section {* Operation Identification *}
theory Autoref_Id_Ops
imports
"../Lib/Refine_Lib"
Autoref_Phases
Autoref_Data
Autoref_Tagging
"../Parametricity/Parametricity"
begin
subsection {* Main Tool *}
typedecl interface
definition intfAPP
:: "(interface ⇒ _) ⇒ interface ⇒ _"
where "intfAPP f x ≡ f x"
syntax "_intf_APP" :: "args ⇒ 'a ⇒ 'b" ("⟨_⟩⇩i_" [0,900] 900)
translations
"⟨x,xs⟩⇩iR" == "⟨xs⟩⇩i(CONST intfAPP R x)"
"⟨x⟩⇩iR" == "CONST intfAPP R x"
consts
i_fun :: "interface ⇒ interface ⇒ interface"
abbreviation i_fun_app (infixr "→⇩i" 60) where "i1→⇩ii2 ≡ ⟨i1,i2⟩⇩ii_fun"
consts
i_annot :: "interface ⇒ annot"
abbreviation i_ANNOT :: "'a ⇒ interface ⇒ 'a" (infixr ":::⇩i" 10) where
"t:::⇩iI ≡ ANNOT t (i_annot I)"
text {* Declaration of interface-type for constant *}
definition CONST_INTF :: "'a ⇒ interface ⇒ bool" (infixr "::⇩i" 10)
where [simp]: "c::⇩i I ≡ True"
text {*
Predicate for operation identification. @{text "ID_OP t t' I"} means
that term @{text "t"} has been annotated as @{text "t'"}, and its interface
is @{text "I"}.
*}
definition ID_OP :: "'a ⇒ 'a ⇒ interface ⇒ bool"
where [simp]: "ID_OP t t' I ≡ t=t'"
text {*
Interface inference rules.
Caution: Some of these must be applied with custom unification!
*}
lemma ID_abs:
"⟦ ⋀x. ID_OP x x I1 ⟹ ID_OP (f x) (f' x) I2 ⟧
⟹ ID_OP (λ'x. f x) (λ'x. f' x) (I1→⇩iI2)"
by simp
lemma ID_app:
"⟦ INDEP I1; ID_OP x x' I1; ID_OP f f' (I1→⇩iI2) ⟧
⟹ ID_OP (f$x) (f'$x') I2" by simp
lemma ID_const:
"⟦ c ::⇩i I ⟧ ⟹ ID_OP c (OP c :::⇩i I) I"
by simp
definition [simp]: "ID_TAG x ≡ x"
lemma ID_const_any:
"ID_OP c (OP (ID_TAG c) :::⇩i I) I"
by simp
lemma ID_const_check_known:
"⟦ c ::⇩i I' ⟧ ⟹ ID_OP c c I" by simp
lemma ID_tagged_OP:
"ID_OP (OP f :::⇩i I) (OP f :::⇩i I) I"
by simp
lemma ID_is_tagged_OP: "ID_OP (OP c) t' I ⟹ ID_OP (OP c) t' I" .
