
Parallel Proof Checking in Isabelle/Isar

Makarius Wenzel
Technische Universität München

Institut für Informatik, Boltzmannstraße 3, 85748 Garching, Germany
http://www.in.tum.de/~wenzelm/

Supported by BMBF project “Verisoft” (grant 01 IS C38)

Abstract
We address the “multicore problem” for mathematical assistants
with full proof checking, with special focus on Isabelle/Isar and
its main SML platform Poly/ML. On the one hand, working with
explicit definitions, statements, and proofs requires significant run-
time resources, so the question of parallel checking is really rele-
vant. On the other hand, the inherent structure of formal theories
provides various possibilities for parallelism (both implicit and ex-
plicit), which is in fact an almost ideal situation. Exploiting this po-
tential in practice requires to reconsider various aspects of the ML
platform, the inference engine, and some higher prover specific lay-
ers. We report on an implementation of all that for Isabelle/Isar, and
point out some general considerations for parallelism in functional
programming, and other provers like Coq and HOL.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel programming; I.2.3 [Deduction and Theo-
rem Proving]: Inference engines; G.4 [Mathematical software]:
Efficiency

General Terms Explicit and implicit parallelism

Keywords Isabelle, theorem proving, mathematical assistants,
parallel programming

1. Introduction
1.1 The “multicore problem”
According to “Moore’s Law”, the density of integrated circuitry
grows exponentially, doubling the number of transistors per chip
area approximately every 20 months. Despite fundamental limita-
tions predicted by physicists, chip designers have managed to keep
up to this promise so far, but this does not mean that the extra func-
tionality translates directly into exponential growth of performance.

In fact, only a few years ago processor manufactures have de-
clared an end to sustained increases of traditional single-threaded
computing power, but have introduced CPUs with explicitly visi-
ble parallel execution units (or “multiple cores”). This essentially
imposes an extra burden on application developers, who need to
change their implementations in order to turn hardware figures like
”8 cores with 2 hyper-threads each” into actual software speedups.
Numerous press articles have appeared recently, e.g. declaring that

[Copyright notice will appear here once ’preprint’ option is removed.]

“the free lunch is over” [17] and new software engineering chal-
lenges are emerging from this shift of execution paradigm.

On the other hand, the question of effective use of parallelism
in application software is rather old. In the past 30–40 years, plenty
of research projects have produced a diversity of possible answers.
While in hardware and operating system design reasonable mul-
tiprocessor support is already commonplace, viable programming
languages are only available in some niches.

This programming language aspect shall be our main concern,
in particular the situation for computer mathematics, with special
focus on interactive theorem proving in the LCF tradition.

1.2 Mathematical assistants with full proof checking
Until the envisioned idea of fully integrated mathematical assistants
becomes more tangible, we can only approximate and extrapolate
from what has already been achieved so far. We shall do this from
the perspective of interactive theorem proving, as represented by
the “LCF-style” family of systems: notably Isabelle [20], Coq [18],
and HOL variants [8]. The main traits of these systems (inherited
from LCF [3]) are as follows.

Full programmability means that the user has access to a general
functional programming language to conduct proofs and build
derived tools (specific proof procedures, advanced specification
mechanisms etc.). In the original LCF system this “meta lan-
guage” (ML) is implemented as an interpreter within the under-
lying LISP system. The proof environment is essentially just a
collection of ML modules that implement concepts like goal,
tactic etc. In Isabelle and Coq, there are separate interpreta-
tion layers for simplified command languages, notably Isar in
Isabelle and Gallina/Ltac in Coq. Nonetheless, the ML layer is
still available for power users.
At this level we are faced with the parallelization problem in full
generality, because user tools can be arbitrary ML programs.

Explicit proof construction means that the main results are based
on definitions and theorems. There is no free-form ML code to
“invent” results, but there are explicit statements with explicit
proofs, e.g. tactic scripts that “drive” certain LCF-style infer-
ence rules of HOL, or internalized computations in the more
advanced type-theory of Coq.
Consequences of this rigorous style of theory development are:

1. Processing theories requires significant amounts of runtime
resources. So we really need to think about using multicore
hardware efficiently.

2. Statements impose a natural top-down specification of re-
sults, and proofs merely certify these. So proofs can be de-
ferred and checked independently.

Parallel Isabelle 1 2009/6/30

This means that the arbitrary ML code mentioned before is
actually embedded into some fixed outline of definition–statement–
proof that is amenable to automatic parallelization.

So the plan is to reorganize the operational details of the prover
such that the inherent potential for parallel proof checking is ex-
ploited. User code merely needs to be “well-behaved” to participate
— purely functional ML code usually works best. As we shall see
later, we need to extend both the ML platform and the proof engine.

All of this could be done similarly with any member of the
LCF family, or even with completely different interactive provers.
Subsequently, we explain concrete issues for Isabelle/Isar and its
underlying SML implementation Poly/ML, while giving further
hints on the bigger picture where appropriate.

1.3 Isar proof document structure
The following example in Isabelle/HOL illustrates the general
structure of Isar proof documents.

theory C imports A B
begin

inductive path for rel :: α⇒ α⇒ bool
where

base: path rel x x
| step: rel x y =⇒ path rel y z =⇒ path rel x z

theorem example:
fixes x z :: α
assumes path rel x z
shows P x z

using assms
proof induct

fix x
show P x x 〈proof 〉

next
fix x y z
assume rel x y and path rel y z
moreover
assume P y z
ultimately
show P x z 〈proof 〉

qed

end

Here we have a hierarchy of roughly of 4 layers, with different
characteristics concerning the processing order.

1. Theories. There is a directed acyclic graph of theory files, which
determines the outer modular structure of the application. In our
example, we see one such node C that depends on the merge of
other nodes A and B.
The theory loader can exploit independent paths of this DAG
structure and load some theories in parallel. This requires only
small changes to the system, and had been our very first attempt
at parallelism in Isabelle (in 2007). If a system is built around
separate compilation, one could also use external tools like
GNU make with option -j for parallel compilation.
In any case, parallel loading of theories is relatively simple to
achieve, but performance gains critically depend on the degree
of independence of theories within a project. In typical applica-
tions this is relatively low, e.g. 1–3 parallel loads at a time.

