Theory HOL-Library.Countable_Set
section ‹Countable sets›
theory Countable_Set
imports Countable Infinite_Set
begin
subsection ‹Predicate for countable sets›
definition countable :: "'a set ⇒ bool" where
"countable S ⟷ (∃f::'a ⇒ nat. inj_on f S)"
lemma countableE:
assumes S: "countable S" obtains f :: "'a ⇒ nat" where "inj_on f S"
using S by (auto simp: countable_def)
lemma countableI: "inj_on (f::'a ⇒ nat) S ⟹ countable S"
by (auto simp: countable_def)
lemma countableI': "inj_on (f::'a ⇒ 'b::countable) S ⟹ countable S"
using comp_inj_on[of f S to_nat] by (auto intro: countableI)
lemma countableE_bij:
assumes S: "countable S" obtains f :: "nat ⇒ 'a" and C :: "nat set" where "bij_betw f C S"
using S by (blast elim: countableE dest: inj_on_imp_bij_betw bij_betw_inv)
lemma countableI_bij: "bij_betw f (C::nat set) S ⟹ countable S"
by (blast intro: countableI bij_betw_inv_into bij_betw_imp_inj_on)
lemma countable_finite: "finite S ⟹ countable S"
by (blast dest: finite_imp_inj_to_nat_seg countableI)
lemma countableI_bij1: "bij_betw f A B ⟹ countable A ⟹ countable B"
by (blast elim: countableE_bij intro: bij_betw_trans countableI_bij)
lemma countableI_bij2: "bij_betw f B A ⟹ countable A ⟹ countable B"
by (blast elim: countableE_bij intro: bij_betw_trans bij_betw_inv_into countableI_bij)
lemma countable_iff_bij[simp]: "bij_betw f A B ⟹ countable A ⟷ countable B"
by (blast intro: countableI_bij1 countableI_bij2)
lemma countable_subset: "A ⊆ B ⟹ countable B ⟹ countable A"
by (auto simp: countable_def intro: subset_inj_on)
lemma countableI_type[intro, simp]: "countable (A:: 'a :: countable set)"
using countableI[of to_nat A] by auto
subsection ‹Enumerate a countable set›
lemma countableE_infinite:
assumes "countable S" "infinite S"
obtains e :: "'a ⇒ nat" where "bij_betw e S UNIV"
proof -
obtain f :: "'a ⇒ nat" where "inj_on f S"
using ‹countable S› by (rule countableE)
then have "bij_betw f S (f`S)"
unfolding bij_betw_def by simp
moreover
from ‹inj_on f S› ‹infinite S› have inf_fS: "infinite (f`S)"
by (auto dest: finite_imageD)
then have "bij_betw (the_inv_into UNIV (enumerate (f`S))) (f`S) UNIV"
by (intro bij_betw_the_inv_into bij_enumerate)
ultimately have "bij_betw (the_inv_into UNIV (enumerate (f`S)) ∘ f) S UNIV"
by (rule bij_betw_trans)
then show thesis ..
qed
lemma countable_infiniteE':
assumes "countable A" "infinite A"
obtains g where "bij_betw g (UNIV :: nat set) A"
using bij_betw_inv[OF countableE_infinite[OF assms]] that by blast
lemma countable_enum_cases:
assumes "countable S"
obtains (finite) f :: "'a ⇒ nat" where "finite S" "bij_betw f S {..<card S}"
| (infinite) f :: "'a ⇒ nat" where "infinite S" "bij_betw f S UNIV"
using ex_bij_betw_finite_nat[of S] countableE_infinite ‹countable S›
by (cases "finite S") (auto simp add: atLeast0LessThan)
definition to_nat_on :: "'a set ⇒ 'a ⇒ nat" where
"to_nat_on S = (SOME f. if finite S then bij_betw f S {..< card S} else bij_betw f S UNIV)"
definition from_nat_into :: "'a set ⇒ nat ⇒ 'a" where
"from_nat_into S n = (if n ∈ to_nat_on S ` S then inv_into S (to_nat_on S) n else SOME s. s∈S)"
lemma to_nat_on_finite: "finite S ⟹ bij_betw (to_nat_on S) S {..< card S}"
using ex_bij_betw_finite_nat unfolding to_nat_on_def
by (intro someI2_ex[where Q="λf. bij_betw f S {..<card S}"]) (auto simp add: atLeast0LessThan)
lemma to_nat_on_infinite: "countable S ⟹ infinite S ⟹ bij_betw (to_nat_on S) S UNIV"
