Theory Word_Lib.Word_EqI
section "Solving Word Equalities"
theory Word_EqI
imports
More_Word
Aligned
"HOL-Eisbach.Eisbach_Tools"
begin
text ‹
Some word equalities can be solved by considering the problem bitwise for all
@{prop "n < LENGTH('a::len)"}, which is different to running @{text word_bitwise}
and expanding into an explicit list of bits.
›
lemmas le_mask_high_bits_len = le_mask_high_bits[unfolded word_size]
lemmas neg_mask_le_high_bits_len = neg_mask_le_high_bits[unfolded word_size]
named_theorems word_eqI_simps
lemmas [word_eqI_simps] =
word_or_zero
neg_mask_test_bit
nth_ucast
less_2p_is_upper_bits_unset
le_mask_high_bits_len
neg_mask_le_high_bits_len
bang_eq
is_up
is_down
is_aligned_nth
word_size
lemmas word_eqI_folds [symmetric] =
push_bit_eq_mult
drop_bit_eq_div
take_bit_eq_mod
lemmas word_eqI_rules = word_eqI [rule_format, unfolded word_size] bit_eqI
lemma test_bit_lenD:
"bit x n ⟹ n < LENGTH('a) ∧ bit x n" for x :: "'a :: len word"
by (fastforce dest: test_bit_size simp: word_size)
method word_eqI uses simp simp_del split split_del cong flip =
(
rule word_eqI_rules,
(simp only: word_eqI_folds)?,
(clarsimp simp: simp simp del: simp_del simp flip: flip split: split split del: split_del cong: cong)?,
((drule less_mask_eq)+)?,
(simp only: bit_simps word_eqI_simps)?,
(clarsimp simp: simp not_less not_le simp del: simp_del simp flip: flip
split: split split del: split_del cong: cong)?,
((drule test_bit_lenD)+)?,
(simp only: bit_simps word_eqI_simps)?,
(clarsimp simp: simp simp del: simp_del simp flip: flip
split: split split del: split_del cong: cong)?,
(simp add: simp test_bit_conj_lt del: simp_del flip: flip split: split split del: split_del cong: cong)?)
method word_eqI_solve uses simp simp_del split split_del cong flip dest =
solves ‹word_eqI simp: simp simp_del: simp_del split: split split_del: split_del
cong: cong simp flip: flip;
(fastforce dest: dest simp: simp flip: flip
simp: simp simp del: simp_del split: split split del: split_del cong: cong)?›
end