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Abstract
The ML family of languages and LCF-style interactive theorem
proving have been closely related from their beginnings about 30
years ago. Here we report on a recent project to adapt both the
Poly/ML compiler and the Isabelle theorem prover to current mul-
ticore hardware. Checking theories and proofs in typical Isabelle
application takes minutes or hours, and users expect to make effi-
cient use of “home machines” with 2–8 cores, or more.

Poly/ML and Isabelle are big and complex software systems
that have evolved over more than two decades. Faced with the
requirement to deliver a stable and efficient parallel programming
environment, many infrastructure layers had to be reworked: from
low-level system threads to high-level principles of value-oriented
programming. At each stage we carefully selected from the many
existing concepts for parallelism, and integrated them in a way
that fits smoothly into the idea of purely functional ML with the
addition of synchronous exceptions and asynchronous interrupts.

From the Isabelle/ML perspective, the main concept to manage
parallel evaluation is that of “future values”. Scheduling is implicit,
but it is also possible to specify dependencies and priorities. In ad-
dition, block-structured groups of futures with propagation of ex-
ceptions allow for alternative functional evaluation (such as parallel
search), without requiring user code to tackle concurrency. Our li-
brary also provides the usual parallel combinators for functions on
lists, and analogous versions on prover tactics.

Despite substantial reorganization in the background, only min-
imal changes are occasionally required in user ML code, and none
at the Isabelle application level (where parallel theory and proof
processing is fully implicit). The present implementation is able to
address more than 8 cores effectively, while the earlier version of
the official Isabelle2009 release works best for 2–4 cores. Scala-
bility beyond 16 cores still poses some extra challenges, and will
require further improvements of the Poly/ML runtime system (heap
management and garbage collection), and additional parallelization
of Isabelle application logic.
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1. Introduction
There are very many users of Isabelle who are running proofs
that take a considerable length of time. Isabelle and the Poly/ML
platform that it uses have been engineered to run efficiently on a
single processor, but at the start of this project (about two years
ago) there was no possibility of exploiting the multi-processors that
were increasingly appearing on desktops or laptops. The aim of
this project was to allow users to make use of this parallelism in as
simple a way as possible.

There were several constraints that applied. Isabelle and Poly/ML
together are large projects developed over many years and it is
simply not possible to redevelop them as parallel programs from
scratch. User code runs on top of this and it would be unreasonable
to expect users to redesign their code. They may use legacy features
that need to be supported. The aim, therefore, was to develop mech-
anisms for parallelism which could be implemented efficiently and
yet would hide the details from higher levels.

To do this the mechanisms for parallelism were developed as
a series of layers providing increasingly more abstract views. The
lowest levels are very close to the hardware and operating system
and take an imperative approach while the higher levels are much
more functional.

The parallel implementation is already part of the standard
distribution of Poly/ML 5.2.11 and Isabelle20092 and users can
benefit from running on a multiprocessor. Many users, though, will
continue to use uniprocessors or be running other ML programs so
it was essential that adding parallelism should not be at the expense
of the performance of purely sequential programs.

In the present paper we shall discuss the following main com-
ponents, with references to related work as we proceed.

1. Poly/ML with native support for operating system threads (§2).
There is significant impact on the ML runtime system, but very
little on the compiler and basis library.

1 http://www.polyml.org
2 http://isabelle.in.tum.de



2. Isabelle/ML as prover-specific programming environment, which
now includes infrastructure for high-level concurrency (§3) and
parallel value-oriented programming (§4).

3. Isabelle as platform for logic-based applications (§5). End-users
usually refer to the Isabelle/Isar source language (for specifica-
tions and proofs), or specific tools written in Isabelle/ML.

This non-trivial and quite demanding application of parallel ML
programming provides a unique opportunity to evaluate concepts
and implementations in reality, beyond small benchmark examples.

2. Parallel Poly/ML
Standard ML does not define any concurrency operations either in
the language or in the basis library. How concurrency should be
combined with the language has been the subject of research and
various proposals have been made, such as CML [22], Facile [8]
and the work by Berry et al [3]. Issues such as the expressiveness
and suitability of proving correctness have been the primary con-
cerns. Applications of these constructs have focussed largely on
concurrency for distributed systems or to provide effective user-
interaction in windowing systems. There has been less work done
on using concurrency to achieve improved performance. With the
arrival of multicore processors attention has been drawn towards
trying to exploit parallelism to achieve speed-ups of originally se-
quential programs and the aim of this work is to make this possible
for ML programs, particularly Isabelle.

A concurrency mechanism using communication over blocking
channels was added to Poly/ML early on in its development [16]
to support concurrent windowing operations. The implementation
used a single-threaded run-time system that could run one of a num-
ber of threads and time-slice between them. Although the original
aim was not to speed up execution there were some experiments
with parallel implementations on a shared memory multiprocessor,
the DEC Firefly [26] and a distributed memory system [17] which
showed that speed-ups could be achieved.

Moving to a fully multi-threaded model running on a shared
memory provided an opportunity to reconsider the basic concur-
rency mechanism in Poly/ML. Rather than use one of the high-
level models or invent a new one we chose to offer a fairly low
level set of facilities at the ML level influenced by POSIX threads
(pthreads). Similar primitives were used in Concurrent CAML
Light [6]. Higher-level constructs can be implemented from these
in ML itself. This concurrency model provides threads, mutexes
and condition variables. These primitives are well understood and
there is extensive literature on building more complex structures on
top. They can be implemented efficiently; in particular locking and
unlocking a mutex. The basic operations are as follows.