using countableE_infinite unfolding to_nat_on_def
by (intro someI2_ex[where Q="λf. bij_betw f S UNIV"]) auto
lemma bij_betw_from_nat_into_finite: "finite S ⟹ bij_betw (from_nat_into S) {..< card S} S"
unfolding from_nat_into_def[abs_def]
using to_nat_on_finite[of S]
apply (subst bij_betw_cong)
apply (split if_split)
apply (simp add: bij_betw_def)
apply (auto cong: bij_betw_cong
intro: bij_betw_inv_into to_nat_on_finite)
done
lemma bij_betw_from_nat_into: "countable S ⟹ infinite S ⟹ bij_betw (from_nat_into S) UNIV S"
unfolding from_nat_into_def[abs_def]
using to_nat_on_infinite[of S, unfolded bij_betw_def]
by (auto cong: bij_betw_cong intro: bij_betw_inv_into to_nat_on_infinite)
text ‹
The sum/product over the enumeration of a finite set equals simply the sum/product over the set
›
context comm_monoid_set
begin
lemma card_from_nat_into:
"F (λi. h (from_nat_into A i)) {..<card A} = F h A"
proof (cases "finite A")
case True
have "F (λi. h (from_nat_into A i)) {..<card A} = F h (from_nat_into A ` {..<card A})"
by (metis True bij_betw_def bij_betw_from_nat_into_finite reindex_cong)
also have "... = F h A"
by (metis True bij_betw_def bij_betw_from_nat_into_finite)
finally show ?thesis .
qed auto
end
lemma countable_as_injective_image:
assumes "countable A" "infinite A"
obtains f :: "nat ⇒ 'a" where "A = range f" "inj f"
by (metis bij_betw_def bij_betw_from_nat_into [OF assms])
lemma inj_on_to_nat_on[intro]: "countable A ⟹ inj_on (to_nat_on A) A"
using to_nat_on_infinite[of A] to_nat_on_finite[of A]
by (cases "finite A") (auto simp: bij_betw_def)
lemma to_nat_on_inj[simp]:
"countable A ⟹ a ∈ A ⟹ b ∈ A ⟹ to_nat_on A a = to_nat_on A b ⟷ a = b"
using inj_on_to_nat_on[of A] by (auto dest: inj_onD)
lemma from_nat_into_to_nat_on[simp]: "countable A ⟹ a ∈ A ⟹ from_nat_into A (to_nat_on A a) = a"
by (auto simp: from_nat_into_def intro!: inv_into_f_f)
lemma subset_range_from_nat_into: "countable A ⟹ A ⊆ range (from_nat_into A)"
by (auto intro: from_nat_into_to_nat_on[symmetric])
lemma from_nat_into: "A ≠ {} ⟹ from_nat_into A n ∈ A"
unfolding from_nat_into_def by (metis equals0I inv_into_into someI_ex)
lemma range_from_nat_into_subset: "A ≠ {} ⟹ range (from_nat_into A) ⊆ A"
using from_nat_into[of A] by auto
lemma range_from_nat_into[simp]: "A ≠ {} ⟹ countable A ⟹ range (from_nat_into A) = A"
by (metis equalityI range_from_nat_into_subset subset_range_from_nat_into)
lemma image_to_nat_on: "countable A ⟹ infinite A ⟹ to_nat_on A ` A = UNIV"
using to_nat_on_infinite[of A] by (simp add: bij_betw_def)
lemma to_nat_on_surj: "countable A ⟹ infinite A ⟹ ∃a∈A. to_nat_on A a = n"
by (metis (no_types) image_iff iso_tuple_UNIV_I image_to_nat_on)
lemma to_nat_on_from_nat_into[simp]: "n ∈ to_nat_on A ` A ⟹ to_nat_on A (from_nat_into A n) = n"
by (simp add: f_inv_into_f from_nat_into_def)
lemma to_nat_on_from_nat_into_infinite[simp]:
"countable A ⟹ infinite A ⟹ to_nat_on A (from_nat_into A n) = n"
by (metis image_iff to_nat_on_surj to_nat_on_from_nat_into)
lemma from_nat_into_inj:
"countable A ⟹ m ∈ to_nat_on A ` A ⟹ n ∈ to_nat_on A ` A ⟹
from_nat_into A m = from_nat_into A n ⟷ m = n"
by (subst to_nat_on_inj[symmetric, of A]) auto
lemma from_nat_into_inj_infinite[simp]:
"countable A ⟹ infinite A ⟹ from_nat_into A m = from_nat_into A n ⟷ m = n"
using image_to_nat_on[of A] from_nat_into_inj[of A m n] by simp