2. Definitions and statements within the theory body. Here we as-
sume strictly sequential dependencies and refrain from any at-
tempt at parallelizing specifications that happen to be logically
independent. This simplistic view is sufficient, because check-
ing of toplevel specifications is usually fast.

In the example we have a (derived) inductive definition, fol-
lowed by a theorem statement. In order to proceed sequentially,
the system needs to perform parsing and syntactic type check-
ing, and somehow fork off the associated proofs (see below).
Note that inductive involves internal proofs of monotonicity of
the recursive predicate specification, and the resulting introduc-
tion, elimination, induction rules.

3. Toplevel proofs. These are (implicit or explicit) justifications
for the definitions and statements within a theory.
There are two important observations: (1) checking proofs re-
quires most of the total runtime, and (2) proofs are practically
irrelevant in the sense that we merely need to know that certifi-
cation was finished successfully at some point.1

This is our main potential for a high degree of parallelism. In
a big project, there are usually hundreds or thousands indepen-
dent proof checking jobs.

4. Nested proofs. A properly structured proof in Isabelle/Isar con-
sists of a hierarchical outline, where explicit statements are fol-
lowed by nested sub-proofs. This means we could apply the
same principles as for toplevel proofs recursively, but a more
basic scheme is already sufficient for the Isar proof language.
As a design principle of Isar, processing the proof outline and
composing local results works by very simple means and re-
quires little runtime. Potentially costly invocation of automated
proof tools only occurs in terminal positions, e.g. by auto in-
stead of some 〈proof 〉 placeholder above. So we merely need
to parallelize these terminal proof steps, while the main part of
Isar language interpretation is unchanged.
Here we have another great potential for parallel proof checking
in reserve, which we did not exploit in our implementation so
far. Toplevel proofs are sufficient to saturate the relatively small
number of CPUs on current multicore systems.

The skeletons resulting from Isabelle/Isar document structure
lead to implicit parallelism with a fairly good granularity of tasks.
This almost ideal situation is specific to formal proof checking, and
most of our users will continue to get their free lunch [17].

Beyond implicit system-level parallelism, user tools could also
use explicit parallelism. Internal proof problems could be deferred
by using the very same infrastructure as for structured Isar proof
processing. Even more ambitious tools might go beyond parallel
proof checking, and support parallel proof search. The latter is a
recurrent topic in automated reasoning, which is beyond the scope
of the present paper.

1.4 Overview
The rest of the paper is structured as follows. §2 introduces a value-
oriented parallel programming model based on “futures”. §3 cov-
ers parallelism at the level of the inference kernel. §4 briefly re-
views the integration with higher-level Isabelle/Isar concepts. §5
discusses concrete performance figures of the actual implementa-
tion of Isabelle2009 using Poly/ML 5.2.1.

1 In Isabelle (and HOL) proofs are formally irrelevant by design of the core
calculus and its implementation as LCF-style inference kernel. Nonetheless,
optional proof objects can be maintained and used later by other means.
Thus we would get some degree of interdependent proofs, although that re-
lation is usually sparse. In Coq the situation is the opposite: terms and proof
terms can depend on each other in the formal calculus, but applications of-
ten ignore this possibility.

Parallel Isabelle 2 2009/6/30

2. Parallel programming model
2.1 Low-level concepts
2.1.1 Hardware
We assume the typical multicore hardware that is now common-
place: a shared-memory multiprocessor with a relatively small
number of CPUs (e.g. 2–8) and with a pool of memory that is
accessible without any special penalties. We abstract over slight
variations seen in reality, such as virtual cores via additional hyper-
threads on actual CPUs, or memory being accessed in a non-
uniform architecture where some regions are closer to some cores.

2.1.2 Operating system
We take the well-known Posix Threads (or pthreads) library for
granted. All major operating systems implement a version of this
IEEE standard, usually founded in the kernel, such that the raw
parallel computing power becomes accessible with very little over-
head. Of course, multithreading also works on single-core ma-
chines. The scheduler of the operating system will map any reason-
able number of threads (e.g. 1–100) to the given number of CPU
cores according to some fair strategy.

2.1.3 ML runtime system
Our platform of choice is Poly/ML 5.2.1. Thanks to special efforts
by David Matthews, it provides an ML view on pthreads (with a few
extra abstractions, but little overhead). This ML thread model is the
most basic programming interface that we consider here explicitly.
There are three main concepts, which are represented as abstract
types in ML.

1. Thread: an independent execution of some ML code, with pri-
vate stack and regular access to the global heap. There is also
support for thread-local user data of arbitrary type. The main
operations are:

val fork: (unit→ unit)→ thread
val interrupt: thread→ unit

This means fork (fn () ⇒ body) will create a new thread
that executes body, until evaluation terminates regularly or by
raising an exception (which is absorbed). Note that there is no
join operation. In order to simulate a return value, one needs to
use side-effects together with suitable synchronization.
Interrupting a thread from the outside would eventually raise
exception Interrupt (according to SML90). The exact behavior
depends on the state of certain thread attributes, which can be
adapted to implement interrupt handlers reliably in user code.

2. Mutex: a passive synchronization primitive. The main opera-
tions are:

val mutex: unit→ mutex
val lock: mutex→ unit
val unlock: mutex→ unit

These mutual exclusion primitives work with little extra over-
head. In particular, the common case that locks can be acquired
without contention is very fast.2

3. Condition variable: an active synchronization primitive, which
allows threads to wait for a state change of shared variables, as
signalled by another thread. The main operations are:

val condvar: unit→ condvar
val wait: condvar × mutex→ unit
val signal: condvar→ unit

2 Poly/ML uses cheap spinlocks first, and falls back on a more elaborate
locking protocol only for longer wait states.

The use of a raw pair of condvar × mutex to work together in
the communication and synchronization protocol is typical for
pthreads. Textbooks on the subject explain peculiar program-
ming patterns that make this work reliably, to avoid deadlock or
starvation (e.g. due to signals emitted in the wrong moment).

This provides a basic ML view on the original C version of
pthreads. It still needs to be wrapped into higher-order concepts
that are more native to ML.

2.2 High-level concepts
According to Brinch Hansen “concurrent programs can be written
exclusively in high-level languages” [2]. Although this advice was
targeting Concurrent Pascal, we shall now apply it to ML.

