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Abstract. Historically, the LCF tradition of interactive theorem prov-
ing was tied to the read-eval-print loop, with sequential and synchronous
evaluation of prover commands given on the command-line. This user-
interface technology was adequate when R. Milner introduced his LCF
proof assistant in the 1970-ies, but it severely limits the potential of
current multicore hardware and advanced IDE front-ends.
Isabelle/PIDE breaks this loop and retrofits the read-eval-print phases
into an asynchronous model of document-oriented proof processing. In-
stead of feeding a sequence of individual commands into the prover pro-
cess, the primary interface works via edits over a family of document
versions. Execution is implicit and managed by the prover on its own ac-
count in a timeless and stateless manner. Various aspects of interactive
proof checking are scheduled according to requirements determined by
the front-end perspective on the proof document, while making adequate
use of the CPU resources on multicore hardware on the back-end.
Recent refinements of Isabelle/PIDE provide an explicit concept of
asynchronous print functions over existing proof states. This allows
to integrate long-running or potentially non-terminating tools into the
document-model. Applications range from traditional proof state out-
put (which may consume substantial time in interactive development) to
automated provers and dis-provers that report on existing proof docu-
ment content (e.g. Sledgehammer, Nitpick, Quickcheck in Isabelle/HOL).
Moreover, it is possible to integrate query operations via additional GUI
panels with separate input and output (e.g. for Sledgehammer or find-
theorems). Thus the Prover IDE provides continuous proof processing,
augmented by add-on tools that help the user to continue writing proofs.

1 Introduction

Already 10 years ago, multicore hardware has invaded the consumer market, and
imposed an ever increasing burden on application developers to keep up with
changed rules for Moore’s Law : continued speedup is no longer for free, but has
to be implemented in the application by explicit multi-processing. Isabelle has
started to support parallel proof-processing in batch-mode already in 2006/2007,
and is today routinely using multiple cores, with an absolute speedup factor of
the order of 10 (on 16 cores). See also [17] for the situation of Isabelle2013.
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How does parallel processing affect user interaction? After the initial success
of parallel batch-mode in Isabelle, it became clear in 2008 that substantial re-
forms are required in the interaction model, to loosen the brakes that are built
into the traditional read -eval -print loop. The following aspects are characteristic
to asynchronous interaction, in contrast to parallel batch processing:

– demand for real-time reactivity (at the order of 10–100 ms);
– instantaneous rendering of formal content in GUI components;
– continued edits of theory sources, while the prover is processing them;
– treatment of unfinished or failed proof attempts (error recovery);
– cancellation of earlier attempts that have become irrelevant (interrupts);
– orchestration of add-on proof tools that help in the editing process.

The present paper reports on results of more than 5 years towards asyn-
chronous prover interaction, with recent improvements that integrate add-on
proof tools via asynchronous print functions. All concepts are implemented in the
current Isabelle/PIDE generation of Isabelle2013-2 (December 2013)1. The PIDE
framework is implemented as a combination of Isabelle/ML and Isabelle/Scala,
with Isabelle/jEdit the main application and default user-interface. The manual
[14] provides further explanations and screenshots; the Documentation panel in
Isabelle/jEdit includes some examples that help to get started.

The front-end technology of Isabelle/jEdit imitates the classic IDE approach
seen in Eclipse, NetBeans, IntelliJ IDEA, MS Visual Studio etc. Fresh users of
Isabelle who are familiar with such mainstream IDEs usually manage to get
acquainted quickly, without learning about Emacs and the TTY loop first. In
contrast, seasoned users of ITP systems may have to spend some efforts to
unlearn TTY mode and manual scheduling of proof commands.

Subsequently, we assume some basic acquaintance with the look-and-feel of
Isabelle/jEdit, but explanations of PIDE concepts are meant to extrapolate be-
yond this particular combination of prover back-end and editor front-end. Since
Isabelle had similar starting conditions as other proof assistants several years
ago, like Coq [18, §4], the HOL family [18, §1], PVS [18, §3], or ACL2 [18, §8],
there are no fundamental reasons why such seemingly drastic steps from the
TTY loop to proper IDE interaction cannot be repeated elsewhere. These expla-
nations of PIDE concepts are meant to help other systems to catch up, although
the level of sophistication in Isabelle/PIDE today poses some challenges.