lemma ID_tagged_OP_no_annot:
"c ::⇩i I ⟹ ID_OP (OP c) (OP c :::⇩i I) I" by simp
lemmas ID_tagged = ID_tagged_OP ID_abs ID_app
lemma ID_annotated:
"ID_OP t t' I ⟹ ID_OP (t :::⇩i I) t' I"
"ID_OP t t' I ⟹ ID_OP (ANNOT t A) (ANNOT t' A) I"
by simp_all
lemma ID_init:
assumes "ID_OP a a' I"
assumes "(c,a')∈R"
shows "(c,a)∈R"
using assms by auto
lemma itypeI: "(c::'t) ::⇩i I" by simp
consts depth_limit_dummy :: 'a
notation (output) depth_limit_dummy ("…")
ML {*
fun limit_depth _ (t as Const _) = t
| limit_depth _ (t as Var _) = t
| limit_depth _ (t as Free _) = t
| limit_depth _ (t as Bound _) = t
| limit_depth 0 t = Const (@{const_name depth_limit_dummy},fastype_of t)
| limit_depth i (t as _$_) = let
val (f,args) = strip_comb t
val f = limit_depth (i - 1) f
val args = map (limit_depth (i - 1)) args
in
list_comb (f,args)
end
| limit_depth i (Abs (x,T,t)) = Abs (x,T,limit_depth (i - 1) t)
fun depth_of (t as _$_) = let
val (f,args) = strip_comb t
in
Integer.max (depth_of f) (fold (Integer.max o depth_of) args 0) + 1
end
| depth_of (Abs (_,_,t)) = depth_of t + 1
| depth_of _ = 0
val depth_of_lhs = depth_of o Thm.term_of o Thm.lhs_of
val depth_of_rhs = depth_of o Thm.term_of o Thm.rhs_of
fun pretty_rewrite ctxt thm rthm = let
val lhsd = depth_of_lhs thm
val t = Thm.lhs_of rthm |> Thm.term_of |> limit_depth lhsd
val rhsd = depth_of_rhs thm
val t' = Thm.rhs_of rthm |> Thm.term_of |> limit_depth rhsd
in
Pretty.block [
Syntax.pretty_term ctxt t,
Pretty.brk 1, Pretty.str "->", Pretty.brk 1,
Syntax.pretty_term ctxt t'
]
end
*}
ML_val {*
depth_of @{term "f [1] [2] []"};
limit_depth 2 @{term "[1,2,3,4,5,6,7]"}
|> Thm.cterm_of @{context}
*}
ML {*
fun index_rewr_thms thms = let
fun lhs thm = case Thm.concl_of thm of
@{mpat "?lhs == _"} => [lhs]
| _ => []
val net = Item_Net.init Thm.eq_thm_prop lhs
val net = fold_rev Item_Net.update thms net
in
net
end
fun net_rewr_tac net get_pat frame_conv ctxt = IF_EXGOAL (
fn i => fn st => let
val g = Logic.concl_of_goal (Thm.prop_of st) i |> get_pat
val thms = Item_Net.retrieve net g
val cnv = map
(fn thm => CONVERSION (frame_conv (Conv.rewr_conv thm) ctxt)) thms
|> APPEND_LIST'
in
cnv i st
end
)
*}
ML {*
signature AUTOREF_ID_OPS = sig
val id_tac: Proof.context -> tactic'
val id_phase: Autoref_Phases.phase
val mk_const_intf: term -> term -> term
val mk_const_intf_thm: Proof.context -> term -> term -> thm
val dest_const_intf: term -> term * term
val dest_const_intf_thm: thm -> term * term
val cfg_trace_intf_unif: bool Config.T
val cfg_trace_failed_id: bool Config.T
val cfg_ss_id_op: bool Config.T
val cfg_trace_patterns: bool Config.T
val cfg_use_id_tags: bool Config.T
val cfg_trace_id_tags: bool Config.T
val typ_thms_of_seq: Proof.context -> term -> thm Seq.seq
val has_typ_thms: Proof.context -> term -> bool
val decl_derived_typing: bool -> term -> term
-> Context.generic -> Context.generic
val setup: theory -> theory
end
structure Autoref_Id_Ops :AUTOREF_ID_OPS = struct
open Refine_Util Autoref_Tagging
fun mk_const_intf c I = let
val Tc = fastype_of c
val T = Tc --> @{typ interface} --> @{typ bool}
in
Const (@{const_name CONST_INTF},T)$c$I
end
fun mk_const_intf_thm ctxt f I = let
val fT = fastype_of f |> Thm.ctyp_of ctxt
val f = Thm.cterm_of ctxt f
val I = Thm.cterm_of ctxt I
val thm = Thm.instantiate' [SOME fT] [SOME f, SOME I] @{thm itypeI}
in
thm
end
fun dest_const_intf @{mpat "?c::⇩i?I"} = (c,I)
| dest_const_intf t = raise TERM ("dest_const_intf",[t])
val dest_const_intf_thm = Thm.concl_of
#> HOLogic.dest_Trueprop
#> dest_const_intf
fun LHS_COND' P = CONCL_COND'