• Threads:

fork: (unit -> unit) * attribute list -> thread
interrupt: thread -> unit
setAttributes: attribute list -> unit
getAttributes: unit -> attribute list

• Mutexes:

mutex: unit -> mutex
lock: mutex -> unit
unlock: mutex -> unit

• Condition Variables:

condVar: unit -> condVar
wait: condVar * mutex -> unit
signal: condVar -> unit
broadcast: condVar -> unit

2.1 Interrupts
The original 1990 Definition of Standard ML [18] included an
Interrupt exception that was raised “by external intervention”. In
Poly/ML this could be raised by means of the SIGINT signal
usually generated by the control-C key combination. This was
removed in the later 1997 Definition [19] but it is generally useful
to break into a computation that is in a loop or taking too long. For
this reason it was retained in Poly/ML and Isabelle has continued
to use it.

Unlike all other exceptions, which are raised synchronously as
the result of a computation, the Interrupt exception is asyn-
chronous and can arrive at any time. The thread mechanism of
Poly/ML has extended this from a purely user-generated exception
by adding functions that allow the Interrupt exception to be gen-
erated programmatically. The interrupt function, for example,
attempts to raise Interrupt in a specific thread.

Asynchronous interrupts, though, are not generally compatible
with multi- threaded programming. If a function has locked a mutex
and then receives an Interrupt exception it will leave the mutex
locked; indeed an interruption during the process of locking or
unlocking could leave the mutex in an indeterminate state.

Each thread maintains its own interrupt mode setting, set ini-
tially by the parent thread as a thread attribute when the thread is
created, but capable of being changed within the thread. This mode
setting determines how an Interrupt exception is delivered to the
thread. When running application code the mode will typically be
set to deliver the exception asynchronously. This corresponds to
the original behaviour. However, a thread can choose to block it-
self from receiving an Interrupt exception. An interrupt received
while the thread is in blocking mode is deferred and may be de-
livered later if the thread changes the mode. Interrupts can also be
set to be delivered synchronously. In this case the Interrupt ex-
ception will only be raised if the thread calls one of the run-time
functions that could block for an appreciable time. This can be use-
ful to allow a thread to wait for a condition variable to be signalled
but also have it interruptible.

Using this interrupt state to control the delivery of the interrupt
exception allows wrapper functions to be used around code that, for
example, lock a mutex, so that the interrupt state is changed tem-
porarily to block interrupts while the mutex is held. The interrupt
state is then restored after the mutex is released. In this way existing
code can continue to be interrupted asynchronously while code that
uses the thread synchronization functions can be executed safely.

The interrupt function allows one thread to interrupt another
programmatically. There is still the need to be able to generate
an exception in application code as a whole as a result of a user
request. The broadcastInterrupt function sends a broadcast to
all threads that are prepared to accept this and delivers the exception
according to the current interrupt mode of the thread. As with the
interrupt mode, whether a thread accepts broadcasts is controlled
by a thread attribute.

Currently, the only thread attributes defined are the interrupt
mode and whether a thread wishes to accept broadcasts. The mech-
anism is extensible, though, and could include properties such as
scheduling priority or processor affinity.

2.2 Implementation of multi-threading
The Poly/ML compiler generates native machine code within the
heap. There is a separate run-time system (RTS) written in C++
that provides memory management and all interface with the un-
derlying operating system. The existing uni-processor concurrency
mechanism supported a degree of multi-threading at the ML level
with separate threads each with their own stack. Since only a single
thread could run at a time the run-time system itself was single-
threaded.



To support multi-threading at the ML level it was necessary
to adapt the run-time system to be multi-threaded. Apart from
on Windows where native functions are used, the implementa-
tion assumes a pthreads library to manage the threads. The ini-
tial operating-system thread has a special status and is responsible
for various storage management operations in particular garbage-
collection. After initialising the memory it creates a thread to run
ML code and suspends itself until needed. Threads are created us-
ing the pthread library function pthread_create or the equivalent
CreateThread function on Windows. The precise relationship be-
tween threads created in this way and multiple processors is not
clearly defined, but in practice modern operating systems multiplex
threads between available processors. The run-time system relies
on the operating system for this and makes no attempt to control
the placement of threads on CPU cores.

Like every thread that runs ML code this new thread has both
an operating-system stack that it uses when running in the RTS or
in “foreign” code through the foreign-function interface (FFI) and
an ML stack that is used when running ML code. The ML stack is
an object within the ML heap and can be scanned and updated by
the garbage-collector.

Although there is a clear relationship between the ML fork
function and its implementation in the pthread_create function
the same is not true of the mutex and condition variable functions
in ML and their equivalents in the pthread library. These are imple-
mented quite differently. Each thread has a single pthread condition
variable and if it needs to suspend itself, either because it is waiting
for a condition variable at the ML level or if it has encountered a
locked ML mutex, it waits on that variable. Suspending the thread
at a well-defined place allows another thread to be able to wake it
either as a result of signalling the ML condition variable, unlocking
the ML mutex or as a result of sending it an interrupt.

Because all threads are created by calls to the RTS and all
interaction with the operating system is through it the RTS is able
to maintain a table of threads and their current state. Knowing the
state of all threads is particularly important for garbage collection.

Another reason for not implementing the synchronization prim-
itives directly on their pthread equivalents is efficiency and that is
because of the division in Poly/ML between ML code and the RTS.
The machine code generated by the Poly/ML compiler uses linkage
conventions geared towards the efficient execution of small func-
tions and the requirements of the garbage-collector. These are dif-
ferent from the linkage conventions used with C++ functions and
calls between the two have to go through an interface level. At the
very least all the registers in use in the ML code have to be saved
and restored to allow values in them to be modified by the garbage
collector. Effectively, the RTS behaves rather like an operating sys-
tem kernel and switching between ML code and C or C++ code
in the RTS requires a context-switch with a measurable overhead.
Avoiding unnecessary ML/C context-switches is important for ef-
ficiency.