2 PIDE Architecture

PIDE stands for “Prover IDE”: it is the common label for efforts towards ad-
vanced user-interaction in Isabelle since 2009. The main application of the PIDE
framework today is Isabelle/jEdit [13, 14], but there are already some alternative
front-ends: Isabelle/Eclipse by A. Velykis, and Clide by C. Lüth and M. Ring
[7, 8]. An experiment to connect Coq as alternative back-end is reported in [15].

1 http://isabelle.in.tum.de/website-Isabelle2013-2
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The general aims of PIDE are to renovate and reform interactive theorem
proving for new generations of users, and to catch up with technological shifts
(multicore hardware). The PIDE approach is document-oriented : all operations
by the user, the editor, the prover, and add-on tools are centered around theory
sources that are augmented by formal markup produced by proof processing.
Document markup for old-school proof assistants is further explained in [11].

The Connectivity Problem. Proof assistants are typically implemented in
functional programming languages (like LISP, SML, OCaml, Haskell) that are
not immediately connected to the outer world. If built-in interface technology
exists, it is typically limited in scope and functionality: e.g. LablGtk for OCaml
uses old GTK 2.x instead of GTK 3.x, and GTK is at home only on Linux.

Even if we could assume the ideal multi-platform GUI framework within our
prover programming environment, what we really need is a viable text editor or
IDE to work with. The Java platform is able to deliver that, e.g. with text editors
like jEdit, full IDEs like Eclipse, NetBeans, IntelliJ IDEA, and web frameworks
like Play (for remote applications). This observation has lead to the following
bilingual approach of PIDE with Scala and ML (figure 1).
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Fig. 1. The bilingual approach of PIDE: Scala and ML connected via private protocol.

Here the existing ML prover platform is taken for granted, but its scope ex-
tended into the JVM world with the help of Scala [9]. The manner and style
of strongly-typed higher-order functional programming in ML is continued with
Scala. Both sides happen to provide some tools and libraries for parallel program-
ming with threads, processes, external communication, which serve as starting
point for further PIDE functionality. A private protocol connects the two worlds:
it consists of two independent streams of protocol operations that are a-priori
unsynchronized. The conceptual document-model that is implemented on both
sides is accessible by some public APIs, both in Scala and ML.

It is an important PIDE principle to cut software components at these APIs,
and not the process boundaries with the protocol. API functions in ML or Scala
are statically typed and more abstract than the communication messages of the
implementation. APIs are more stable under continuous evolution than a pub-
lic protocol. The combined Scala and ML sources of Isabelle/PIDE are main-
tained side-by-side within the same code repository: e.g. src/Pure/General/
pretty.scala and src/Pure/General/pretty.ML for classic pretty-printing in
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the style of D.C. Oppen (with support for document markup and font-metrics).
Tools using the PIDE infrastructure may reside in ML (e.g. proof tools that
output document markup), or in Scala (e.g. rendering for particular document
content), or combine both worlds.

PIDE Protocol Layers. Conceptually, the two processes are connected by two
independent streams of protocol functions. These streams are essentially sym-
metric, but input from the editor to the prover is called protocol command, and
output from the prover to the editor is called protocol message. Syntactically,
a protocol function consists of a name and argument list (arbitrary strings).
Semantically, the stream of protocol functions is applied consecutively to a pri-
vate protocol state on each side; there are extensible tables in Isabelle/Scala and
Isabelle/ML to define the meaning for protocol functions.

The arguments of protocol functions usually consist of algebraic datatypes
(tuples and recursive variants). This well-known ML concept is represented in
Scala by case classes [9, §7.2]. The PIDE implementation starts out with raw
byte streams between the processes, then uses YXML transfer syntax for untyped
XML trees [11, §2.3], and finally adds structured XML/ML data representation
via some combinator library. Further details are explained in [15], including
a full implementation on a few pages of OCaml; the Standard ML version is
part of Isabelle/PIDE. This elementary PIDE protocol stack is easily ported to
other functional languages to connect different back-ends, but actual document-
oriented interaction requires further reforms of the prover.

Approximative Rendering of Document-snapshots. Assume for the mo-
ment that the prover already supports document edits, and knows how to process
partial theory content, while producing feedback of formal checking via messages
(plain text output or markup over the original sources). How does the editor ren-
der that continuous flow of information in its single physical instance of the GUI,
without getting blocked by the prover?

The classic approach of Proof General [3] makes a tight loop around each
prover command, and synchronizes a full protocol round-trip for each transac-
tion. This often leads to situations where the editor is non-reactive, not to speak
of the “locked region” of processed text where the user is not allowed to edit.