(fn @{mpat "Trueprop (ID_OP ?lhs _ _)"} => P lhs | _ => false)
local open Conv in
fun id_op_lhs_conv cnv ct = case Thm.term_of ct of
@{mpat "ID_OP _ _ _"} => (fun_conv (fun_conv (arg_conv cnv))) ct
| _ => raise CTERM ("id_op_lhs_conv",[ct])
end
structure intf_types = Named_Thms (
val name = @{binding autoref_itype}
val description = "Interface type declaration"
)
structure op_patterns = Named_Thms (
val name = @{binding autoref_op_pat}
val description = "Operation patterns"
)
structure op_patterns_def = Named_Thms (
val name = @{binding autoref_op_pat_def}
val description = "Definitive operation patterns"
)
val cfg_trace_intf_unif =
Attrib.setup_config_bool @{binding autoref_trace_intf_unif} (K false)
val cfg_trace_failed_id =
Attrib.setup_config_bool @{binding autoref_trace_failed_id} (K false)
val cfg_ss_id_op =
Attrib.setup_config_bool @{binding autoref_ss_id_op} (K false)
val cfg_trace_patterns =
Attrib.setup_config_bool @{binding autoref_trace_pat} (K false)
val cfg_use_id_tags =
Attrib.setup_config_bool @{binding autoref_use_id_tags} (K false)
val cfg_trace_id_tags =
Attrib.setup_config_bool @{binding autoref_trace_id_tags} (K false)
fun get_typ_net ctxt = let
val thy = Proof_Context.theory_of ctxt
val typ_net = intf_types.get ctxt
|> Refine_Util.subsume_sort Thm.concl_of thy
|> Tactic.build_net
in typ_net end
fun typ_thms_of_seq' ctxt typ_net c = let
val idx = Term.maxidx_of_term c + 1
val typ_thms = mk_const_intf c (Var (("I",idx),@{typ interface}))
|> HOLogic.mk_Trueprop
|> Thm.cterm_of ctxt
|> Goal.init
|> resolve_from_net_tac ctxt typ_net 1
|> Seq.map Goal.conclude
in typ_thms end
fun typ_thms_of_seq ctxt = typ_thms_of_seq' ctxt (get_typ_net ctxt)
fun has_typ_thms' thy typ_net =
typ_thms_of_seq' thy typ_net #> Seq.pull #> is_some
fun has_typ_thms ctxt = has_typ_thms' ctxt (get_typ_net ctxt)
fun id_tac ctxt = let
val thy = Proof_Context.theory_of ctxt
val typ_net = get_typ_net ctxt
val typ_thms_seq_of = typ_thms_of_seq' ctxt typ_net
val typ_thms_of = typ_thms_seq_of #> Seq.list_of
fun pretty_typ_thms l =
l
|> map (Thm.pretty_thm ctxt)
|> Pretty.fbreaks |> Pretty.block
val tr_iu =
if Config.get ctxt cfg_trace_intf_unif then
fn i => fn st => ((
case Logic.concl_of_goal (Thm.prop_of st) i of
(t as @{mpat "Trueprop (?c::⇩i_)"}) => ( case typ_thms_of c of
[] => ()
| tts => Pretty.block [
Pretty.block [
Pretty.str "Interface unification failed:",
Pretty.brk 1,
Syntax.pretty_term ctxt t
],
Pretty.fbrk,
Pretty.str " ",
Pretty.block [
Pretty.str "Candidates: ",
Pretty.fbrk,
pretty_typ_thms tts
]
]
|> Pretty.string_of |> tracing
)
| _ => ()
); Seq.empty)
else K no_tac
val id_typ =
resolve_from_net_tac ctxt typ_net
ORELSE' tr_iu
val pat_net = op_patterns.get ctxt
|> Refine_Util.subsume_sort (Thm.concl_of #> Logic.dest_equals #> #1) thy
|> index_rewr_thms
val def_pat_net = op_patterns_def.get ctxt
|> Refine_Util.subsume_sort (Thm.concl_of #> Logic.dest_equals #> #1) thy
|> index_rewr_thms
val id_abs = CONVERSION (HOL_concl_conv
(fn ctxt => id_op_lhs_conv (mk_ABS_conv ctxt)) ctxt)
THEN' resolve_tac ctxt @{thms ID_abs}
val id_app = CONVERSION (HOL_concl_conv
(fn _ => id_op_lhs_conv (mk_APP_conv)) ctxt)
THEN' resolve_tac ctxt @{thms ID_app}
val id_tag_tac = let
val trace = Config.get ctxt cfg_trace_id_tags
in
if trace then IF_EXGOAL (fn i => fn st => let
fun tr_tac _ st' = let
val goal = Logic.get_goal (Thm.prop_of st) i
val concl = Logic.concl_of_goal (Thm.prop_of st) i
val _ = case concl of
@{mpat "Trueprop (ID_OP ?lhs _ _)"} =>
tracing ("ID_TAG: " ^ @{make_string} lhs)
| _ => tracing "ID_TAG: LHS???"