2.2.1 Synchronized variables
First of all we need to represent the idea of controlled access
to shared variables adequately. We follow roughly the notion of
“conditional critical region” or simple variants of the “monitor”
concept due to Hoare and Brinch Hansen. Since the primitives of
pthreads are strongly influenced by these mechanisms in the first
place, we can easily wrap them into high-level ML operators to
reflect the original idea more directly. Our implementation has the
following signature:

type α var
val var: α→ α var
val value: α var→ α
val change: α var→ (α→ α)→ unit
val guarded-access: α var→ (α→ (β × α) option)→ β

A synchronized variable v with initial value x is created by
invoking var x; internally it contains a reference cell with mutex
and condvar for the lock/wait/signal/unlock protocol of pthreads.
We can operate on the content via guarded-access v f, where the
pure function f tells how to proceed: mapping x to NONE means
we continue to wait for a change of the content (there is a loop
internally), and mapping x to SOME (y, x ′) means we update the
content to x ′ and produce a return value y; then all threads waiting
on this variable are signalled and the critical region is left.

This rather general guarded access principle can be also used to
implement the simpler operations value and change. Note that after
being admitted into the critical region these will never wait.

fun value v = guarded-access v (fn x⇒ SOME (x, x))
fun change v f = guarded-access v (fn x⇒ SOME ((), f x))

The subsequent example implements type MVar of Concurrent
Haskell3, which represents a buffer that is restricted to 0 or 1
elements. Thus access operations may block in certain cases.

type α mvar = α option var
fun mvar () = var NONE
fun take v = guarded-access v

(fn NONE⇒ NONE | SOME x⇒ SOME (x, NONE))
fun put v x = guarded-access v

(fn SOME y⇒ NONE | NONE⇒ SOME ((), SOME x))

The next example demonstrates a mailbox with unbounded mes-
sage queue: operation send is non-blocking, but receive blocks un-
til the mailbox becomes non-empty. Here we assume type α queue
with purely functional operations empty, enqueue and dequeue (as
available in the Isabelle/ML library).

type α mailbox = α queue var
fun mailbox () = var empty
fun send mbox msg = change mbox (enqueue msg)
fun receive mbox = guarded-access mbox (try dequeue)

3 http://haskell.org/ghc/docs/latest/html/libraries/base/
Control-Concurrent-MVar.html

Parallel Isabelle 3 2009/6/30

From the perspective of lower-level languages (like Java), this
might look a bit like “domain specific language” or even “aspect
oriented programming”, but it is really just a regular Isabelle/ML
library that has been arranged carefully.

2.2.2 Future values
So far we have managed to provide succinct notation for accessing
synchronized variables, but the inherent complexities of concurrent
programming are not yet overcome. At the next stage we shall avoid
explicitly exposed threads of execution as well, but there are many
conceivable ways to do that. For example, there is ongoing research
in the Haskell community to eliminate threads and synchronization
in favor of software transactional memory (STM), which allows
modular composition of interacting components [7].

Our main purpose is parallel proof checking, and it turns out that
the more modest model of future values (or value-oriented threads)
fits to our requirements. Futures are almost folklore in concurrent
functional programming. An early implementation is available in
Multilisp [5], although that work also points back to previous ideas
of eventual values in Algol. The Alice ML dialect [15] also includes
futures as one of many builtin concurrency concepts.

Futures in Isabelle/ML implement the following signature:
type α future
val future: (unit→ α)→ α future
val join: α future→ α
val cancel: α future→ unit

The idea is that future (fn () ⇒ expr) produces a handle to
the eventual result of evaluating expr. The actual computation will
commence spontaneously in the background at some point in the
future. The join operation re-synchronizes and exhibits the result
— this could mean to wait until it is produced by another thread,
or to force its evaluation at that very moment. As usual in ML, the
result of an evaluation may either produce a plain value, or raise an
exception; the latter is propagated to the synchronization point of
join. For example, val x = future (fn ()⇒ raise Match) succeeds,
but any later join x will raise exception Match.

The cancel operation provides some minimal control over the
evaluation process: canceling an unfinished future means to force it
into Interrupt exception state, but finished values are unchanged.

Futures provide a specific model of managed evaluation under
program control. For example, we can implement the list combina-
tor parallel-map: (α→ β)→ α list→ β list as follows:

fun parallel-map f xs =
map join (map (fn x⇒ future (fn ()⇒ f x)) xs)

By using combinators like this, the user can already build par-
allel programs via skeletons that indicate the boundaries of par-
allelism explicitly. Although this style is much more convenient
than working with raw threads, it is still quite hard to find just the
right spots to insert parallel combinators, in order to achieve ac-
tual performance improvements. It is desirable to support implicit
parallelism somehow, where the system (or compiler) determines
the granularity of parallelism, but this is very hard in full generality
(e.g. see [16]).

As already outlined in §1.3, we are very fortunate in this respect:
the proof document structure already provides quite good skeletons
for implicit parallelism.

Implementing futures. Two main aspects need to be addressed:
providing a slot for the result and maintaining an unevaluated
expression that produces the result eventually. In fact, this basic
pattern is the same as for lazy evaluation in strict ML. For futures,
the key difference is that a separate scheduler in the background
ensures that evaluation is invoked eventually; the actual execution
is then performed by a farm of worker threads.

Our future values are represented as follows:

datatype α result = Result of α | Exn of exn
type α future = α result option ref × task

The result field is initialized as ref NONE for a newly created
future. The associated task is a symbolic representation of an actual
evaluation process that is associated with a job: unit → unit that
runs the evaluation and sets the result to SOME result eventually.4

There are 3 phases in the lifetime of a future task:

1. queued: the task is stored in the priority queue of the scheduler,
waiting passively to be picked up by some worker thread.

2. running: some worker thread has assumed the role of executing
the job that is associated with the task. This state is indicated
both in the thread-local data of the worker and in the queue.

3. finished: the worker has finished evaluation; the task is removed
from the queue altogether.

The main purpose of the scheduler is to feed tasks of newly
created futures into the queue, and ensure that a given number
of worker threads is running (this parameter can be adjusted at
runtime). The workers wait on changes of the task queue, and pick
the next job that is ready to be executed: tasks can depend on each
other, only minimal elements of the queue can be selected here.