PIDE avoids blocking by a notion of document snapshot and convergence of
content, instead of synchronization. See also figure 2.

The editor and the prover are independent processes that exchange informa-
tion monotonically: each side uses its present knowledge to proceed, and propa-
gates results to its counterpart. The front-end ultimately needs to render editor
buffers (painting text with colors, squiggly underlines etc.) by interpreting the
source text with its accumulated markup. The flow of information is as follows:

1. editor knows text T , markup M , and edits ∆T (produced by user)
2. apply edits: T ′ = T +∆T (immediately in the editor)
3. formal processing of T ′: ∆M after time ∆t (eventually in the prover)
4. immediate approximation: M̃ = revert ∆T ; retrieve M ; convert ∆T
5. eventual convergence after time ∆t: M ′ = M +∆M
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Fig. 2. Approximation and convergence of markup produced by proof processing.

This means the editor is streaming edits as document updates towards the
prover, which processes them eventually to give feedback via semantic markup.
Without waiting for the prover, the document snapshot of the editor uses the
edit-distance over the text to stretch or shrink an old version of markup into the
space of the new text: revert transforms text positions to move before edits, and
convert to move after edits. The PIDE Scala API allows to make a document
snapshot at any time: it remains an immutable value, while other document
processing continues in parallel. Thus GUI painting works undisturbed.

A document snapshot is outdated if the edit-distance is non-empty or there is
a pending “command-exec assignment” by the prover (see also §3). Text shown in
an outdated situation is painted in Isabelle/jEdit with grey background. The user
typically sees that for brief instances of time, while edits are passed through the
PIDE protocol phases. Longer periods of “editor grey-out” (without blocking)
may happen in practice, when the prover is unreactive due to heavy load of ML
threads or during garbage collection of the ML run-time system.

Decoupling the editor and prover in asynchronous PIDE document opera-
tions provides sufficient freedom to schedule heavy-duty proof checking tasks.
The prover is enabled to orchestrate parallel proof processing [17] and addi-
tional diagnostic tools (see also §5). The concrete implementation requires a
fair amount of performance tuning and adjustment of real-time parameters and
delays, to make the user-experience smooth on a given range of hardware: in
Isabelle2013-2 this is done for high-end laptops or work-stations with 2–8 cores.
Continuous proof processing becomes a highly interactive computer game and
thus introduces genuinely new challenges to ITP. Even the graphics performance
of the underlying OS platform becomes a relevant factor, since many GUI details
need to be updated frequently as the editor or prover changes its state.

3 Document Content

The subsequent description of document content refers to data structures man-
aged by a PIDE-compliant prover like Isabelle. This defines declarative outlines
and administrative information for eventual processing: part of that is reported
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to the front-end as “command-exec assignment”. Further details of actual exe-
cution management are the sole responsibility of the prover (see §4).

3.1 Prover Command Transactions

The theory and proof language of Isabelle and other LCF-style systems consists
of a sequence of commands. This accidental structure can be explained histori-
cally and is not challenged here. Existing implementations assume that format,
and PIDE aims to minimize the requirement to rework old tools.

A theory consists of some text that is partitioned into a sequence of command
spans as in Proof General [3]. The Isar proof language [18, §6] demonstrates that
linearity is no loss of generality: block structure may be represented by a depth-
first traversal of the intended tree, using an explicit stack within the proof state.
Note that the superficial linearity of proof documents is in contrast to Mizar
articles [18, §2], and most regular programming languages, but PIDE is focused
on LCF-style proof assistants.

The internal structure of command transactions with distinctive phases of
read, eval, print is discussed further in [16]. For PIDE proof documents, these
phases are elaborated and specifically managed by the system. At first approxi-
mation, a command transaction is a partial function tr from some toplevel state
st0 to st1, with sequential composition of its phases as shown in figure 3.

st0
read−→ eval−→ print−→ st1

read−→ eval−→ print−→ st2
read−→ eval−→ print−→ st3 · · ·

Fig. 3. Sequential scheduling of commands: read, eval, print loop.

Looking more closely, the separate phases may be characterized by their
relation to the toplevel state that is manipulated here:

tr st0 =
let eval = read () in — read does not require st0
let st1 = eval st0 in — main transition st0 −→ st1
let () = print st1 in st1 — print does not change st1

For PIDE, the actual work done in read, eval, print does not matter, e.g.
commands may put extra syntactic analysis or diagnostic output into eval. The
key requirement is that all operations are purely functional wrt. the toplevel state
seen as immutable value, optionally with observable output via managed message
channels (not physical stdout). These assumptions are violated by traditional
LCF-style provers, including classic Isabelle in the 1990s, so this is an important
starting point for reforms of other proof assistants. Command transactions need
to be clearly isolated, and operate efficiently in a timeless and stateless manner.