In the common case of locking and unlocking a mutex when
there is no contention the implementation is entirely within the ML
code. The code uses machine instructions that atomically increment
or decrement a value so that contention can be detected. To further
avoid unnecessary context switches the lock function first checks
the state of a mutex and, if it is locked, goes into a tight loop, a spin
lock, until either the lock is released or a counter expires. Since it is
intended that a thread should only hold a mutex for a short period
this can frequently avoid the need to block a waiting thread. Only
if this fails will the thread call into the RTS.

2.3 Memory management
ML programs dynamically allocate large amounts of memory
which needs to be reclaimed by the garbage collector. The heap

is considered as a resource shared between all the threads so po-
tentially allocation requires an interlock between the threads. Inter-
locking every allocation would add a very significant overhead so
instead each thread is given its own segment in which to allocate
cells and only when this is exhausted is it necessary to go to the
common pool.

The common memory pool is maintained by the RTS so a thread
that has exhausted its segment has to make a call into the RTS to
allocate more memory. When there is no space left in the heap the
thread cannot proceed and must request a garbage collection but a
collection cannot begin while any thread is running in the heap. The
RTS maintains information about the state of all threads. Those that
are blocked, for example for I/O or waiting for another thread or
those running “foreign” code through the FFI are known to be out
of the heap. The other threads have to be interrupted. The ML code
generated by the Poly/ML compiler contains periodic tests for an
interrupt request, actually integrated with stack overflow checking.
When this is set the ML code makes a call into the RTS. This
enables the RTS to interrupt threads that are running ML code and
force them to enter the RTS. Only when all threads are out of the
heap does the garbage collection begin.

The garbage collector is single-threaded. When a garbage col-
lection is required all ML threads are stopped and the collector runs
to completion before releasing the ML threads. This is a potential
bottle-neck especially as the number of processors increases (cf.
§5.3.1). This could possibly be improved by overlapping garbage-
collection with execution of ML using algorithms such as those de-
scribed by Appel et al [1] and Dijkstra et al [5]. These algorithms
have disadvantages; requiring either trap handling on access to data
or a modification to the assignment operator. A more promising so-
lution is to run the garbage collector as a distinct phase as at present
but to parallelize the collector itself [7, 15].

The choice of segment size can have a bearing on performance:
too small and a thread that is allocating frequently has to make
repeated calls to allocate new segments; too large and there is
wasted space when another thread initiates a garbage collection.
Poly/ML uses an adaptive strategy in which each thread has its own
preferred segment size. Each time a thread exhausts its segment the
segment size is increased and on each garbage collection the sizes
of segments for all the threads are reduced. In this way the segment
size adapts to the allocation history of the thread. A program with
only a single thread will have a very large segment size so that it is
exhausted very few times between collections.

Note that the segments are used only to assist with allocation.
Once a cell is allocated it is part of the common heap. There is no
sense in which a cell is owned by any particular thread. This is in
contrast to schemes such as that of Doligez and Leroy [6] where
each thread owns — and can garbage-collect — its own heap but at
the expense of requiring all assignments to copy the whole of the
data structure being assigned.

2.4 ML compiler and library
By far the largest component of Poly/ML that needed to be adapted
to enable multi-threading was the run-time system. The remainder
of Poly/ML, the compiler and basis library were largely unaffected.
It was necessary to add locks in a few places in the library, notably
the I/O modules, to make them safe in the presence of accesses by
multiple threads. This code is included even if the application does
not actually use threads and imposes an overhead that in most cases
is negligible. The one exception is perhaps the TextIO.input1
function that reads a single character from an input stream. Because
it is possible for multiple threads to read from the same stream this
function requires a lock to be acquired and released and the inter-
rupt mode for the thread changed although the actual work done
in reading a single character is small, being little more than loading



the character from a buffer and incrementing a counter. All this hap-
pens within the compiled ML code and does not require a call into
the RTS except to reload the buffer. Measurements when reading a
large stream by this method showed that this extra work increased
the time to read a character by a factor of roughly five. It is impor-
tant to note that this is an extreme example and demonstrates that
the cost of locking and unlocking a mutex without contention is of
the same order as access to (updatable) ML reference variables.

Interestingly, this overhead can be almost entirely avoided by
using the functional IO layer of the ML library in which reading a
character returns the character and a new stream since in this case
a lock is only needed when the buffer is empty and needs to be
refilled. In fact, this is a general observation in our ML parallelizing
efforts: stateful code with extra synchronization is less efficient
than purely functional code that can run unhindered.

The Poly/ML compiler needed almost no modification. Previous
work on the compiler had separated out access to the name space
of top-level declarations. The compiler has, in simplified terms, the
following type:

stream * namespace -> (unit -> unit)

The stream provides the characters forming the ML program; the
namespace is a collection of functions to access names in the
various spaces of values, types, structures, etc. used by ML and the
result is a function that, when called, performs the effect of the ML
program. This almost always has side-effects including entering
new declarations into the namespace.

A namespace is an abstraction of the top-level basis in which an
ML program is compiled. Traditionally in ML there has just been a
single global namespace with each new declaration being added to
it. Poly/ML provides an implementation of this but leaves open the
possibility of user code adding new namespaces.

The effect of organizing the compiler in this way is that com-
pilations in different namespaces can happen completely indepen-
dently. It is also possible to have multiple compilations on the same
namespace, for example to implement a parallel “make” but if mul-
tiple threads can access the same name space in parallel the imple-
mentation of the name space must of course be thread-safe. For
the default global namespace of the Poly/ML top-level locks were
added to ensure this. Isabelle (§5) uses its own tables within purely
functional theory contexts that are merged according to the import
hierarchy specified by the user.