Invocation of join x for unfinished x requires special attention.
If the current thread is a worker running another task, it will take
over execution of the next task that contributes to x according to
queue dependencies, or any other task that happens to be ready.
Otherwise, if this is a non-worker thread, join x waits until the
future is finished independently. Workers only ever sleep if there
are no ready tasks in the queue.

This simple scheduling policy ensures that the available proces-
sor resources are saturated as much as possible, with a number of
worker threads that corresponds to the number of CPUs.

Another key observation concerns concurrent access to the re-
sult field of a future:

Read access can happen at any time (via arbitrary invocations of
join), but it requires a finished result of the form SOME result.

Write access happens at most once (via some worker thread), by
flipping the initial NONE to a persistent value SOME result.

This monotonicity principle justifies the terminology of “future
value” in the first place. It also means that careful implementation
of access primitives can work without extra synchronization: there
is no overhead to read the value of a finished future.

Synchronization is only required when accessing internal state
variables of the scheduler, notably the global task queue. In fact,
queue management turned out a real bottleneck in an earlier version
and required some further fine tuning. The first idea was to improve
the basic data structure implementation. The second, even more
important idea was to provide fast-path implementations of the
following operations:

fun future-value a = future (fn ()⇒ a)
fun future-map f x = future (fn ()⇒ f (join x))

These operations are often required to adapt to an interface that ex-
pects a future, or produce variants of futures via (quick) projections.
The latter essentially reflects conceptual layers of the overall sys-
tem, for example Proof .state future is mapped to thm future, which
is mapped to Proofterm.proof future eventually (cf. §4). By provid-
ing a direct way to extend the task of an unfinished future on the
fly, we avoid an extra penalty for modular software organization.

4 Interestingly, the scheduler only needs to manage a homogeneous collec-
tion of tasks/jobs, each operating on a statically typed reference within its
functional closure. This is the deeper reason why typed futures can be im-
plemented as plain ML library, without requiring a universal type of types.

Parallel Isabelle 4 2009/6/30

3. Parallel inference kernel
The main LCF-style inference kernel of Isabelle/Isar consists of
two layers: proof objects and theorems.

Proof objects are represented as concrete datatypes. Depending
on system parameters, a varying amount of information is main-
tained here. In any case, there is a complete record of oracles used
in the proof. An explicit λ-term representation of the proof is also
possible, but requires significantly more resources.

Theorems are elements of an abstract datatype thm. According
to the original LCF tradition, theorems are proven propositions that
have been certified by the kernel module, which implements prim-
itive inferences as abstract datatype constructors. Any operation on
theorems has to go through that kernel, so any value of type thm is
“correct by construction”, cf. [3]. Isabelle theorems consist of the
the proof object, the proven proposition, plus some extra adminis-
trative information. Most notably, there is an explicit certificate of
the background theory of the theorem.

In order to support parallel proof checking, we need to augment
both layers. The idea is to allow proof objects to contain holes
that essentially act like axioms that can be replaced later. This
basic form of promised proofs that are fulfilled eventually is then
passed through the abstract type thm. Thus we extended the LCF
inference kernel to support parallelism natively, without affecting
final results: there is no trace of the operational details of proof
composition in a finished derivation.

3.1 Promised proofs
The core inference system of Isabelle is based on Natural Deduc-
tion, deriving judgments of the form {A1, . . . , An} ` B with rules
for =⇒ and

V
that move propositions between the antecedent Γ

and the succedent B. Subsequently, we include explicit proof ob-
jects as λ-terms, although they might be omitted in the implemen-
tation. So p : B means that p is a proof term for proposition B.

Inferences are always relative to a background theory Θ, which
contains constants for types, terms, and proofs (axioms), as well as
any kind of auxiliary user data [21]. Isabelle maintains certificates
for Θ, such that Θ1 ⊆ Θ2 and Θ1 ∪ Θ2 can be determined
efficiently. Below it is sufficient to think of Θ as a set of axioms.

Proof holes work like global axioms, but need to be managed
separately so that they can be fulfilled later (by proof substitution).
For the moment we introduce a pro-forma collection Π of promised
proofs, and pass it through monotonically. Thus we can describe the
deductive system of Isabelle as a judgement Θ, Π, Γ ` p: B that is
defined inductively by the following rules:

Θ, Π, Γ ` q : B
Θ, Π, Γ − {p : A} ` (λp : A. q) : (A =⇒ B)

(imp-intro)

Θ1, Π1, Γ1 ` p : (A =⇒ B) Θ2, Π2, Γ2 ` q : A
Θ1 ∪ Θ2, Π1 ∪ Π2, Γ1 ∪ Γ2 ` p q : B

(imp-elim)

Θ, Π, Γ ` p[x] : B[x] x /∈ FV Γ

Θ, Π, Γ ` (λx. p[x]) : (
V

x. B[x])
(all-intro)

Θ, Π, Γ ` p : (
V

x. B[x])

Θ, Π, Γ ` p a : B[a]
(all-elim)

Θ, Π, {p : A} ` p : A
(assm)

(c : A[?α]) ∈ Θ

Θ, ∅, ∅ ` c : A[τ]
(axiom)

Θ, Π, Γ ` p[α]: B[α] α /∈ TV Γ

Θ, Π, Γ ` p[?α] : B[?α]
(type-gen)

Θ, Π, Γ ` p[?α] : B[?α]

Θ, Π, Γ ` p[τ] : B[τ]
(type-inst)

Taking Π = ∅ for now, we get the existing inference system
of Isabelle/Pure [19], which we shall use as a reference point for
correctness of the extended version introduced below.

Rules type-gen and type-inst require special attention. This is
how Isabelle (and the HOL family in general) simulate outer-
most type quantification in the style of ML polymorphism [11].
In Isabelle notation, α refers to a free and ?α to a schematic type
variable; this provides a syntactic hint if a type is considered locally
fixed or arbitrary. The above type manipulations essentially emerge
as admissible rules (by induction over derivations) as follows: the
base case works because the axiomatic basis of Θ is closed by ar-
bitrary type substitutions; the step case works by pushing substitu-
tions through the other inferences.