A simple document-model would merely maintain a partially evaluated se-
quence of command transactions, and interleave its continued editing and execu-
tion. This could even work within a sequential prover process, with asynchronous
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signals for new input, but without multi-threading. On the other hand, explicit
threads can simplify the implementation and provide additional potential for
performance. In fact, the parallel aspect of proof processing [17] turns out rela-
tively simple, compared to the extra entropy and hazards of user-interaction.

3.2 Document Nodes

Proof documents have additional structure that helps to organize continuous
processing efficiently, to provide quick feedback to the user during editing.

The global structure is that of a theory graph, which happens to be acyclic
due to the foundational order of theory content in LCF-style provers. The node
dependencies are given as a list of imports, cf. the syntax of Isabelle theory
headers “theory A imports B1 . . . Bn”. Parallel traversal of DAGs is a starting
point to gain performance and scalability for big theory libraries.

The local structure of each document node consists of command entries,
perspective and overlays, which are described below.

Node entries are given as a linear sequence of commands (§3.1), but each
command span is interned and represented by a unique command-id. There is a
global mapping from command-id to the corresponding command transaction,
which is updated before applying document edits. This indirection avoids redun-
dant invocation of read in incremental processing of evolving document versions,
since command positions change more often than the content of command spans.

A command-id essentially refers to some function tr on the toplevel state. In
different document versions it may be applied in different situations. A particular
command application tr st0 is called exec and identified via some exec-id, which
serves as a physical transaction identifier of the running command. The exec-id
identifies both the command execution and its result state st1 = tr st0, including
observable output (prover messages are always decorated by the exec-id).

For a given document version, the command-exec assignment relates each
command-id to a list of exec-ids. An empty list means the command is unas-
signed and the prover will not attempt to execute it. A non-empty list refers to
the main eval as head, and additional prints as tail. Coincidence of execs means
that in the overall document history, a command-id has the same exec-id in mul-
tiple versions. This re-use of old execution fragments in new versions typically
happens, when a shared prefix of commands is unaffected by edits applied else-
where (see also figure 4). The prover is free to execute commands from different
document versions, independently of the one displayed by the editor.

The command-exec assignment is vital for the editor to determine which
exec results belong to which command in a particular document version, in
order to display the content to the user. Whenever this information is updated
on the prover side, the editor needs to be informed about it. Edits that are
not yet acknowledged by the corresponding assignment lead to an outdated
document snapshot (§2). This intermediate situation is now more often visible
in Isabelle/PIDE, because execution is strictly monotonic: while the document is
updated the prover continues running undisturbed, so the PIDE protocol thread
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needs to compete with ML worker threads. In the past, execution was canceled
and restarted, but this is in conflict with long-running eval and prints (cf. §5).

Node perspective specifies visible and required commands syntactically within
the document. The set of visible commands is typically determined by open text
windows of the editor. Required commands may be ticked separately by some
GUI panel (Isabelle/jEdit does that only for document nodes, meaning the last
command entry of a theory.) Visible commands are particularly interesting for
the user and need full execution of read -eval -print. Required commands are only
needed to get there: read -eval is sufficient to produce the subsequent toplevel
state. The set of required commands is implicitly completed wrt. the transitive
closure of node imports and the precedence relation of command entries.

Commands that are neither visible nor required are left unassigned, and thus
remain unevaluated. There is usually a long tail-end of the overall document
that is presently unassigned. Likewise, there is a long import chain, where the
previous assignment is not changed, because edits are typically local to the visible
part. This differentiation of document content by means of the perspective is
important for scalability, in order to support continuous processing of hundreds
of theory nodes, each with thousands of command entries.

Node overlays assign print functions (with arguments) to existing command
entries within the document. The idea is to analyze the toplevel state at the point
after eval via additional prints. Document overlays may be added or deleted,
without changing the underlying sequence of toplevel states.

The prover also maintains a global table of implicit print functions (with
empty arguments), which are added automatically to any visible command in
the current perspective. This may be understood as a mechanism for default
overlays for all commands seen in the document.