Parallel compilation is quite important in Isabelle. Formal the-
ory texts may contain embedded ML that needs to be compiled and
since the aim of this work was to be able to process theories in
parallel it was essential to be able to run multiple instances of the
compiler at the same time.

3. Synchronized variables in Isabelle/ML
The fully general pthreads model of synchronized access to (im-
plicitly) shared resources is quite involved. The programmer needs
to observe a peculiar protocol of lock–wait–change–signal–unlock
using a mutex together with a condition variable. Although this
is well-established technology, with extensive explanations in text
books and online tutorials, it is nonetheless easy to overlook some
details in everyday programming. In the spirit of Brinch Hansen’s
statement that “concurrent programs can be written exclusively in
high-level languages” [4], we shall now wrap up synchronization
primitives behind higher-order combinators in Isabelle/ML, and
thus ensure correctness by construction.

3.1 Programming interface
Synchronized memory access with atomic functional updates is
presented as an abstract type in the Isabelle/ML library as follows:

type ’a var
val var: ’a -> ’a var
val value: ’a var -> ’a
val guarded_access: ’a var ->
(’a -> (’b * ’a) option) -> ’b

Type ’a var essentially wraps up a raw ML reference cell,
with a mutex and condition variable for the pthread synchronization
protocol. Only a single state component of type ’a is modelled, but
complex data structures can be represented via records or datatypes.

Operation value provides read access to the internal refer-
ence variable. This does not require any pthread synchronization,
because of atomic assignments: the machine code produced by
Poly/ML already ensures that ML references are accessed by the
usual instructions for volatile memory. This guarantees memory
consistency in terms of the Poly/ML runtime system: user code al-
ways sees some ML value, although the actual content depends on
the application logic.

The guarded_access combinator is our higher-order repre-
sentation of the idea of a conditional critical section, or monitor
of Hoare and Brinch Hansen [4]. It allows synchronized read and
write access, with explicit checking of semantic conditions and im-
plicit signalling of state changes. Note that the guarding predicate
and the state update function are rolled into a single partial func-
tion, which is modelled via the option type of SML.

This means guarded_access v f lets the function f oper-
ate within a critical section on the state x = value v as follows:
if f x produces NONE we continue to wait on the internal condi-
tion variable, expecting that some other thread will eventually use
guarded_access to change the content in a suitable manner; if
f x produces SOME (y, x’) we are satisfied and assign the new
state value x’, broadcast a signal to all waiting threads on the asso-
ciated condition variable, and return the result y.

Of course, evaluation of f x may raise an exception. Such fail-
ure is propagated as usual, without affecting integrity of the internal
reference cell. Although external interrupts emerge in Poly/ML as
just another exception, special care is required in the wait within
the critical section. The Isabelle/ML version of sync_wait locally
modifies the interrupt mode of the current thread, such that the call-
ing ML code will get explicit indication about where an interrupt
has happened: either in user code or within the critical signalled-
locked phase of the pthreads protocol. This extra complexity is hid-
den in the library implementation: user code may run with asyn-
chronous interrupt handling enabled.

3.2 Examples
The most basic example for guarded_access implements the
following derived operation of the same Isabelle/ML module:

val change: ’a var -> (’a -> ’a) -> unit

fun change v f =
guarded_access v (fn x => SOME ((), f x))

This updates the state unconditionally, always yielding SOME.
Nonetheless, guarded_access will signal all other threads that
are waiting on a change to establish some semantic condition.

The next example implements type MVar of Concurrent Haskell3,
which represents a buffer that is restricted to 0 or 1 elements. This
means operation take blocks on empty content and put blocks
on non-empty content of the buffer. Again, our guarded_access
combinator allows us to express this succinctly:

3 http://haskell.org/ghc/docs/latest/html/libraries/base/
Control-Concurrent-MVar.html



type ’a mvar = ’a option var
fun mvar () = var NONE
fun take v = guarded_access v
(fn NONE => NONE | SOME x => SOME (x, NONE))

fun put v x = guarded_access
(fn SOME _ => NONE | NONE => (SOME ((), SOME x))

The next example demonstrates a mailbox with unbounded mes-
sage queue: operation send always adds a message without block-
ing, but receive blocks if the mailbox is empty. The implemen-
tation uses type ’a queue from the Isabelle/ML library, with
purely functional operations empty, enqueue and dequeue.

type ’a mailbox = ’a queue var
fun mailbox () = var empty
fun send mbox msg = change mbox (enqueue msg)
fun receive mbox = guarded_access mbox (try dequeue)

Thanks to careful library design, this achieves some degree of
“domain specific language” for concurrent access to shared state.

3.3 Performance
Our stylized view on pthread synchronization primitives is based on
simplifying assumptions that work well in many typical situations.
We briefly review its suitability for high-performance applications.

First of all, there is usually no problem in assuming that the
shared state is represented as a single value of type ’a, which might
be a big record or table structure. Poly/ML performs well in han-
dling large immutable data-structures, and Isabelle uses pure data
for complex logical operations routinely. There is no indication that
concurrent applications should fall back on mutable substructures
such as arrays. In fact, pervasive use of pure data greatly helps to
get the parallel application logic right in the first place.

Nonetheless, we do introduce a potential bottle-neck due to
the broadcast semantics of guarded_access: there is one kind of
signal sent to all waiting threads. Discrimination of state conditions
only works by evaluating the given body functions. For example,
the scheduler component for futures (cf. §4) was originally built
around such a broadcast model. This worked well for 4 cores, as
implemented in Isabelle2009 [27], but beyond 8 cores there was a
significant waste of CPU cycles by idle worker threads that would
continuously check the shared task queue structure. This critical
component now uses more fine-grained signalling internally.

