Theory Word_Lib.Singleton_Bit_Shifts
theory Singleton_Bit_Shifts
imports
"HOL-Library.Word"
Bit_Shifts_Infix_Syntax
begin
definition shiftl1 :: ‹'a::len word ⇒ 'a word›
where ‹shiftl1 = push_bit 1›
lemma bit_shiftl1_iff [bit_simps]:
‹bit (shiftl1 w) n ⟷ 0 < n ∧ n < LENGTH('a) ∧ bit w (n - 1)›
for w :: ‹'a::len word›
by (simp only: shiftl1_def bit_push_bit_iff) auto
definition shiftr1 :: ‹'a::len word ⇒ 'a word›
where ‹shiftr1 = drop_bit 1›
lemma bit_shiftr1_iff [bit_simps]:
‹bit (shiftr1 w) n ⟷ bit w (Suc n)›
for w :: ‹'a::len word›
by (simp add: shiftr1_def bit_drop_bit_eq)
definition sshiftr1 :: ‹'a::len word ⇒ 'a word›
where ‹sshiftr1 ≡ signed_drop_bit 1›
lemma bit_sshiftr1_iff [bit_simps]:
‹bit (sshiftr1 w) n ⟷ bit w (if n = LENGTH('a) - 1 then LENGTH('a) - 1 else Suc n)›
for w :: ‹'a::len word›
by (auto simp add: sshiftr1_def bit_signed_drop_bit_iff)
lemma shiftr1_1: "shiftr1 (1::'a::len word) = 0"
by (simp add: shiftr1_def)
lemma sshiftr1_eq:
‹sshiftr1 w = word_of_int (sint w div 2)›
by (rule bit_word_eqI) (auto simp add: bit_simps min_def simp flip: bit_Suc elim: le_SucE)
lemma shiftl1_eq:
‹shiftl1 w = word_of_int (2 * uint w)›
by (rule bit_word_eqI) (auto simp add: bit_simps)
lemma shiftr1_eq:
‹shiftr1 w = word_of_int (uint w div 2)›
by (rule bit_word_eqI) (simp add: bit_simps flip: bit_Suc)
lemma shiftl1_rev:
"shiftl1 w = word_reverse (shiftr1 (word_reverse w))"
by (rule bit_word_eqI) (auto simp add: bit_simps Suc_diff_Suc simp flip: bit_Suc)
lemma shiftl1_p:
"shiftl1 w = w + w"
for w :: "'a::len word"
by (simp add: shiftl1_def)
lemma shiftr1_bintr:
"(shiftr1 (numeral w) :: 'a::len word) =
word_of_int (take_bit LENGTH('a) (numeral w) div 2)"
by (rule bit_word_eqI) (simp add: bit_simps bit_numeral_iff [where ?'a = int] flip: bit_Suc)
lemma sshiftr1_sbintr:
"(sshiftr1 (numeral w) :: 'a::len word) =
word_of_int (signed_take_bit (LENGTH('a) - 1) (numeral w) div 2)"
apply (cases ‹LENGTH('a)›)
apply simp_all
apply (rule bit_word_eqI)
apply (auto simp add: bit_simps min_def simp flip: bit_Suc elim: le_SucE)
done
lemma shiftl1_wi:
"shiftl1 (word_of_int w) = word_of_int (2 * w)"
by (rule bit_word_eqI) (auto simp add: bit_simps)
lemma shiftl1_numeral:
"shiftl1 (numeral w) = numeral (Num.Bit0 w)"
unfolding word_numeral_alt shiftl1_wi by simp
lemma shiftl1_neg_numeral:
"shiftl1 (- numeral w) = - numeral (Num.Bit0 w)"
unfolding word_neg_numeral_alt shiftl1_wi by simp
lemma shiftl1_0:
"shiftl1 0 = 0"
by (simp add: shiftl1_def)
lemma shiftl1_def_u:
"shiftl1 w = word_of_int (2 * uint w)"
by (fact shiftl1_eq)
lemma shiftl1_def_s:
"shiftl1 w = word_of_int (2 * sint w)"
by (simp add: shiftl1_def)
lemma shiftr1_0:
"shiftr1 0 = 0"
by (simp add: shiftr1_def)
lemma sshiftr1_0:
"sshiftr1 0 = 0"
by (simp add: sshiftr1_def)
lemma sshiftr1_n1:
"sshiftr1 (- 1) = - 1"
by (simp add: sshiftr1_def)
lemma uint_shiftr1:
"uint (shiftr1 w) = uint w div 2"
by (rule bit_eqI) (simp add: bit_simps flip: bit_Suc)
lemma shiftr1_div_2:
"uint (shiftr1 w) = uint w div 2"
by (fact uint_shiftr1)
lemma sshiftr1_div_2:
"sint (sshiftr1 w) = sint w div 2"
by (rule bit_eqI) (auto simp add: bit_simps ac_simps min_def simp flip: bit_Suc elim: le_SucE)
lemma nth_shiftl1:
"bit (shiftl1 w) n ⟷ n < size w ∧ n > 0 ∧ bit w (n - 1)"
by (auto simp add: word_size bit_simps)
lemma nth_shiftr1:
"bit (shiftr1 w) n = bit w (Suc n)"
by (fact bit_shiftr1_iff)
lemma nth_sshiftr1: "bit (sshiftr1 w) n = (if n = size w - 1 then bit w n else bit w (Suc n))"
by (auto simp add: word_size bit_simps)
lemma shiftl_power:
"(shiftl1 ^^ x) (y::'a::len word) = 2 ^ x * y"
by (induction x) (simp_all add: shiftl1_def)
lemma le_shiftr1:
‹shiftr1 u ≤ shiftr1 v› if ‹u ≤ v›
using that by (simp add: word_le_nat_alt unat_div div_le_mono shiftr1_def drop_bit_Suc)
lemma le_shiftr1':
"⟦ shiftr1 u ≤ shiftr1 v ; shiftr1 u ≠ shiftr1 v ⟧ ⟹ u ≤ v"
by (meson dual_order.antisym le_cases le_shiftr1)
lemma sshiftr_eq_funpow_sshiftr1:
‹w >>> n = (sshiftr1 ^^ n) w›
apply (rule sym)
apply (simp add: sshiftr1_def sshiftr_def)
apply (induction n)
apply simp_all
done
end