Given st1 = eval st0, each print function application print st1 is identified by
a separate exec-id. The observable result of an assigned command is the union
of results from the exec-ids of its eval and all its prints. This union is formed
by the editor whenever it retrieves information from a document snapshot (§2).
It may combine eval and prints stemming from different document versions due
to exec coincidence within the ML process.

3.3 Document Edits

Edits emerge in the editor by inserting or removing intervals of plain text,
but these are preprocessed to operate on command entries with correspond-
ing command-ids (§3.2). Changes of document node dependencies, perspective,
and overlays are represented as edits, too. The PIDE document-model provides
one key operation Document .update to turn a given document version into a new
one, where the edits are syntactically represented as algebraic datatype:

datatype edit = Dependencies | Entries | Perspective | Overlays
val Document .update: version-id → version-id →

(node × edit) list → state → (command-id × exec-id list) list × state
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Type edit is given in stylized form above: its constructors take arguments, e.g.
Entries the commands that are inserted or removed. Document .update operates
on a “big” document state, which maintains all accessible versions. This must
not be confused with a “small” toplevel state st for single commands.

Edits are relative to given document nodes, and can happen simultaneously
when the user opens several theory files or the system completes imports tran-
sitively. While the editor usually shows a few text windows only, the document-
model always works on the whole theory library behind it.

The update assignment (command-id × exec-id list) list is conservative: the
list mentions only those command-ids that change. The result is reported to the
editor to acknowledge the Document .update: until that protocol message arrives,
the editor re-uses the assignment of the old version, and marks any document
snapshots derived from it as outdated (§2).

The prover maintains a command exec assignment for each document ver-
sion, depending on the visible and required commands of the perspective, and
given node overlays: exec-ids for eval and prints are assigned as required. Old
assignments are preserved on a common prefix that is not affected by the edits,
as illustrated in figure 4. Here st2 is the last common exec of the old versus new
version; subsequent execs are removed and new ones assigned.

↗ · · ·
st3 (removed execs)

(shared prefix) ↗
st0 −→ st1 −→ st2

↘
st4 (new execs)
↘ . . .

Fig. 4. Update of command-exec assignment, with shared prefix between versions.

The precise manner of exec assignment is up to the prover: it can use further
information about old versions and more structure of the command language.
Earlier observations about the inherent structure of proof documents for paral-
lelization [17, §2.2] apply here as well, but the additional aspect of incremental
editing introduces extra complexity. Current Isabelle/PIDE is still based on the
simple linear model explained above, with some refinements on how the read -
eval -print phases of each command transaction is scheduled. This allows internal
forks of eval and independent prints as illustrated in figure 5.

↓read ↓read ↓read · · ·
st0 −→eval st1 −→eval st2 −→eval st3 · · ·

↓↓forks ↓↓prints ↓↓forks ↓↓prints ↓↓forks ↓↓prints · · ·

Fig. 5. Parallel scheduling of commands: read, eval, with multiple forks and prints.
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4 Execution Management

There is open-ended potential for sophistication of execution management, to
improve parallel performance and reactivity. The subsequent explanations give
some ideas about current Isabelle/PIDE, with its recently introduced ML module
Execution. Its managed Execution.fork now supersedes the earlier approach of
goal forks [17, §3.3].

Prerequisite: Future Values in Isabelle/ML. The underlying abstraction
for parallel ML programming [17, §3.1] is the polymorphic type α future with
operations fork : (unit → α)→ α future and join: α future → α to manage evalu-
ation of functional expressions, with optional cancel : α future → unit. Moreover,
promise: unit → α future and fulfill : α future → α → unit allow to create an
open slot for some future result that is closed by external means.

Futures are common folklore in functional programming, but Isabelle/ML
implements particular policies that have emerged over several years in pursuit of
parallel theorem proving: strict evaluation (spontaneous execution via thread-
pool), synchronous exceptions (propagation within nested task groups),
asynchronous interrupts (cancellation and signaling of tasks), nested task
groups (block structure of parallel program), and explicit dependencies.

Hypothetical Execution. Each document version is associated with an im-
plicit execution process. After document update, the old execution needs to
be turned into a new one, without disturbing active tasks. To this end,
Isabelle/PIDE maintains a lazy execution outline: chains of commands are com-
posed with their eval and prints as one big expression, which mathematically
determines all prover results beforehand (with corresponding exec-ids).