4. Value-oriented parallelism in Isabelle/ML
High-level synchronization (§3) helps to implement concurrent ML
programs, and is used successfully in various Isabelle components
such as the asynchronous “ATP manager”, but the inherent com-
plexities of concurrency are still present. Since our main concern is
efficient parallel evaluation, we require a more adequate program-
ming abstraction that hides threads and synchronization altogether.

Various sophisticated models for thread-less concurrency have
been proposed in recent years. For example, there is support for
software transactional memory (STM) in Glasgow Haskell [14],
which emphasizes modular composition of concurrent program
parts. Another model is that of actors in Scala [21, 11], which in
turn is inspired by light-weight processes in Erlang [2], and unifies
a whole spectrum of interacting functional components based on
explicit message passing. Haskell, Scala, and Erlang all support
true parallelism of the underlying platform, but Isabelle happens
to be implemented in Standard ML.

To reconstruct an efficient programming model that fits our
needs, we aim at minimizing complexity and maximizing perfor-
mance in typical symbolic operations of the proof engine. It turns
out that the simple concept of future values fits particularly well.

Futures can be considered folklore in concurrent functional pro-
gramming. An early implementation is available in Multilisp [12],
but that work points back to even earlier proposals of eventual val-
ues in Algol. The Alice ML dialect [25] includes futures as one of
many built-in concurrency concepts, although its implementation
merely works by time-slicing on a single system thread.

Our version of futures in Isabelle/ML closely follows regular
evaluation semantics of strict Standard ML, including synchronous
exceptions (produced by application code) and asynchronous in-
terrupts (produced by the environment or other ML threads). Be-
yond that there is no direct communication between evaluations,
the focus is on parallelism not concurrency. Nonetheless, futures
can influence each other via ML exceptions. As we will see later on
(§4.2), this indirect functional interaction can get quite far without
re-introducing the complexities of raw concurrency in user code.

4.1 Programming interface for “futures”
The main operations of futures in Isabelle/ML are as follows:

type ’a future
val future: (unit -> ’a) -> ’a future
val join: ’a future -> ’a
val cancel: ’a future -> unit

The abstract type ’a future represents a handle to the even-
tual result of evaluating an expression of type ’a. Recall that a
dummy function unit -> ’a is the usual way to represent an un-
evaluated expression in strict SML: computation commences when
it is applied to the unit element.

By invoking future (fn () => e) such an expression is
turned into an abstract representation of the result of the evalua-
tion process, which is called a task internally. The future scheduler
ensures that evaluation of e is run spontaneously in the background:
there is a farm of worker threads that continuously pick the next
ready task from the queue, and eventually write back the result to a
synchronized variable (§3) within the corresponding future handle.

The join operation resynchronizes with such parallel evalu-
ation, which could mean waiting until it is finished by another
thread or starting its evaluation on the spot. In the latter case, the
worker suspends the current task on the ML stack and contin-
ues to work on that requirement. Finished results are memoized,
so there is no extra cost for joining again later on. In any case,
join (future (fn () => e)) is semantically equivalent to e,
provided that this is a pure expression without side-effects. Excep-
tions raised during future evaluation are also propagated to the join
point. For example, consider:

val x = future (fn () => raise Fail "error")

This succeeds, but later attempts to join x exhibit the exception.
Note that future/join resemble lazy/force in the common

way of implementing lazy evaluation on top of strict SML. The
difference is that futures may compute independently in the back-
ground — this happens even if the final value is never used.

The explicit cancel operation tells the system to give up on
evaluating a future. If it is not finished yet, it will be forced into
Interrupt exception state. If it is finished already, then cancel
has no effect (in conformance with the above evaluation semantics).

If we think of type ’a future as representing highly stylized
“functional threads” with return value of type ’a, then cancel
corresponds to the interrupt operation (§2.1). Needless to say,
efficient implementation of futures must be more sophisticated than
mapping evaluation tasks directly on threads. The operating system
is capable of handling tens or hundreds of threads, but we would
like to work with many hundreds or thousands of futures. For
best performance, the number of worker threads should usually be
correlated to the number of cores available to the system.



Nonetheless, even thread-less future tasks require some inter-
nal organization. It turns out that in realistic applications like the
Isabelle prover (§5), the number of tasks can be significantly re-
duced by fast-path implementations on the following operations:

val future_value: ’a -> ’a future
val future_map: (’a -> ’b) -> ’a future -> ’b future

Wrapping a constant value as future_value a works without the
overhead for task management of naive future (fn () => a).
Similarly, future_map f x allows cheap cascading of evalua-
tions, by reusing the former future task if possible (if evaluation
has not been started yet). Otherwise the system will fall back on
the naive version val y = future (fn () => f (join x)).

Invoking join x within the body of y as above introduces a
functional dependency between the corresponding evaluation pro-
cesses. If x is still untouched, the current thread can continue to
work on x immediately, just like regular sequential computation
would have required anyway. If x happens to be in progress by an-
other worker thread, we need to wait for the result. Assuming that
dependencies are relatively sparse, this situation happens relatively
rarely. Nonetheless, the future scheduler always keeps some inac-
tive workers in reserve to jump in for temporarily stalled threads,
to keep the hardware cores saturated.4

If x is already finished, join x can pick up the memoized
result directly. This uses value (§3) internally, with the minimal
overhead of accessing an ML reference cell. Note that due to single-
assignment of future results, synchronization is only required on
unfinished futures. A finished future stays finished indefinitely:
this monotonicity principle keeps things simple and efficient, and
justifies the term “value-oriented parallelism”.

Some further user-space adjustments are possible. Futures can
be created with explicit static dependencies, which allows to en-
force certain order of scheduling. By default future tasks are enu-
merated according to their creation time, and the next task without
pending dependencies will be run. This scheme can be also modi-
fied by specifying explicit priorities. For example, futures that pro-
duce proofs in Isabelle are assigned a low priority.