This form of naive polymorphism introduces an extra twist
in maintaining promised proofs, because we need to track type
substitutions and replay them when proofs are fulfilled eventually.
If we would not care about schematic polymorphism, deferred
proofs could be simulated outside the kernel as assumptions [1].

A proof promise is a constant of the form a[?α]: A[?α] where
a is some identifier and A a closed proposition that contains only
schematic type variables ?α = ?α1, . . . , ?αn (in canonical order).
Promises shall be treated like axioms with an explicit indication
of type instances; rules type-gen or type-inst will produce concrete
instances a[τ] at different occurrences in a proof term. Moreover,
we define proof substitution p[a := q] for a closed proof q : A (we
assume TV q = ?α without loss of generality):

(a[τ] : A[τ]) [a := q] = q[τ]
(b[τ] : B[τ])[a := q] = (b[τ] : B[τ]) if a 6= b

(c : A)[a := q] = (c : A)
(p1 p2)[a := q] = (p1[a := q]) (p2[a := q])
(λx. p)[a := q] = λx. p[a := q]

In other words, we treat q as a definition for a that is expanded
throughout the proof term, while propagating type substitutions
accordingly. This is analogous to polymorphic let expressions [11].
It is particularly important to note here that substituting a closed
term does not interfere with λ-abstraction.

To ensure well-defined substitution of proof promises by proofs
depending on further promises, we postulate some well-founded re-
lation a1 < a2 on promise identifiers. For example, we can identify
promises via natural numbers with the standard ordering; whenever
a proof promise is opened we produce a fresh (monotonically in-
creasing) serial number.5 The order is lifted to a set of promises as
follows: Π� a iff b < a for all (b[τ] : B) ∈ Π.

The parallel version of the Isabelle inference system is now
defined inductively by the following additional rules:

FV A = ∅ TV A = {?α}
Θ, {a : A}, ∅ ` a[?α] : A[?α]

(promise)

Θ1, Π1, Γ ` p : B Θ2, Π2, ∅ ` q : A Θ2 ⊆ Θ1 Π2� a
Θ1, (Π1 − {a : A}) ∪ Π2, Γ ` p[a := q] : B

(fulfill)

5 This well-founded order is sufficient for bottom-up proof parallelization,
corresponding to holes in a proof skeleton that emerge by depth-first traver-
sal. One could also think of more general situations, e.g. where the main
proof is first forked in top-down fashion and its sub-proofs are then assem-
bled bottom-up. This would require a more flexible ordering on promises.

Parallel Isabelle 5 2009/6/30

In fact, the resulting inference system merely formalizes the
idea of introducing and eliminating locally defined proof terms,
analogous to polymorphic let expressions as mentioned before.
Parallelism is only implicitly present: promise produces a slot for a
future certification of a : A, and fulfill joins a derivation of p : B that
depends on a : A with an actual q : A produced independently. Note
that the requirement Θ2 ⊆ Θ1 ensures that the resulting theory is
unchanged: Θ1 ∪ Θ2 = Θ1.

3.2 Future theorems
In order to integrate proof terms with promises (§3.1) into the LCF-
style inference kernel, the internal representation of type thm is
augmented by an environment of pairs (a, q) where a is a promise
identifier and q a future proof. Whenever a promise a : A is created,
its eventual fulfillment has to be given as well, as a future q : A
that can be produced in parallel (§2.2.2). Thus we get the following
additional operations of the inference kernel:

val future-thm: thm future→ term→ thm
val join-proof : thm→ unit

For example, future-thm (future (fn () ⇒ prf)) A produces a
theorem of proposition A, but the actual proof is delivered later by
evaluating the given prf : thm. The kernel ensures that the result re-
ally fits the original specification A, and checks the side-conditions
of the fulfill inference (§3.1), notably background theory inclusion
and well-founded dependencies on other promises.

Observe how the signature of future-thm formally reflects our
main observation of “practical proof irrelevance” (§1.3): a given
thm future together with an explicit result specification as a term is
turned into a plain thm. So proof parallelization is isolated locally:
it will not affect the great majority of existing ML code. Internal
bookeeping of promised proofs is fully transparent: when request-
ing the explicit proof object, the kernel will join and fulfill all pend-
ing proof promises (this can take a long time). Any runtime failures
of forked derivations etc. will be raised at that point.

As a minor drawback we loose purely static integrity of LCF
kernel results: entities of type thm may contain holes that might
fail to be filled, because some future proofs did not work out as
promised. Explicit dynamic checking via join-proof is required
here, to ensure that all open ends are really closed.

This notable change of the LCF kernel semantics has very little
impact in practice. In Isabelle/Isar theorems that are accessible to
the user are always registered within the theory context eventually,
so we merely need to ensure that join-proof is invoked on that
cumulative collection at certain checkpoints of the theory loading
process. Thus full integrity is recovered at the outer theory level.

4. Isabelle/Isar integration
With the basic LCF kernel extensions of §3.2 available, we can now
go throw the higher layers of Isabelle/Isar and handle future proofs
accordingly.

4.1 Open statements
Due to side conditions in the promise inference (§3.1), future-thm
(§3.2) is still limited to closed statements.

Open statements (relative to some local proof context) routinely
occur in practice, even at the top level. For example, the theorem
in §1.3 builds up a local context via fixes and assumes and then
establishes a local result via shows. Note that types are always fixed
implicitly according to Hindley-Milner discipline [11].

We can easily produce an enhanced version of future-thm by
commuting the future value with abstraction and application of
local types, terms, and assumptions like this:

fun local-future-thm prf α x A B =
let

val global-prf = future-map (abstract-proof α x A) prf
val global-prop = abstract-term α x A B

in apply-proof (future-thm global-prf global-prop) α x A end

Note that “abstraction” over types is simulated via schematic
variables, and application is type instantiation. For term parameters
and assumptions, the introductions and eliminations of

V
and =⇒

are used. The result will be the same as for an immediate proof
— thanks to β-equivalence on primitive proof terms — but this
imposes a small operational overhead.

4.2 Goal-directed proofs
As has already been observed in the original LCF system [3], user-
level proof programming mostly proceeds in a goal-oriented style,
via tactics. A tactic is essentially a function that reduces some claim
to a number of new claims. The goal mechanism produces an initial
state, applies a given tactic expression, and checks that all claims
are solved in the end.