The scheduling diagram of figure 5 illustrates the local structure of this
expression: each arrow corresponds to some function application. The global
structure has two further dimensions: the DAG of theory nodes and the version
history, so many such filaments of read -eval -print exist simultaneously.

Since Document .update (§3.3) merely performs hypothetical execution, by
manipulating a symbolic expression that consists of lazy memo cells, it is able
to produce the new assignment quickly and report it back to the editor.

Execution Frontiers. Actual execution is an ongoing process of parallel tasks
that force their way through the lazy execution outline. After each document
update, the latest document version is associated with a fresh execution, but
that needs to coexist with older executions with remaining active tasks.

To prevent conflicting attempts to force these lazy values, the PIDE ML
module Execution ensures that at most one execution is formally running, in
the sense defined below. The module manages a separate notion of execution-id,
with the following operations:

Execution.start : unit → execution-id
Execution.discontinue: unit → unit
Execution.running : execution-id → exec-id → bool
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Execution.start () creates a fresh execution-id and makes it the currently running
one. Execution.discontinue () resets that state: a previously running execution-id
cannot become running again. Execution.running execution-id exec-id requests
the exclusive right to explore the given exec-id, which is only granted if the
execution-id is currently running. Moreover, the exec-id is registered for man-
agement of derived execution forks (see below).

Given a document version, the execution frontier is the set of tasks that may
explore its execution outline, guarded by invocations of Execution.running as
shown above. Each PIDE update cycle first invokes Execution.discontinue, then
updates the document content with its execution outline, and then uses Execu-
tion.start to obtain a new running execution-id. Finally, the exploration tasks
are forked as ML futures, with the old execution frontier as tasks dependencies.

Thus the new execution frontier is semantically appended to the old one:
the old frontier cannot explore new transactions and finishes eventually (or di-
verges), afterwards the new execution continues without conflict. This approach
enables strictly monotonic execution management: running tasks within the doc-
ument execution are never canceled; only those tasks are terminated that become
inaccessible in the new version (removed commands etc.).

Execution forks. The running futures of the execution frontier work on com-
mand transactions that are presently accessible, guarded by Execution.running.
This provides a central checkpoint to control access to individual execs within
the given execution outline. After having passed Execution.running successfully,
further future tasks may be managed as follows:

Execution.fork : exec-id → (α → unit) → α future
Execution.cancel : exec-id → unit

Here the exec-id serves as a general handle to arbitrary future forks within
that execution context: it is associated with some future task group for cumu-
lative cancellation. Execution management ensures strict results: forks need to
be joined eventually, and ML exceptions raised in that attempt are accounted
to the transaction context. Thus a command transaction may “fail late” due to
pending execution forks, even though its eval phase has finished superficially,
and subsequent commands are already proceeding from its toplevel state.

Execution.fork provides the main programming interface to forks of figure 5.
The primary application are goal forks in the sense of [17, §3.3], which has
been retrofitted into the new execution concept. Note that the Isabelle/PIDE
document model still lacks the structural proof forking of batch mode: interactive
goal forks are limited to terminal by steps (where Isar proofs spend most of the
time) or derived definitions with internal proofs like datatype, inductive, fun.

Moreover, Execution.fork is now used implicitly for diagnostic commands,
which are marked syntactically to be state preserving, and can thus be forked
immediately in the main evaluation sequence. Such commands are identity func-
tions on the toplevel state, with observable output, and the potential to fail later.
Note that sledgehammer is such a diagnostic command as well, and several
copies put into a theory already causes parallel execution.
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5 Asynchronous Print Functions

Diagnostic command output may happen in the main eval phase, but this has the
disadvantage that linear editing (§3.3) reassigns intermediate execs and thus dis-
rupts the evaluation sequence. PIDE document updates could be made smarter,
but it turns out that separate management of print phases over existing com-
mands is simpler and more flexible. Further observations indicate that print
functions deserve special attention:

– Cumulative print operations consume more space and time than eval : proof
state output is often large and its printing slower than average proof steps.

– Printing depends on document perspective: text that becomes visible re-
quires additional output, but it can be disposed after becoming invisible.

– Printing may fail or diverge, but it needs to be interruptible to enable the
system stopping it.

– Different ways of printing may run in parallel, with specific priorities.

These are notable refinements of the former approach [16, §2.3], which was
restricted to one print as lazy value that was forked eventually; its execution had
to terminate relatively quickly, and the result was always stored persistently.