4.2 Future groups and exception propagation
Our version of futures is able to capture the notion of strict SML
evaluation with potential failure via exceptions (either produced by
the program, or via the environment as interrupts).

For example, consider expression e = (x, y, z) and assume
that the subexpression x produces a regular value, but y and z raise
exceptions when evaluated. Using sequential SML semantics, the
failure of y is propagated, and z is not attempted at all. There is a
deterministic result, which is the first exception that is encountered
in left-to-right order.

Generalizing this behaviour to parallel evaluation of futures x,
y, z means that all subexpressions can be evaluated at some point
(in parallel or with arbitrary ordering), and both y and z get a
chance to fail. We want to specify the (nondeterministic) result of
e as some exception that is raised by one of its subexpressions.
The implementation can simply propagate the first failure that is
encountered at physical runtime, and cancel any pending futures
that are considered as related subexpressions.

To provide library functions for such exception propagation in
parallel programs, we first require a datatype of SML results:

datatype ’a result = Result of ’a | Exn of exn

4 Isabelle/ML currently uses a simple adaptive scheme, where the number
of workers is dynamically adjusted in the range of m . . . 4 m, keeping at
most m threads active and the others in reserve. Excessive workers will
spontaneously yield whenever an overloaded situation is detected.

fun capture f x = Result (f x) handle e => Exn e

fun release (Result y) = y
| release (Exn e) = raise e

This means the capture combinator gets hold of arbitrary ML
evaluations, including failures. The release operation converts
back into the usual runtime semantics of “free” exceptions.

There are some additional tools on captured results, notably
release_first: ’a result list -> ’a list to release the
first program exception encountered here, ignoring Interrupt
exceptions, unless there is no other choice. An actual list of results
is returned iff all elements are of the Result variant.

This is typically used with the simultaneous join operation
join_results: ’a future list -> ’a result listwhich
is part of our library for future values.

The layout of sub-expressions for implicit exception propaga-
tion is declared via future group identifiers, which can also be
nested to express block-structure. Our library provides the follow-
ing operations for future groups:

type group
val new_group: group option -> group
val future_group: group -> (unit -> ’a) -> ’a future

Groups can be created via new_group with an optional parent
for nesting. The combinator future_group g is analogous to
basic future (§4.1), but inserts the corresponding task into the
hierarchy of groups at position g (we can think of nested group
identifiers as paths within a tree structure). In fact, plain future
involves a default grouping scheme that corresponds to the implicit
nesting as futures are created within other futures at runtime.

Whenever some future evaluation fails, its group and all nested
subgroups are invalidated. This means, any unfinished group mem-
ber will be permanently cancelled, even those created later on. The
latter aspect models the idea, that the overall structure of expres-
sions and subexpressions is somehow static, although it is popu-
lated incrementally at runtime.

The following artificial example illustrates parallel exception
propagation. We group a diverging and a failing evaluation:

fun loop () : int = loop ()

val g = new_group NONE
val x = future_group g loop
val y = future_group g (fn () => 1 div 0)

Now join x + join y will raise exception Div. That result
is even deterministic, since the other subexpression does not ter-
minate. Due to the invalidation of groups for all time, we can also
swap the order in which x and y are created, with the same result.

Future combinators are still relatively raw. In practice there are
extra library layers for specific applications, say for goal-directed
proofs [27]. General purpose list combinators can be implemented
as well, notably parallel map, exists, or find.5. Note that the latter
produces non-deterministic results. In order to achieve a disjunctive
parallel evaluation, where the first successful branch cancels any
other attempts, we simply use a local exception Found that can
carry a value. This programming style is not more difficult than
regular treatment of exceptions in sequential SML.

5 For example, see http://isabelle.in.tum.de/repos/isabelle/
file/Isabelle2009/src/Pure/Concurrent/par_list.ML



5. Application: parallel Isabelle
Our main application for parallel ML programming is the Isabelle
theorem prover, which is based on the well-known “LCF-approach”
[9]. This means proofs are fully foundational in the sense that ev-
ery single inference is explicitly checked by an inference kernel
that implements the basic logic. For Isabelle this is a version of
higher-order natural deduction called Pure. The LCF architecture
ensures correctness by construction, while allowing users to im-
plement arbitrarily complex proof tools in ML. It also means that
significant runtime resources are required for “fully-expansive”
proof construction, so multicore programming really matters.

There is a second language layer called Isabelle/Isar (Isar stands
for Intelligible semi-automated reasoning), which enables end-
users to write structured theory and proof documents in a declar-
ative manner. Isar is not computational, but a language for formal
proof expressions. Isar proofs have rich modular structure that can
be exploited for implicit parallelism. Thus most Isabelle users will
immediately gain significant speed-up factors, without having to
change their proof texts in Isar or proof tools in ML.

5.1 Proof document structure
Isabelle proof documents follow a certain structure that allows var-
ious parallel scheduling strategies. Some possibilities are discussed
in [27] in further detail; the main observations are as follows.

1. Large Isabelle applications consist of a DAG-structured collec-
tion of theories. Independent nodes in that graph can be loaded
in parallel. This is analogous to a parallel make tool, although
everything happens within the same ML process.6

2. Theorem statements are explicit and proofs are irrelevant, in
the sense that a theorem can be accepted as correct and used
elsewhere without having checked its proof yet. It is, of course,
necessary to finish proofs at some point but this can be done
independently via future values.
For example, consider a long theory text as follows:

theorem a1 : A1 〈proof1〉
...

theorem an : An 〈proofn〉
Here the top-level statements will be processed in sequential
order, but the proofs are treated as independent futures by the
Isar interpreter. The Pure inference kernel will re-assemble the
results such that the final theorems (with optional proof objects
inside) are logically correct, independently of the operational
details of proof construction.