lemma eq_from_nat_into_iff:
"countable A ⟹ x ∈ A ⟹ i ∈ to_nat_on A ` A ⟹ x = from_nat_into A i ⟷ i = to_nat_on A x"
by auto
lemma from_nat_into_surj: "countable A ⟹ a ∈ A ⟹ ∃n. from_nat_into A n = a"
by (rule exI[of _ "to_nat_on A a"]) simp
lemma from_nat_into_inject[simp]:
"A ≠ {} ⟹ countable A ⟹ B ≠ {} ⟹ countable B ⟹ from_nat_into A = from_nat_into B ⟷ A = B"
by (metis range_from_nat_into)
lemma inj_on_from_nat_into: "inj_on from_nat_into ({A. A ≠ {} ∧ countable A})"
unfolding inj_on_def by auto
subsection ‹Closure properties of countability›
lemma countable_SIGMA[intro, simp]:
"countable I ⟹ (⋀i. i ∈ I ⟹ countable (A i)) ⟹ countable (SIGMA i : I. A i)"
by (intro countableI'[of "λ(i, a). (to_nat_on I i, to_nat_on (A i) a)"]) (auto simp: inj_on_def)
lemma countable_image[intro, simp]:
assumes "countable A"
shows "countable (f`A)"
proof -
obtain g :: "'a ⇒ nat" where "inj_on g A"
using assms by (rule countableE)
moreover have "inj_on (inv_into A f) (f`A)" "inv_into A f ` f ` A ⊆ A"
by (auto intro: inj_on_inv_into inv_into_into)
ultimately show ?thesis
by (blast dest: comp_inj_on subset_inj_on intro: countableI)
qed
lemma countable_image_inj_on: "countable (f ` A) ⟹ inj_on f A ⟹ countable A"
by (metis countable_image the_inv_into_onto)
lemma countable_image_inj_Int_vimage:
"⟦inj_on f S; countable A⟧ ⟹ countable (S ∩ f -` A)"
by (meson countable_image_inj_on countable_subset image_subset_iff_subset_vimage inf_le2 inj_on_Int)
lemma countable_image_inj_gen:
"⟦inj_on f S; countable A⟧ ⟹ countable {x ∈ S. f x ∈ A}"
using countable_image_inj_Int_vimage
by (auto simp: vimage_def Collect_conj_eq)
lemma countable_image_inj_eq:
"inj_on f S ⟹ countable(f ` S) ⟷ countable S"
using countable_image_inj_on by blast
lemma countable_image_inj:
"⟦countable A; inj f⟧ ⟹ countable {x. f x ∈ A}"
by (metis (mono_tags, lifting) countable_image_inj_eq countable_subset image_Collect_subsetI inj_on_inverseI the_inv_f_f)
lemma countable_UN[intro, simp]:
fixes I :: "'i set" and A :: "'i => 'a set"
assumes I: "countable I"
assumes A: "⋀i. i ∈ I ⟹ countable (A i)"
shows "countable (⋃i∈I. A i)"
proof -
have "(⋃i∈I. A i) = snd ` (SIGMA i : I. A i)" by (auto simp: image_iff)
then show ?thesis by (simp add: assms)
qed
lemma countable_Un[intro]: "countable A ⟹ countable B ⟹ countable (A ∪ B)"
by (rule countable_UN[of "{True, False}" "λTrue ⇒ A | False ⇒ B", simplified])
(simp split: bool.split)
lemma countable_Un_iff[simp]: "countable (A ∪ B) ⟷ countable A ∧ countable B"
by (metis countable_Un countable_subset inf_sup_ord(3,4))
lemma countable_Plus[intro, simp]:
"countable A ⟹ countable B ⟹ countable (A <+> B)"
by (simp add: Plus_def)
lemma countable_empty[intro, simp]: "countable {}"
by (blast intro: countable_finite)
lemma countable_insert[intro, simp]: "countable A ⟹ countable (insert a A)"
using countable_Un[of "{a}" A] by (auto simp: countable_finite)
lemma countable_Int1[intro, simp]: "countable A ⟹ countable (A ∩ B)"
by (force intro: countable_subset)
lemma countable_Int2[intro, simp]: "countable B ⟹ countable (A ∩ B)"
by (blast intro: countable_subset)
lemma countable_INT[intro, simp]: "i ∈ I ⟹ countable (A i) ⟹ countable (⋂i∈I. A i)"
by (blast intro: countable_subset)
lemma countable_Diff[intro, simp]: "countable A ⟹ countable (A - B)"
by (blast intro: countable_subset)
lemma countable_insert_eq [simp]: "countable (insert x A) = countable A"
