].

So Isar proofs emphasize statements from the user application, which are composed
directly according to natural deduction principles. The need of predicate logic as an
auxiliary device is significantly reduced, replacing it by primary proof elements. This is
an important insight gained from the experience with Isabelle/Isar in the past few years.

References

[1] C. Ballarin. Locales and locale expressions in Isabelle/Isar. In S. Berardi et al., editors,
Types for Proofs and Programs (TYPES 2003), LNCS 3085, 2004.

[2] G. Bauer and M. Wenzel. Calculational reasoning revisited — an Isabelle/Isar experience.
In R. J. Boulton and P. B. Jackson, editors, Theorem Proving in Higher Order Logics:
TPHOLs 2001, LNCS 2152, 2001.

[3] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 1940.
[4] G. Gentzen. Untersuchungen über das logische Schließen. Math. Zeitschrift, 1935.
[5] J. Harrison. A Mizar mode for HOL. In J. Wright, J. Grundy, and J. Harrison, editors,

Theorem Proving in Higher Order Logics: TPHOLs ’96, LNCS 2152, 1996.
[6] F. Kammüller, M. Wenzel, and L. C. Paulson. Locales: A sectioning concept for Isabelle.

In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors, Theorem Proving
in Higher Order Logics (TPHOLs ’99), LNCS 1690, 1999.

[7] D. Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. Journal of Logic and Computation, 1(4), 1991.

[8] T. Nipkow. Structured proofs in Isar/HOL. In H. Geuvers and F. Wiedijk, editors, Types
for Proofs and Programs (TYPES 2002), LNCS 2646, 2003.

[9] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. LNCS 2283. 2002.

[10] L. C. Paulson. Natural deduction as higher-order resolution. Journal of Logic Program-
ming, 3, 1986.

19

[11] L. C. Paulson. The foundation of a generic theorem prover. Journal of Automated Reason-
ing, 5(3):363–397, 1989.

[12] L. C. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor, Logic and
Computer Science. Academic Press, 1990.

[13] L. C. Paulson. A fixedpoint approach to implementing (co)inductive definitions. In
A. Bundy, editor, Automated Deduction (CADE-12), LNAI 814, 1994.

[14] L. C. Paulson. Generic automatic proof tools. In R. Veroff, editor, Automated Reasoning
and its Applications: Essays in Honor of Larry Wos. MIT Press, 1997.

[15] L. C. Paulson. A generic tableau prover and its integration with Isabelle. Journal of Uni-
versal Computer Science, 5(3), 1999.

[16] P. Rudnicki. An overview of the MIZAR project. In 1992 Workshop on Types for Proofs
and Programs. Chalmers University of Technology, Bastad, 1992.

[17] P. Schroeder-Heister. A natural extension of natural deduction. Journal of Symbolic Logic,
49(4), 1984.

[18] A. Trybulec. Some features of the Mizar language. Presented at a workshop in Turin, 1993.
[19] M. Wenzel. Isar — a generic interpretative approach to readable formal proof documents.

In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors, Theorem Proving
in Higher Order Logics: TPHOLs’99, LNCS 1690, 1999.

[20] M. Wenzel. Isabelle/Isar — a versatile environment for human-readable formal proof doc-
uments. PhD thesis, Institut für Informatik, TU München, 2002.

[21] M. Wenzel. Structured induction proofs in Isabelle/Isar. In J. Borwein and W. Farmer,
editors, Mathematical Knowledge Management (MKM 2006), LNAI 4108, 2006.

[22] M. Wenzel and L. C. Paulson. Isabelle/Isar. In F. Wiedijk, editor, The Seventeen Provers
of the World, LNAI 3600. 2006.

[23] F. Wiedijk. Mizar: An impression. Unpublished, 1999.
[24] F. Wiedijk. Mizar light for HOL light. In R. J. Boulton and P. B. Jackson, editors, Theorem

Proving in Higher Order Logics: TPHOLs 2001, LNCS 2152, 2001.
[25] F. Wiedijk. Writing a Mizar article in nine easy steps. Unpublished, 2006.
[26] F. Wiedijk and M. Wenzel. A comparison of the mathematical proof languages Mizar and

Isar. Journal of Automated Reasoning, 29(3-4), 2002.

20

	Isabelle/Isar --- a generic framework for human-readable proof documents
	Makarius Wenzel