3. Isar proofs have a rich sub-structure, where most runtime is
spent in terminal justifications (small local proofs, involving po-
tentially complex automated reasoning tools). Here is a stylized
Isar proof text for illustration:

lemma A ∧B
proof

show A by auto
show B by blast

qed
These by steps can be parallelized implicitly, without having to
reimplement proof tools like auto or blast involved here.7

It turns out that these parallelization strategies are sufficient to
saturate 8 cores reasonably well.

6 Isabelle is based on the traditional model of dumped world image, not
separate compilation.
7 Such plug-in tools are always expected to be thread-safe; usually imple-
mentations are purely functional anyway.

5.2 Efficiency
How much do Isabelle applications actually gain from using mul-
tiple cores? Figure 1 shows speed-up factors for various Isabelle
sessions, which consist of many definitions, statements, and proofs.
Decision-Procs, Hoare-Parallel, MicroJava, and Auth represent the
bigger examples in the standard distribution of Isabelle. They in-
troduce hundreds of definitions and thousands of theorems — in-
cluding complex definitions of inductive predicates and recursive
functions that also require proofs. Sequential runtime is the range
of minutes:

Decision-Procs 0:14:17
Hoare-Parallel 0:07:09
MicroJava 0:07:03
Auth 0:08:18

There are also Isabelle applications that take several hours, but
these are not included in our systematic measurements so far.
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Figure 1. Absolute speed-up ε0/ε(m) for m = 1 . . . 4

Despite rather diverse theory and proof structure (using quite
different specification tools and proof styles), all three examples
show almost uniform speed-up factors of 1.6 . . . 1.9 for 2 cores,
and 3.0 . . . 3.2 for 4 cores. This looks quite satisfactory, but mean-
ingful performance analysis needs more precise explanations of the
physical parameters and methods of measurement.

The test platform is a Linux system with a total of 32 cores (8
times an AMD quad-core Opteron with 2.7 Ghz clock frequency
and 0.5 MB cache). There is 64 GB main memory, but we only use
16–32 GB. All measurements use an internal Isabelle snapshot at
the time of writing.8 The official Isabelle2009 version from April
2009 achieves almost the same performance on a Mac Pro with 4
cores [27], but substantial extra tuning was required for further tests
shown later.

Each test run specifiesm as nominal number of cores: the future
scheduler (§4) ensures that at most this number of worker threads
are active, but there can be additional threads that are sleeping most
of the time. The following runtime parameters are measured, as
reported by running isabelle usedir -t true in batch mode:

ε(m) elapsed time (wall-clock)
ζ(m) CPU time (user and system)
γ(m) garbage collection time (included in ζ(m))

8 See the repository version http://isabelle.in.tum.de/repos/
isabelle/rev/13d00799fe49 from 05-Nov-2009.



We also measure the strictly sequential version, without threads
and futures getting in between; resulting parameters are ε0, ζ0, γ0.
These baseline figures are used for the absolute speed-up ε0/ε(m)
depicted in figure 1. This is what the user perceives in reality.
Gaining ≈ 3.0 for 4 cores is quite good, but there are also less
efficient Isabelle examples, where the speed-up can be lower than
2.0 (usually short running sessions).

This degree of efficiency in a realistic application such as
Isabelle is the result of several rounds of fine tuning. Even so, the
“law of diminishing returns” begins to apply, the speed-up curve
flattening as more cores are used.

5.3 Toward scalability
In order to evaluate scalability from multicore to many-core hard-
ware, we show the measurement form = 1 . . . 16 on the very same
test platform, see figure 2.
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Figure 2. Absolute speedup ε0/ε(m) for m = 1 . . . 16

The curve flattens roughly according to Amdahl’s Law for sub-
linear speed-up: 1/(s + p/m) where s is the part of the program
that is inherently sequential, and p the part that can be parallelized.
Form→∞ this would converge to 1/s, but in reality there is extra
overhead for parallelization that even makes the speedup decrease
again at some point.

To quantify the relative amount of CPU cycles that are actually
spent in the application we also inspect the ratio ζ(m)/ζ0, see
figure 3. Form = 8, this overhead is still only 5–15%, but becomes
more noticeable for m = 16.

Overall, we observe that our example sessions run reason-
ably well around 8 cores, and more. The maximum speedup is
≈ 5.0 . . . 6.5 in this scenario. Right now it does not make much
sense to use all 32 cores of this machine. Although we are not yet
capable of addressing such a large number of cores, we can analyse
the results to see where things might be improved.

5.3.1 Bottle-neck 1: garbage collection
Although the use of local heap segments will establish a degree of
locality of data when it is initially allocated (§2.3), actual garbage
collection will stop the world and run exclusively on a single thread.
Although for the above Isabelle applications garbage collection
time is essentially a constant of only 2–5% of total CPU time
(thanks to generous use of initial heap space), its relative portion
grows with the speed-up factor, reaching about 15–30% for 16
cores as shown in figure 4.
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Figure 4. Relative GC time γ(m)/ε(m) for m = 1 . . . 16

As discussed in §2.3 there are approaches to parallel GC that
have already been implemented in other systems, notably Glasgow
Haskell [15]. Although fully parallel heap management is techni-
cally difficult to implement, once implemented it is essentially part
of the “system software”. Thus GC-bound applications would au-
tomatically become faster without reorganization of user code.

5.3.2 Bottle-neck 2: insufficient parallelization of the
application

Disregarding potential performance losses in the infrastructure, the
main limitations are usually due to the application itself. In Isabelle
we are relatively fortunate, because of the way LCF-style proof
checking works, but for m � 8 we encounter some weak spots in
the parallel organization of individual proof checking tasks.