In Isabelle/Isar this idea is generalized a bit to work with local
contexts. The main programming interface is essentially as follows:

val Goal.prove: Proof .context→ term→ tactic→ thm

The implementation can be easily refined to make use of future
theorems for the main result, thus any such goal-directed proof
would be parallelized. On the other hand, existing applications
occasionally expect strict behavior of the goal interface, where
failure of the tactic needs to be reported immediately.

So we keep Goal.prove unchanged, but provide a second ver-
sion Goal.prove-future (with the same signature). User code can be
fine-tuned by replacing Goal.prove by Goal.prove-future wherever
appropriate. For example, in inductive definitions (cf. the example
in §1.3), the monotonicity proof is always performed immediately
to report fundamental errors in the specification, but all other de-
rived rules are produced via future goals.

4.3 Structured Isar proofs
This refers to the actual Isar proof interpretation process. Conceptu-
ally, the Isar language is very modular, so that arbitrary sub-proofs
could be deferred. We only do this for the main toplevel proof for
now, because that turns out as sufficient to saturate 4–8 cores rea-
sonably well, and due to the simplistic well-founded ordering on
promises based on serial numbers (§3.1).

Nonetheless the operational details are a bit tricky, because Isar
proof interpretation works in a sequential step-by-step basis, due
to its heritage of the TTY-based LCF interaction model. We essen-
tially need to modify theory source processing to group statements
with proofs by static look-ahead, which requires some care since
the language is fully extensible by the user.

In the end, the refined system supports fully implicit Isar proof
parallelization, without any impact on user code. This is where our
concept of parallel proof checking is realized in its purest form.

4.4 Theory loading
The Isabelle theory loader processes a DAG of theory files, es-
sentially by turning every single load process into a future, while
recording dependencies properly. Despite the relative simplicity of
theory loading, some fine points need to be observed.

• Joining proofs. All pending future proofs need to be joined, to
exhibit potential errors, cf. join-proof in §3.2.
The speedup factor is maximized by doing a global join after
all load processes have been forked, such that the highest pos-
sible degree of parallelism is achieved. On the other hand, this

Parallel Isabelle 6 2009/6/30

requires substantial amounts of memory, due to a large number
of intermediate proof configurations.6

• Document preparation. The main result of Isabelle/Isar theory
processing are formally checked LATEX documents. This used
to work as a “side-effect” of theory loading, but requires spe-
cial attention in parallel mode. Firstly, old stateful document
accumulation needs to be done in a more disciplined manner.
Secondly, printing of formal entities (via document antiquota-
tion) requires extra care, to avoid premature joining of proofs
— otherwise performance will degrade.

In summary, there are two main lessons learned from pushing
parallel proof checking through all layers of Isabelle/Isar.

1. System infrastructure needs significant refinements: there is no
magical way to add the “aspect of parallelism” automatically.

2. User code requires only minimal fine-tuning occasionally.

5. Performance
It is time for some quantitative assessment of our infrastructure
for parallel proof checking. Amdahl’s Law is a simple model that
predicts limits of the overall speedup factor as follows. Given a
program whose runtime is partitioned into a fraction s that is in-
herently sequential and the complement p that can be parallelized.
Then standardized runtime is 1 = s + p in the sequential case, and
s + p/n in the parallel case for n cores. So the speedup factor is 1
/ (s + p/n), which converges to 1/s for n −→∞.

For example, if 20% of the program is sequential, the maximum
speedup is only 5, even if we have infinitely many cores! This
estimate is indeed quite pessimistic, and there are situations where
better performance can be achieved — even super-linear speedup if
disjunctive branches of proof search would be tried in parallel, for
example. On the other hand, we check existing proofs that happen
to be independent anyway, so we need to be prepared for more
conservative results.

For our concrete measurements presented below, we use a first
generation MacPro with 4 cores (2 dual-core Xeons), Poly/ML
5.2.1 with 2 GB initial heap, and Isabelle2009 with parallel load-
ing of theory files and parallel checking of proofs both enabled.
The test sessions are HOL-Auth (with many independent theories),
HOL-Nominal (most of the time spent in a single large theory), and
HOL (the main logic with many sequential bottlenecks).

For each session we measure the elapsed “wall-clock time”
(which is in the range of 2−15 minutes), and the CPU time spent
cumulatively in the lifetime of the process (as reported by the
operating system). We do this for n = 1..4, where the sequential
case is measured in two ways: 1 worker thread using the parallel
infrastructure vs. a truely sequential variant that bypasses all this
extra overhead.

Figure 1 shows the relative speedup, i.e. the ratio of elapsed
time vs. CPU time for each given session.

As is typical for sub-linear speedups according to Amdahl’s
Law, the curves are flattening with increasing number of cores.
Both HOL-Auth and HOL-Nominal show quite good speedup fac-
tors of 3.2 for 4 cores: there are many independent theories or in-
dependent proofs to be run in parallel, and it seems we are able to
exploit this reasonably well. The HOL session is much worse: only
rarely does it admit significant parallel tasks, as can be checked

6 Normally, a highly parallel system also provides plenty of memory, but
we have encountered situations (only with full proof terms) where the 32 bit
address space was exhausted. Using Poly/ML in 64 bit mode almost doubles
the base-line requirements for CPU time, because every single value is
represented as one full machine word.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4

re
la

tiv
e

sp
ee

du
p

number of worker threads (cores)

(ideal)
HOL-Auth

HOL-Nominal-Examples
HOL

Figure 1. Relative speedup

with the Unix top utility. This particularly pathologic situation is
special to the initial HOL session, because it contains many inher-
ently sequential stages of bootstrapping sophisticated tools, and rel-
atively few longer proofs. Moreover, if we enable full proof terms
for HOL, we run into a real problem: overall memory usage of de-
ferred proof states together with non-normalized proof objects ex-
ceeds 32 bit address space, and we need to fall back on theory-only
parallelism. Thus the speedup declines to less than 1.3 for 4 cores.

Compared to other Isabelle applications, HOL-Auth and HOL-
Nominal represent the best case, and HOL the worst case.