by auto (metis Diff_insert_absorb countable_Diff insert_absorb)
lemma countable_vimage: "B ⊆ range f ⟹ countable (f -` B) ⟹ countable B"
by (metis Int_absorb2 countable_image image_vimage_eq)
lemma surj_countable_vimage: "surj f ⟹ countable (f -` B) ⟹ countable B"
by (metis countable_vimage top_greatest)
lemma countable_Collect[simp]: "countable A ⟹ countable {a ∈ A. φ a}"
by (metis Collect_conj_eq Int_absorb Int_commute Int_def countable_Int1)
lemma countable_Image:
assumes "⋀y. y ∈ Y ⟹ countable (X `` {y})"
assumes "countable Y"
shows "countable (X `` Y)"
proof -
have "countable (X `` (⋃y∈Y. {y}))"
unfolding Image_UN by (intro countable_UN assms)
then show ?thesis by simp
qed
lemma countable_relpow:
fixes X :: "'a rel"
assumes Image_X: "⋀Y. countable Y ⟹ countable (X `` Y)"
assumes Y: "countable Y"
shows "countable ((X ^^ i) `` Y)"
using Y by (induct i arbitrary: Y) (auto simp: relcomp_Image Image_X)
lemma countable_funpow:
fixes f :: "'a set ⇒ 'a set"
assumes "⋀A. countable A ⟹ countable (f A)"
and "countable A"
shows "countable ((f ^^ n) A)"
by(induction n)(simp_all add: assms)
lemma countable_rtrancl:
"(⋀Y. countable Y ⟹ countable (X `` Y)) ⟹ countable Y ⟹ countable (X⇧* `` Y)"
unfolding rtrancl_is_UN_relpow UN_Image by (intro countable_UN countableI_type countable_relpow)
lemma countable_lists[intro, simp]:
assumes A: "countable A" shows "countable (lists A)"
proof -
have "countable (lists (range (from_nat_into A)))"
by (auto simp: lists_image)
with A show ?thesis
by (auto dest: subset_range_from_nat_into countable_subset lists_mono)
qed
lemma Collect_finite_eq_lists: "Collect finite = set ` lists UNIV"
using finite_list by auto
lemma countable_Collect_finite: "countable (Collect (finite::'a::countable set⇒bool))"
by (simp add: Collect_finite_eq_lists)
lemma countable_int: "countable ℤ"
unfolding Ints_def by auto
lemma countable_rat: "countable ℚ"
unfolding Rats_def by auto
lemma Collect_finite_subset_eq_lists: "{A. finite A ∧ A ⊆ T} = set ` lists T"
using finite_list by (auto simp: lists_eq_set)
lemma countable_Collect_finite_subset:
"countable T ⟹ countable {A. finite A ∧ A ⊆ T}"
unfolding Collect_finite_subset_eq_lists by auto
lemma countable_Fpow: "countable S ⟹ countable (Fpow S)"
using countable_Collect_finite_subset
by (force simp add: Fpow_def conj_commute)
lemma countable_set_option [simp]: "countable (set_option x)"
by (cases x) auto
subsection ‹Misc lemmas›
lemma countable_subset_image:
"countable B ∧ B ⊆ (f ` A) ⟷ (∃A'. countable A' ∧ A' ⊆ A ∧ (B = f ` A'))"
(is "?lhs = ?rhs")
proof
assume ?lhs
show ?rhs
by (rule exI [where x="inv_into A f ` B"])
(use ‹?lhs› in ‹auto simp: f_inv_into_f subset_iff image_inv_into_cancel inv_into_into›)
next
assume ?rhs
then show ?lhs by force
qed
lemma ex_subset_image_inj:
"(∃T. T ⊆ f ` S ∧ P T) ⟷ (∃T. T ⊆ S ∧ inj_on f T ∧ P (f ` T))"
by (auto simp: subset_image_inj)
lemma all_subset_image_inj:
"(∀T. T ⊆ f ` S ⟶ P T) ⟷ (∀T. T ⊆ S ∧ inj_on f T ⟶ P(f ` T))"
by (metis subset_image_inj)
lemma ex_countable_subset_image_inj:
"(∃T. countable T ∧ T ⊆ f ` S ∧ P T) ⟷
(∃T. countable T ∧ T ⊆ S ∧ inj_on f T ∧ P (f ` T))"
by (metis countable_image_inj_eq subset_image_inj)
lemma all_countable_subset_image_inj:
"(∀T. countable T ∧ T ⊆ f ` S ⟶ P T) ⟷ (∀T. countable T ∧ T ⊆ S ∧ inj_on f T ⟶P(f ` T))"
by (metis countable_image_inj_eq subset_image_inj)