To analyse the situation, we look more closely at the profile of
the MicroJava example, inspecting the state of the task queue of the
future scheduler every 500 ms. See figure 5 form = 4, and figure 6
for m = 16.

Active workers are those threads that are busy evaluating future
tasks. Running tasks are in progress by some worker, but have
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Figure 6. Worker thread utilization for m = 16

been temporarily suspended (as regular stack-frame), because some
other future needs to be joined into the current evaluation context.
Sometimes there are excessively many running tasks, while the
active workers drop below the specified boundarym. This indicates
that the dependency graph between futures is relatively dense, and
too many workers are stalled while waiting for tasks to be finished
by other threads. This could be addressed by a more sophisticated
adaptive strategy for forking additional replacement workers on
demand, similar to the scheduler for Scala actors [10]. On the other
hand, further inspection of task queue profiles (data not shown
here) indicates that this situation happens only sporadically.

In practice, the main bottle-neck is much more basic: Isabelle
cannot always provide a sufficient number of tasks. For m = 4
there are typically hundreds or thousands ready tasks available most
of the time. This saturation drops sharply for m = 16 or more,
leading to frequent task queue underflows. Even without further
trace details, this phenomenon can be observed in figure 5 and
figure 6 by the “ramps” at start and end of the lifetime. Form = 16
MicroJava is already running out of independent tasks during the
last 30% of its time, and there are further queue underflows in the
middle of theory processing.

It remains to be seen how far our approach of implicit paral-
lelization of Isabelle proof checking can be continued, until individ-
ual proof tools will have to be reworked. Of course, the Isabelle/ML
library infrastructure for parallel programming can be reused in
user-code as well.

6. Conclusion
We have presented a parallel programming environment for Stan-
dard ML and evaluated its performance for non-trivial applica-
tions of theorem proving. Although many details of the underly-
ing Poly/ML and Isabelle/ML platforms had to be reconsidered,
the whole project was finished in approximately 1 person year. The
two main challenges have been proper interaction of threads with
interrupts, and achieving reasonable performance in the end.

Since SML can be used both for functional and imperative
programming, we have been lucky that most of the application code
in Isabelle was already purely functional. Only very few impure
features that had crept in over the years had to be replaced. Thus
user code can immediately benefit from the implicit scheduling of
value-oriented parallelism provided in our framework.

The inherent advantage of functional programming languages
for parallelism had been known for decades, and can now be turned
into practical performance figures on current hardware. Main-
stream applications in C, C++, Java etc. will be much harder to
upgrade. On the other hand, very few parallel functional language
implementations have ever reached a reasonably stable state to be
used in realistic applications. Apart from Poly/ML, the ML fam-
ily is particularly weak in this respect. Although there is support
for threads and other basic concurrency primitives in OCaml, Ml-
ton, SML/NJ, and Alice, none of the underlying runtime systems
work with truly parallel system threads. Nonetheless, there have
been many experimental parallel ML implementations that did not
become widely available.

Tolmach and Morrisett [20] implemented SML/NJ on several
multiprocessors and achieved reasonable speed-ups on some exam-
ple applications. Their garbage-collector was single-threaded and
they noted this as a potential draw-back. Threads were built on
top of first-class continuations of the SML/NJ runtime, which is
theoretically elegant. However, as they note in their conclusions,
this results in poor locality of reference and significantly increases
memory-bandwidth requirements.

Reppy et al [23, 24] report on more recent work on parallel
Concurrent ML (CML), which is an extension of SML/NJ. This is
based on “Manticore”, a novel language for parallel programming.
Their focus is on supporting the communication primitives of CML
and they demonstrate that they can achieve speed-ups in test exam-
ples. The baseline performance compared to the sequential version
appears to be relatively low, but scalability to many cores looks
promising.

The Haskell community has been very active in research and
implementation of a wealth of concepts for concurrency and paral-
lelism. Harris et al [13] report on a shared-memory multi-processor
version of Haskell. They show the possibility of speed-ups on
two processors on a non-trivial application: the Glasgow Haskell
compiler itself. Marlow et al [15] report on improved garbage-
collection for Haskell, using a stop-the-world collector that is par-
allelized internally. This gives noticeable speed-ups on 2–4 cores.

Scala [21] is a very interesting language that unifies higher-
order functional and object-oriented programming. Since Scala can
coexist natively with Java on the JVM, it can leverage existing par-
allel and distributed infrastructure. Various server-side JVM imple-
mentations support parallel garbage collection routinely. The Scala
actors library [11] is inspired by lightweight processes of Erlang
[2]. Such thread-less models of independent computational entities



can also be used for parallel computations like the future values
covered in the present paper. Scala actors have been used success-
fully in high-performance web applications, but we are not aware of
any applications involving more traditional parallel computations.

Future work. As already pointed out in our discussion of parallel
Isabelle (§5), there are still various weak spots that need to be
addressed if these achievements are to be carried into the next
generation of multicore hardware.

At the lowest level, the current sequential garbage collector is
an obvious bottle-neck. Parallelizing this is a priority. Whether a
fully concurrent garbage collector is required remains to be seen.

Another priority must be to improve the instrumentation of the
implementation at all levels so that it is easier to see where the
bottle-necks are occurring.

In the longer term a more distributed approach to parallelism
will be needed. At present we rely on the hardware providing com-
munication through shared memory and the basic thread operations
are geared towards that. As multi-processors grow with more and
more cores that will no longer be feasible. Whether the future will
be in terms of a cluster with message-passing as the only com-
munications mechanism or as a non-uniform memory architecture
(NUMA) remains to be seen. In either case issues of thread place-
ment become more significant. It will be necessary to revisit the
lowest level primitives and possibly provide different primitives.
Our layered approach to parallelizing Isabelle will hopefully mean
that any changes are limited to re-implementation of some of the
combinators and background infrastructure.
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