The current notion of asynchronous print functions allows better manage-
ment of plain proof state output, and more advanced tools to participate in the
continuous document processing. The PIDE ML programming interface accepts
various declarative parameters to provide hints for execution management:

Startup delay: extra time to wait, after the print becomes active. This latency
reduces waste of CPU cycles when the user continues editing and changes
already assigned commands again before printing starts.

Time limit: maximum time spent for a potentially diverging print operation.
Task priority: scheduling parameter for the underlying ML future (for task

queue management). Note that this is not a thread priority: an already
running task of low priority is unaffected by later forks of high priority.

Persistence: keep results produced by print (including observable output), or
delete them when visibility gets lost.

Application (1): Proof State Output. Printing proof states efficiently is
less trivial than it seems. Command-line users do not mind to wait fractions of a
second to see the result after each command, but continuous document process-
ing in PIDE means that maybe 10–100 commands become visible when opening
or scrolling text windows. If printing requires 10–100 ms for each command, it
already causes significant slowdown.

Proof states are now printed asynchronously, with the following scheduling
parameters: no startup delay, no time limit, high task priority, no persistence.

The absence of delay and the priority means that the print phase runs ea-
gerly whenever possible, after its corresponding eval has finished. On multi-
ple cores, the ongoing eval sequence proceeds concurrently with corresponding
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prints, resulting in fairly good performance. On a single core, the system adapts
its task scheduling to do the interleaving of eval versus high priority prints se-
quentially: this is important for the user to proceed, but results in considerable
slowdown. The difference can be seen e.g. in the long unstructured proof scripts
of $ISABELLE_HOME/src/HOL/Hoare_Parallel/OG_Hoare.thy, setting in jEdit
Plugin Options / Isabelle / General / Threads to 2 versus 1, restarting proof
processing via File / Reload, scrolling around etc.

Non-persistence is based on the observation that each individual proof state
output is reasonably fast, but its result can be big and needs to be stored in
the document model (in Scala). For commands that lose visible perspective, the
corresponding print is unassigned and the document content eventually disposed
by garbage collection. Thus we conserve Scala/JVM space, by investing extra
ML time to print again later.

Application (2): Automatically Tried Tools. As explained in the manual
[14, §2.7], Isabelle/HOL provides a collection of tools that can prove or dis-
prove goals without user intervention: automated methods (auto, simp, blast
etc.), nitpick, quickcheck, sledgehammer, solve-direct.

In Isabelle Proof General, such tools run synchronously within regular proof
state output, and a tight timeout of 0.5s to guarantee reactivity of the command
loop. This limits the possibilities of spontaneous feedback by the prover to rela-
tively light-weight tools like quickcheck and solve-direct, and even that may
cause cumbersome delays in sequential command processing.

In Isabelle/PIDE automatically tried tools are asynchronous print functions,
with default parameters like this: startup delay = 1s, time limit = 2s, low task
priority, persistence.

Thus tools usually run only after some time of inactivity, and do not compete
directly with the main eval and high-priority prints. Persistence is enabled, since
tools usually take a long time to produce small output: nothing on failure (or
timeout) or a short message on success. In particular, the often unsuccessful
applications are retained and not tried again.

Tool output is marked-up as information message, which is rendered in
Isabelle/jEdit with a blue information icon and blue squiggles for the corre-
sponding goal command. This is non-intrusive information produced in the back-
ground, while the user was pondering the text. Cumulatively, automatically tried
tools can consume significant CPU resources, though. For high-end work-stations
connected to grid power that is rarely a problem, but small mobile devices on
batteries should disable extraneous instrumentation.

Application (3): Query Operations. The idea is to support frequently used
and potentially long-running diagnostic commands via explicit GUI components
in the editor, for example Sledgehammer and Find theorems as explained in [14,
§2.8,§2.9] (with screenshots and minimal examples).

In such situations, Proof General [3] provides a separate command-line to
issue state-preserving commands synchronously: the user first needs to move the
prover focus to some point in the text and then wait while the query is running.
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In Isabelle/PIDE this is now done via asynchronous print functions with
explicit document overlays (§3.2). Arguments are provided by some GUI dialog
box: input causes a document update that changes the corresponding overlay;
the command position is determined from the current focus in the text.

The asynchronous approach allows the user to input the query and start the
operation at any time, while the system schedules the print process to run spon-
taneously after the command that defines its context is evaluated; afterwards
it presents query results as they arrive incrementally. There is also a button
to cancel the process (notably for Sledgehammer). The transitional states of a
pending query are visualized by some “spinning disk” icon (with tooltip).