lemma ex_countable_subset_image:
"(∃T. countable T ∧ T ⊆ f ` S ∧ P T) ⟷ (∃T. countable T ∧ T ⊆ S ∧ P (f ` T))"
by (metis countable_subset_image)
lemma all_countable_subset_image:
"(∀T. countable T ∧ T ⊆ f ` S ⟶ P T) ⟷ (∀T. countable T ∧ T ⊆ S ⟶ P(f ` T))"
by (metis countable_subset_image)
lemma countable_image_eq:
"countable(f ` S) ⟷ (∃T. countable T ∧ T ⊆ S ∧ f ` S = f ` T)"
by (metis countable_image countable_image_inj_eq order_refl subset_image_inj)
lemma countable_image_eq_inj:
"countable(f ` S) ⟷ (∃T. countable T ∧ T ⊆ S ∧ f ` S = f ` T ∧ inj_on f T)"
by (metis countable_image_inj_eq order_refl subset_image_inj)
lemma infinite_countable_subset':
assumes X: "infinite X" shows "∃C⊆X. countable C ∧ infinite C"
proof -
obtain f :: "nat ⇒ 'a" where "inj f" "range f ⊆ X"
using infinite_countable_subset [OF X] by blast
then show ?thesis
by (intro exI[of _ "range f"]) (auto simp: range_inj_infinite)
qed
lemma countable_all:
assumes S: "countable S"
shows "(∀s∈S. P s) ⟷ (∀n::nat. from_nat_into S n ∈ S ⟶ P (from_nat_into S n))"
using S[THEN subset_range_from_nat_into] by auto
lemma finite_sequence_to_countable_set:
assumes "countable X"
obtains F where "⋀i. F i ⊆ X" "⋀i. F i ⊆ F (Suc i)" "⋀i. finite (F i)" "(⋃i. F i) = X"
proof -
show thesis
apply (rule that[of "λi. if X = {} then {} else from_nat_into X ` {..i}"])
apply (auto simp add: image_iff intro: from_nat_into split: if_splits)
using assms from_nat_into_surj by (fastforce cong: image_cong)
qed
lemma transfer_countable[transfer_rule]:
"bi_unique R ⟹ rel_fun (rel_set R) (=) countable countable"
by (rule rel_funI, erule (1) bi_unique_rel_set_lemma)
(auto dest: countable_image_inj_on)
subsection ‹Uncountable›
abbreviation uncountable where
"uncountable A ≡ ¬ countable A"
lemma uncountable_def: "uncountable A ⟷ A ≠ {} ∧ ¬ (∃f::(nat ⇒ 'a). range f = A)"
by (auto intro: inj_on_inv_into simp: countable_def)
(metis all_not_in_conv inj_on_iff_surj subset_UNIV)
lemma uncountable_bij_betw: "bij_betw f A B ⟹ uncountable B ⟹ uncountable A"
unfolding bij_betw_def by (metis countable_image)
lemma uncountable_infinite: "uncountable A ⟹ infinite A"
by (metis countable_finite)
lemma uncountable_minus_countable:
"uncountable A ⟹ countable B ⟹ uncountable (A - B)"
using countable_Un[of B "A - B"] by auto
lemma countable_Diff_eq [simp]: "countable (A - {x}) = countable A"
by (meson countable_Diff countable_empty countable_insert uncountable_minus_countable)
text ‹Every infinite set can be covered by a pairwise disjoint family of infinite sets.
This version doesn't achieve equality, as it only covers a countable subset›
lemma infinite_infinite_partition:
assumes "infinite A"
obtains C :: "nat ⇒ 'a set"
where "pairwise (λi j. disjnt (C i) (C j)) UNIV" "(⋃i. C i) ⊆ A" "⋀i. infinite (C i)"
proof -
obtain f :: "nat⇒'a" where "range f ⊆ A" "inj f"
using assms infinite_countable_subset by blast
let ?C = "λi. range (λj. f (prod_encode (i,j)))"
show thesis
proof
show "pairwise (λi j. disjnt (?C i) (?C j)) UNIV"
by (auto simp: pairwise_def disjnt_def inj_on_eq_iff [OF ‹inj f›] inj_on_eq_iff [OF inj_prod_encode, of _ UNIV])
show "(⋃i. ?C i) ⊆ A"
using ‹range f ⊆ A› by blast
have "infinite (range (λj. f (prod_encode (i, j))))" for i
by (rule range_inj_infinite) (meson Pair_inject ‹inj f› inj_def prod_encode_eq)
then show "⋀i. infinite (?C i)"
using that by auto
qed
qed
end