The chart in figure 2 is a bit more realistic in presenting the
absolute speedup, i.e. the ratio of elapsed time of multicore vs.
strictly sequential execution.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4

ab
so

lu
te

 s
pe

ed
up

number of worker threads (cores)

(ideal)
HOL-Auth

HOL-Nominal-Examples
HOL

Figure 2. Absolute speedup

Gladly, the difference is not that big: real-world speedup is still
3.0 for 4 cores in the best case, although the worst case already
shows a slight decline when moving from 3 to 4 cores. This is due to
extra internal overhead for managing parallelism in the first place.
To quantify these losses, we show the ratio of cumulative CPU time
in multicore vs. the strictly sequential execution in figure 3.

This relative overhead accounts for task management and track-
ing of proof promises within our derivation objects (every single in-

Parallel Isabelle 7 2009/6/30

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1 2 3 4

re
la

tiv
e

ov
er

he
ad

number of worker threads (cores)

(ideal)
HOL-Auth

HOL-Nominal-Examples
HOL

Figure 3. Relative overhead

ference needs to take account of open “holes” in the proof). Again,
the numbers are quite good: only 3−10% overhead in the best case,
and 22% overhead in the worst case.

Compared with speedup charts for completely different appli-
cations in the literature (e.g. [9, 6, 10]) our results are indeed quite
competitive. Nonetheless, the curves will inevitable flatten when
adding more cores: preliminary experiments on other people’s 8-
core machines indicate a speedup of ≈ 5 for 8 worker threads.

There are many fine points that can prevent good performance
figures for parallel computation. In fact, in our first attempts the
speedup was only 1.5−2.0 for 4 cores. Practical performance tun-
ing affects the following parts of the overall system:

• Fine tuning of the future scheduler, notably the global task
queue, which involves an explicit dependency graph.
• Direct support for projected futures (cf. future-map in §2.2.2),

which reduces the number of managed tasks significantly.
• Isolating critical points in the system that need to be parallelized

separately.7

• Eliminating global critical sections of user code by disposing
impure programming techniques with global references.

Some further sequentialization is imposed by the underlying
Poly/ML runtime system due to garbage collection. The GC thread
stops all user threads until it is finished! In realistic Isabelle ses-
sions, GC time is about 5−−15%, which adds to the critical pa-
rameter s in Amdahl’s Law. We can reduce GC time slightly by
increasing initial heap size to use most of the available memory
from the very start: deferred GC will find fewer live objects to take
care of. Additional small-scale tuning can be done by avoiding ex-
cessive heap allocations of old tail-recursive “optimizations”, and
working with plain recursion instead. Thus we trade global heap
allocations for relatively cheap thread-local stack space.

Of course, one could consider to refine the Poly/ML runtime
system to support truely parallel GC, which can mean GC in par-
allel to the user threads, or GC that stops user threads but runs in
parallel internally. Both can be done, but is very complex. Very
few widely available runtime systems support truely parallel GC,
with the notable exception of the Hotspot server JVM by Sun. Even

7 In Isabelle the begin and end of a theory involves certain bookkeeping that
can be slow, and requires extra attention here.

Glasgow Haskell used to support only sequential GC, until the most
recent 6.10 release where some promising experiments [10] for par-
allelized stop-the-world GC have been included.

Our experience of several months of implementation efforts and
fine-tuning of parallel Isabelle can be summarized as follows:

• Purely functional code and data leads to correct functionality
relatively easily, and is also fast because it does not inhibit
parallelism by unnecessary synchronization.
• Imperative techniques require extreme care, much more than

in the sequential case. Overall performance is usually degraded
due to forced sequentialization.

In other words, impure programming might well be considered
as premature optimization from the past that is better avoided in
highly parallel programs — if correctness and performance matter.

6. Conclusion and related work
We have presented a reasonably simple and efficient parallel pro-
gramming environment that is specifically targeted at LCF-style
theorem proving. Our particular implementation for Isabelle/Isar
allows users to benefit from mainstream hardware immediately,
without having to worry about parallelization themselves. In other
words, Isabelle acts like system software here: it manages checking
of regular proof texts, which can appeal to user-defined proof tools
and derived specification packages.

All of the concepts described here are already implemented in
the current Isabelle2009 release and work with Poly/ML 5.2.1 on
stock multicore systems (both Linux and Mac OS have been tested
extensively). Despite fundamental changes in the proof checking
architecture, everything worked out quite well and was finished
within a few person months. The deeper reasons for this successful
shift of the very execution paradigm are as follows.

• LCF-style theorem proving fits nicely to the idea that proofs are
delivered later, produced by independent threads of execution
— proofs are never inspected in the original LCF approach
anyway. This model works particularly well in goal directed
proof, because results are fully specified in advance.
• The existing body of Isabelle/ML sources was already almost

purely functional. We merely had to throw out a small amount
of stateful code that had crept in over the years.
• Isabelle did already provide powerful abstractions of formal

reasoning environments (ML type theory and Proof .context)
that were easily extended and re-interpreted as thread-local
execution contexts of independent proofs.

In principle, other members of the LCF family could be adapted
in a similar way, although there are some additional issues.

In Coq [18] proof terms are recorded explicitly by default,
which means one needs to care more about efficient management of
“proof holes” and substitution of the same. We have already hinted
at substantial performance losses with main Isabelle/HOL and full
proof terms, which we did not investigate to the last consequence,
because proof terms are rarely used in Isabelle at all. Moreover,
the more complex type-theory of Coq (and similar dependently-
typed calculi) involves formal dependencies between proofs. This
reduces the potential for proof parallelism, although the practical
impact probably depends on the actual application.

The HOL [8] family is much closer to Isabelle in many respects,
but implementing parallel proofs is probably harder due to the lack
of higher Isar infrastructure. In particular, the traditional HOL vari-
ants operate implicitly on one big theory context that is extended
monotonically. Thus it is technically more difficult to fork side
branches of independent proof checking and join them back later.

Parallel Isabelle 8 2009/6/30

Parallelism in functional programming languages. Functional
programming has been proposed as an ideal paradigm for paral-
lelism for many decades already. There have been numerous re-
search prototypes, but very few systems ever made it into realistic
implementations that are used widely.