Isabelle/PIDE provides a hybrid module Query_Operation in ML and Scala.
The ML side accepts a function that takes a toplevel state with arguments and
produces output on some private channel; this interface resembles traditional
command-line tools. Likewise, the Scala side works with conventional event-
based GUI components, without direct exposure to the timeless and stateless
PIDE document model. The implementation of the hybrid Query_Operation

module takes care of the management of different instances for each GUI view,
and keeps the connection to running command execs (for cancellation etc.).

This completes the full round-trip of PIDE concepts: from the sequential
and synchronous read -eval -print loop that connects the user directly to a sin-
gle command execution, over an intermediate document model that is detached
from particular time and space, leading to simple PIDE APIs that recover the
appearance of working directly with some command execution that is connected
to physical GUI elements. The benefit of this detour is that the system infras-
tructure is enabled to manage the details of execution efficiently, for many tools
on many CPU cores, instead of asking the user to do this sequentially by hand.

6 Conclusion and Related Work

The Isabelle/PIDE approach combines user interaction and tool integration into
a uniform document-model. This enables advanced front-end technology in the
style of classic IDEs for mainstream programming languages. It also allows us
to integrate interactive or automatic theorem proving tools to help the user
composing proof documents. The present paper continues earlier explanations
of PIDE concepts [12, 11, 13, 15, 16]. The following improvements are newly
introduced in the current generation of Isabelle/PIDE (December 2013):

– strictly monotonic document update: avoid cancellation and restart of run-
ning command transactions;

– explicit document execution management;

– support for asynchronous print functions, with various execution policies;

– support for document overlays and query operations, with separate GUI
components for input and output.
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Related work. Explicit parallelism has been imposed on application developers
before, when classic CISC machines became stagnant in the 1990s, and work-
station clusters were considered a potential solution. A notable experiment from
that time is the Distributed Larch Prover [5]: it delegates proof problems to CPU
nodes, with a central managing process and some Emacs front-end to organize
pending proofs. The report on that early project clearly identities the need to
rethink prover front-ends, when the back-end becomes parallel.

Concerning prover front-ends, the main landmark to improve upon raw TTY
interaction of proof assistants is Proof General by D. Aspinall [3]. It only requires
a classic read -eval -print loop with annotated prompt and undo operation, and
thus implements “proof scripting” within the editor. The user can navigate for-
wards and backwards to move the boundary between the locked region of the
text that is already checked and the remaining part that is presently edited.

The approach of Proof General was so convincing that it has been duplicated
many times, with slightly different technical side-conditions, e.g. in CoqIDE
[18, §4] (OCaml/GTK), Matita [2] (OCaml/GTK), Matitaweb [1] (OCaml web
server). The great success of Proof General 15 years ago made it difficult to
go beyond it. Early attempts by D. Aspinall to formalize its protocol as PGIP
and integrate it with Eclipse [4] have never reached a sufficient level of support
by proof assistants to become relevant to users. Nonetheless, PGEclipse was
an important initiative to point beyond classic TTY and Emacs, into a greater
world of IDE frameworks.

Dafny [6] follows a different approach to connect automated theorem proving
(Boogie and Z3) with Visual Studio as the IDE. Thus it introduces some genuine
user-interaction into a world of automatic SMT solving, bypassing TTY mode.
The resulting application resembles Isabelle/jEdit, while the particular proof
tools and logical foundations of the proof environment are quite different.

Agora [10] is a recent web-centric approach to document-oriented proof au-
thoring, for various existing back-ends like Coq [18, §4] and Mizar [18, §2]. The
main premise of this work is to take the proof assistant as-is and to see how
much added value can be achieved by wrapping web technology around it. C.
Tankink also points beyond classic IDEs, which are in fact already 10–20 years
old. More recent movements on IDE design for programming languages integrate
old and new ideas of direct manipulation of static program text and dynamic ex-
ecution side-by-side, and a non-linear document-model of source snippets. A no-
table project is http://www.chris-granger.com/lighttable, which is implemented
in Clojure and works for Clojure, Javascript, and Python.

Incidently, interactive proof checking has been based on direct access to proof
states from early on, and PIDE already provides substantial support to manage
incremental execution and continuous checking of proof-documents. So further
alignments with such newer IDE approaches would be a rather obvious contin-
uation of what has been achieved so far, but the ITP community also requires
time to get acquainted even with the classic IDE model seen in Isabelle/jEdit.
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