val _ = Pretty.block [
Pretty.str "ID_TAG: ", Pretty.brk 1,
Syntax.pretty_term ctxt goal
] |> Pretty.string_of |> tracing
in
Seq.single st'
end
in
(resolve_tac ctxt @{thms ID_const_any} THEN' tr_tac) i st
end)
else
resolve_tac ctxt @{thms ID_const_any}
end
val id_const =
LHS_COND' (fn t => is_Const t orelse is_Free t)
THEN' (
(resolve_tac ctxt @{thms ID_const} THEN' id_typ) (* Try to find type *)
ORELSE' (
if Config.get ctxt cfg_use_id_tags then
CAN' (resolve_tac ctxt @{thms ID_const_check_known} THEN' id_typ)
THEN_ELSE' (
K no_tac,
id_tag_tac
)
else K no_tac
)
)
val id_tagged = resolve_tac ctxt @{thms ID_tagged}
val id_annotated = resolve_tac ctxt @{thms ID_annotated}
(*
val traced_rewr_conv = if Config.get ctxt cfg_trace_patterns then
fn ctxt => fn thm => fn ct => let
val rthm = Conv.rewr_conv thm ct
val _ = Pretty.block [
Pretty.str "Trying (-pat:)", Pretty.brk 1,
pretty_rewrite ctxt thm rthm
] |> Pretty.string_of |> tracing
in
rthm
end
else
K Conv.rewr_conv
*)
fun get_rewr_pat @{mpat "Trueprop (ID_OP ?lhs _ _)"} = lhs
| get_rewr_pat t = t
fun rewr_frame_conv conv = HOL_concl_conv (fn _ => id_op_lhs_conv conv)
val def_id_pat =
DETERM o net_rewr_tac def_pat_net get_rewr_pat rewr_frame_conv ctxt
val id_pat =
net_rewr_tac pat_net get_rewr_pat rewr_frame_conv ctxt
val id_dflt = FIRST' [id_app,id_const,id_abs]
val id_fail = if Config.get ctxt cfg_trace_failed_id then
IF_EXGOAL (fn i => fn st =>
let
val pat = Logic.concl_of_goal (Thm.prop_of st) i
|> get_rewr_pat
val _ = Pretty.block [
Pretty.str "Failed to identify: ",
Syntax.pretty_term ctxt pat
]
|> Pretty.string_of |> tracing
in
Seq.empty
end
)
else K no_tac
val ss = Config.get ctxt cfg_ss_id_op
val step_tac =
FIRST' [
assume_tac ctxt,
id_tagged,
resolve_tac ctxt @{thms ID_is_tagged_OP} THEN_ELSE' (
resolve_tac ctxt @{thms ID_tagged_OP_no_annot} THEN' id_typ,
FIRST' [
Indep_Vars.indep_tac ctxt,
id_annotated,
def_id_pat,
id_pat APPEND' id_dflt,
id_fail
]
)
]
fun rec_tac i st = (
step_tac THEN_ALL_NEW_FWD (if ss then K all_tac else rec_tac)
) i st
in
rec_tac
end
fun id_analyze _ i j _ = (i = j)
fun id_pretty_failure _ i j _ =
if i = j then
Pretty.str "No failure"
else
Pretty.str "Interface typing error. Enable tracing for more information"
val id_phase = {
init = I,
tac = (fn ctxt => Seq.INTERVAL (resolve_tac ctxt @{thms ID_init} THEN' id_tac ctxt)),
analyze = id_analyze,
pretty_failure = id_pretty_failure
}
fun decl_derived_typing overl c I context = let