Although LCF-style interactive theorem proving fits particu-
larly well with parallelism, the traditional ML platforms for these
systems mostly fail to deliver it. Although there is support for
threads and other basic concurrency primitives in OCaml, Mlton,
SML/NJ, and especially in Alice, none of the underlying runtime
systems work with truely parallel system threads. For SML/NJ
there are some ongoing experiments to make the old Concurrent
ML subsystem work with multiple cores [13], but preliminary per-
formance figures are still relatively low [14].

Poly/ML 5.2.1 is exceptional in the ML family, with high-
performance access to native pthreads, although there is only se-
quential garbage collection so far.

In the larger functional community, Glasgow Haskell appears
to be the main platform that supports a wealth of concurrency
concepts and achieves good multicore performance, e.g. see [6,
10]. There are many papers and course notes on concurrent and
parallel Haskell, and there is active research in various directions
to improve this even more, e.g. [7].

Scala [12] is another emerging player in the league of high-end
languages; it targets the JVM by default. Conceptually, Scala is
many steps beyond Java: it supports pure values (which are called
immutable objects), higher-order functions, advanced functional
and object-oriented composition principles etc. By careful design
it also shares representations of basic objects and classes with Java,
which allows to reuse existing libraries directly. Scala inherits the
usual (dis)advantages of the JVM, which means that raw execu-
tion speed is lower than Haskell or Poly/ML, but there is well-
established support for true parallelism (including GC).

Due to some unorthodox syntax conventions, Scala supports
the idea of “domain specific languages” even better than ML or
Haskell. There is a nice Scala version of the concurrent actor con-
cept from Erlang, implemented as a library in the Scala distribution.
There is ongoing research on rephrasing old concurrency problems
using actors and other higher-order abstractions [4].

It would be interesting to see how LCF-style provers would
work either on Glasgow Haskell or Scala/JVM (e.g. on Sun Niagara
with 128 threads). On the other hand, existing theorem provers
like Isabelle, Coq, and HOL are huge and complex systems, so
porting to a different programming language is infeasible. As we
have demonstrated here for Isabelle/Isar, it is indeed much easier to
adapt the given programming language and runtime system, even
if the main concurrency infrastructure has to be built from scratch.
We hope that this will be repeated for similar provers on similar
programming language environments eventually.

Acknowledgments
David Matthews managed to implement true system-level multi-
threading for Poly/ML within a few months in 2007/2008. In fact,
his parallel ML project goes back to the late 1980-ies, when classic
CISC platforms like the VAX where reaching architectural limits
and going parallel, but subsequent CPU designs (RISC, P5, . . .)
managed to postpone the “multicore problem” by some 20 years.

References
[1] H. Amjad. Shallow lazy proofs. In J. Hurd and T. F. Melham,

editors, Theorem Proving in Higher Order Logics (TPHOLs
2005), volume 3603 of LNCS. Springer, 2005.

[2] P. Brinch Hansen. Monitors and concurrent Pascal: a personal
history. In ACM SIGPLAN conference on History of program-
ming languages (HOPL-II). ACM, 1993.

[3] M. Gordon, R. Milner, L. Morris, M. C. Newey, and C. P.
Wadsworth. A metalanguage for interactive proof in LCF. In
Principles of programming languages (POPL), 1978.

[4] P. Haller and M. Odersky. Scala actors: unifying thread-
based and event-based programming. Theoretical Computer
Science, 2008.

[5] R. H. Halstead, Jr. Multilisp: A language for concurrent
symbolic computation. ACM Trans. Program. Lang. Syst., 7
(4), 1985.

[6] T. Harris, S. Marlow, and S. Peyton Jones. Haskell on a
shared-memory multiprocessor. In ACM SIGPLAN workshop
on Haskell. ACM Press, September 2005.

[7] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Com-
posable memory transactions. Commun. ACM, 51(8), 2008.

[8] J. Harrison, K. Slind, and R. Artan. HOL. In Wiedijk [22].

[9] H.-W. Loidl et al. Comparing parallel functional languages:
Programming and performance. Higher Order Symbol. Com-
put., 16(3), 2003.

[10] S. Marlow, T. Harris, R. P. James, and S. Peyton Jones. Par-
allel generational-copying garbage collection with a block-
structured heap. In International Symposium on Memory
Management, 2008.

[11] R. Milner. A theory of type polymorphism in programming.
J. Computer and System Sciences, (17), 1978.

[12] M. Odersky et al. An overview of the Scala programming
language. Technical Report IC/2004/64, EPF Lausanne, 2004.

[13] J. Reppy and Y. Xiao. Toward a parallel implementation
of Concurrent ML. In Workshop on Declarative Aspects of
Multicore Programming (DAMP), January 2008.

[14] J. Reppy, C. Russo, and Y. Xiao. Parallel Concurrent ML.
In ACM SIGPLAN International Conference on Functional
Programming (ICFP 2009). ACM, September 2009.

[15] A. Rossberg, D. Le Botlan, G. Tack, T. Brunklaus, and
G. Smolka. Alice through the looking glass. In Trends in
Functional Programming, volume 5. Intellect Books, Bristol,
UK, 2006.

[16] N. Scaife, S. Horiguchi, G. Michaelson, and P. Bristow. A
parallel SML compiler based on algorithmic skeletons. J.
Funct. Program., 15(4), 2005.

[17] H. Sutter. The free lunch is over — a fundamental turn toward
concurrency in software. Dr. Dobb’s Journal, 30(3), 2005.

[18] L. Théry, P. Letouzey, and G. Gonthier. Coq. In Wiedijk [22].

[19] M. Wenzel. The Isabelle/Isar Implementation Manual. TU
Munich, 2009. Part of the Isabelle2009 distribution.

[20] M. Wenzel and L. C. Paulson. Isabelle/Isar. In Wiedijk [22].

[21] M. Wenzel and B. Wolff. Building formal method tools in
the Isabelle/Isar framework. In K. Schneider and J. Brandt,
editors, Theorem Proving in Higher Order Logics (TPHOLs
2007), volume 4732 of LNCS. Springer, 2007.

[22] F. Wiedijk, editor. The Seventeen Provers of the World, vol-
ume 3600 of LNAI. Springer, 2006.

Parallel Isabelle 9 2009/6/30