val ctxt = Context.proof_of context
val typ_thms = intf_types.get ctxt
(* TODO: Use net cached in ctxt here! *)
val thm = mk_const_intf_thm ctxt c I
val st = Thm.cprop_of thm |> Goal.init
val has_t = SOLVED' (match_tac ctxt typ_thms) 1 st |> Seq.pull |> is_some
in
if has_t then context
else (
not overl andalso has_typ_thms ctxt c andalso (warning (
Pretty.block [
Pretty.str "Adding overloaded interface type to constant:",
Pretty.brk 1,
Thm.pretty_thm ctxt thm
] |> Pretty.string_of
); true);
intf_types.add_thm thm context
)
end
val setup = I
#> intf_types.setup
#> op_patterns.setup
#> op_patterns_def.setup
end
*}
setup Autoref_Id_Ops.setup
definition IND_FACT :: "rel_name ⇒ ('c × 'a) set ⇒ bool" ("#_=_" 10)
where [simp]: "#name=R ≡ True"
lemma REL_INDIRECT: "#name=R" by simp
definition CNV_ANNOT :: "'a ⇒ 'a ⇒ (_×'a) set ⇒ bool"
where [simp]: "CNV_ANNOT t t' R ≡ t=t'"
definition REL_OF_INTF :: "interface ⇒ ('c×'a) set ⇒ bool"
where [simp]: "REL_OF_INTF I R ≡ True"
definition
[simp]: "REL_OF_INTF_P I R ≡ True"
lemma CNV_ANNOT:
"⋀f f' a a'. ⟦ CNV_ANNOT a a' Ra; CNV_ANNOT f f' (Ra→Rr) ⟧
⟹ CNV_ANNOT (f$a) (f'$a') (Rr)"
"⋀f f'. ⟦ ⋀x. CNV_ANNOT x x Ra ⟹ CNV_ANNOT (f x) (f' x) Rr ⟧
⟹ CNV_ANNOT (λ'x. f x) (λ'x. f' x) (Ra→Rr)"
"⋀f f I R. ⟦undefined (''Id tag not yet supported'',f)⟧
⟹ CNV_ANNOT (OP (ID_TAG f) :::⇩i I) f R"
"⋀f I R. ⟦ INDEP R; REL_OF_INTF I R ⟧
⟹ CNV_ANNOT (OP f :::⇩i I) (OP f ::: R) R"
"⋀t t' R. CNV_ANNOT t t' R ⟹ CNV_ANNOT (t ::: R) t' R"
"⋀t t' name R. ⟦ #name=R; CNV_ANNOT t t' R ⟧ ⟹ CNV_ANNOT (t ::#name) t' R"
by simp_all
consts i_of_rel :: "'a ⇒ 'b"
lemma ROI_P_app:
"REL_OF_INTF_P I R ⟹ REL_OF_INTF I R"
by auto
lemma ROI_app:
"⟦ REL_OF_INTF I R; REL_OF_INTF_P J S ⟧ ⟹ REL_OF_INTF_P (⟨I⟩⇩iJ) (⟨R⟩S)"
by auto
lemma ROI_i_of_rel:
"REL_OF_INTF_P (i_of_rel S) S"
"REL_OF_INTF (i_of_rel R) R"
by auto
lemma ROI_const:
"REL_OF_INTF_P J S"
"REL_OF_INTF I R"
by auto
lemma ROI_init:
assumes "CNV_ANNOT a a' R"
assumes "(c,a')∈R"
shows "(c,a)∈R"
using assms by simp
lemma REL_OF_INTF_I: "REL_OF_INTF I R" by simp
ML {*
signature AUTOREF_REL_INF = sig
val roi_tac: Proof.context -> tactic'
val roi_step_tac: Proof.context -> tactic'
val roi_phase: Autoref_Phases.phase
val cfg_sbias: int Config.T
val setup: theory -> theory
end
structure Autoref_Rel_Inf :AUTOREF_REL_INF = struct
val cfg_sbias =
Attrib.setup_config_int @{binding autoref_sbias} (K 100)
structure rel_indirect = Named_Thms (
val name = @{binding autoref_rel_indirect}
val description = "Indirect relator bindings"
)
fun rel_of_intf_thm ctxt I = let
fun
roi (Free (n,_)) ctxt = let
val (Rn,ctxt) = yield_singleton Variable.variant_fixes ("R_" ^ n) ctxt
in (Free (Rn,dummyT),ctxt) end
| roi (Const (n,_)) ctxt = let
val n = Long_Name.base_name n
val (Rn,ctxt) = yield_singleton Variable.variant_fixes ("R_" ^ n) ctxt
in (Free (Rn,dummyT),ctxt) end
| roi @{mpat "⟨?Ia⟩⇩i?Ib"} ctxt = let
val (Ra,ctxt) = roi Ia ctxt
val (Rb,ctxt) = roi Ib ctxt
in
(Const (@{const_name relAPP},dummyT)$Rb$Ra,ctxt)
end
| roi @{mpat "i_of_rel ?R"} ctxt = (R,ctxt)
| roi t _ = raise TERM ("rel_of_intf: Unexpected interface", [t])
val orig_ctxt = ctxt
val (I,ctxt) = yield_singleton (Variable.import_terms true) I ctxt
val (R,ctxt) = roi I ctxt
val res = Const (@{const_name REL_OF_INTF},dummyT)$I$R
val res = Syntax.check_term ctxt res
val res = singleton (Variable.export_terms ctxt orig_ctxt) res
|> HOLogic.mk_Trueprop
|> Thm.cterm_of ctxt
val thm = Goal.prove_internal ctxt [] res (fn _ => resolve_tac ctxt @{thms REL_OF_INTF_I} 1)
in thm end
fun roi_step_tac ctxt = let
val ind_net = rel_indirect.get ctxt |> Tactic.build_net
in
IF_EXGOAL (
assume_tac ctxt
ORELSE'
Indep_Vars.indep_tac ctxt
ORELSE' resolve_from_net_tac ctxt ind_net
ORELSE'
(fn i => fn st =>
case Logic.concl_of_goal (Thm.prop_of st) i of
@{mpat "Trueprop (CNV_ANNOT _ _ _)"} =>
resolve_tac ctxt @{thms CNV_ANNOT} i st
| @{mpat "Trueprop (REL_OF_INTF ?I _)"} =>
resolve_tac ctxt [rel_of_intf_thm ctxt I] i st
| _ => Seq.empty
(*
| @{mpat "Trueprop (REL_OF_INTF (⟨_⟩⇩i_) _)"} =>
rtac @{thm ROI_P_app} i st
| @{mpat "Trueprop (REL_OF_INTF_P (⟨_⟩⇩i_) _)"} =>
rtac @{thm ROI_app} i st
| @{mpat "Trueprop (REL_OF_INTF_P (i_of_rel _) _)"} =>
resolve_tac ctxt @{thms ROI_i_of_rel} i st
| @{mpat "Trueprop (REL_OF_INTF (i_of_rel _) _)"} =>
resolve_tac ctxt @{thms ROI_i_of_rel} i st
| _ => resolve_tac ctxt @{thms ROI_const} i st
*)
)
)
end
fun roi_tac ctxt =
REPEAT_ALL_NEW_FWD (DETERM o roi_step_tac ctxt)
fun roi_analyze _ i j _ = (i = j)
fun roi_pretty_failure _ i j _ =
if i = j then
Pretty.str "No failure"
else
Pretty.str "Relator inference error"
val roi_phase = {
init = I,
tac = (fn ctxt => Seq.INTERVAL (resolve_tac ctxt @{thms ROI_init} THEN' roi_tac ctxt)),
analyze = roi_analyze,
pretty_failure = roi_pretty_failure
}
val setup = rel_indirect.setup
end
*}
setup Autoref_Rel_Inf.setup
end