Theory Word_Lib.Word_Lemmas

(*
 * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
 *
 * SPDX-License-Identifier: BSD-2-Clause
 *)

section "Lemmas with Generic Word Length"

theory Word_Lemmas
  imports
    Type_Syntax
    Signed_Division_Word
    Signed_Words
    More_Word
    Most_significant_bit
    Enumeration_Word
    Aligned
    Bit_Shifts_Infix_Syntax
    Word_EqI
begin

context
  includes bit_operations_syntax
begin

lemma ucast_le_ucast_eq:
  fixes x y :: "'a::len word"
  assumes x: "x < 2 ^ n"
  assumes y: "y < 2 ^ n"
  assumes n: "n = LENGTH('b::len)"
  shows "(UCAST('a  'b) x  UCAST('a  'b) y) = (x  y)"
  apply (rule iffI)
   apply (cases "LENGTH('b) < LENGTH('a)")
    apply (subst less_mask_eq[OF x, symmetric])
    apply (subst less_mask_eq[OF y, symmetric])
    apply (unfold n)
    apply (subst ucast_ucast_mask[symmetric])+
    apply (simp add: ucast_le_ucast)+
  apply (erule ucast_mono_le[OF _ y[unfolded n]])
  done

lemma ucast_zero_is_aligned:
  is_aligned w n if UCAST('a::len  'b::len) w = 0 n  LENGTH('b)
proof (rule is_aligned_bitI)
  fix q
  assume q < n
  moreover have bit (UCAST('a::len  'b::len) w) q = bit 0 q
    using that by simp
  with q < n n  LENGTH('b) show ¬ bit w q
    by (simp add: bit_simps)
qed

lemma unat_ucast_eq_unat_and_mask:
  "unat (UCAST('b::len  'a::len) w) = unat (w AND mask LENGTH('a))"
  apply (simp flip: take_bit_eq_mask)
  apply transfer
  apply (simp add: ac_simps)
  done

lemma le_max_word_ucast_id:
  UCAST('b  'a) (UCAST('a  'b) x) = x
    if x  UCAST('b::len  'a) (- 1)
    for x :: 'a::len word
proof -
  from that have a1: x  word_of_int (uint (word_of_int (2 ^ LENGTH('b) - 1) :: 'b word))
    by (simp add: of_int_mask_eq)
  have f2: "((i ia. (0::int)  i  ¬ 0  i + - 1 * ia  i mod ia  i) 
            ¬ (0::int)  - 1 + 2 ^ LENGTH('b)  (0::int)  - 1 + 2 ^ LENGTH('b) + - 1 * 2 ^ LENGTH('b) 
            (- (1::int) + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b) =
              - 1 + 2 ^ LENGTH('b)) = ((i ia. (0::int)  i  ¬ 0  i + - 1 * ia  i mod ia  i) 
            ¬ (1::int)  2 ^ LENGTH('b) 
            2 ^ LENGTH('b) + - (1::int) * ((- 1 + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b)) = 1)"
    by force
  have f3: "i ia. ¬ (0::int)  i  0  i + - 1 * ia  i mod ia = i"
    using mod_pos_pos_trivial by force
  have "(1::int)  2 ^ LENGTH('b)"
    by simp
  then have "2 ^ LENGTH('b) + - (1::int) * ((- 1 + 2 ^ LENGTH('b)) mod 2 ^ len_of TYPE ('b)) = 1"
    using f3 f2 by blast
  then have f4: "- (1::int) + 2 ^ LENGTH('b) = (- 1 + 2 ^ LENGTH('b)) mod 2 ^ LENGTH('b)"
    by linarith
  have f5: "x  word_of_int (uint (word_of_int (- 1 + 2 ^ LENGTH('b))::'b word))"
    using a1 by force
  have f6: "2 ^ LENGTH('b) + - (1::int) = - 1 + 2 ^ LENGTH('b)"
    by force
  have f7: "- (1::int) * 1 = - 1"
    by auto
  have "x0 x1. (x1::int) - x0 = x1 + - 1 * x0"
    by force
  then have "x  2 ^ LENGTH('b) - 1"
    using f7 f6 f5 f4 by (metis uint_word_of_int wi_homs(2) word_arith_wis(8) word_of_int_2p)
  then have uint x  uint (2 ^ LENGTH('b) - (1 :: 'a word))
    by (simp add: word_le_def)
  then have uint x  2 ^ LENGTH('b) - 1
    by (simp add: uint_word_ariths)
      (metis 1  2 ^ LENGTH('b) uint x  uint (2 ^ LENGTH('b) - 1) linorder_not_less lt2p_lem uint_1 uint_minus_simple_alt uint_power_lower word_le_def zle_diff1_eq)
  then show ?thesis
    apply (simp add: unsigned_ucast_eq take_bit_word_eq_self_iff)
    apply (meson x  2 ^ LENGTH('b) - 1 not_le word_less_sub_le)
    done
qed

lemma uint_shiftr_eq:
  uint (w >> n) = uint w div 2 ^ n
  by word_eqI

lemma bit_shiftl_word_iff [bit_simps]:
  bit (w << m) n  m  n  n < LENGTH('a)  bit w (n - m)
  for w :: 'a::len word
  by (simp add: bit_simps)

lemma bit_shiftr_word_iff:
  bit (w >> m) n  bit w (m + n)
  for w :: 'a::len word
  by (simp add: bit_simps)

lemma uint_sshiftr_eq:
  uint (w >>> n) = take_bit LENGTH('a) (sint w div 2 ^  n)
  for w :: 'a::len word
  by (word_eqI_solve dest: test_bit_lenD)

lemma sshiftr_n1: "-1 >>> n = -1"
  by (simp add: sshiftr_def)

lemma nth_sshiftr:
  "bit (w >>> m) n = (n < size w  (if n + m  size w then bit w (size w - 1) else bit w (n + m)))"
  apply (auto simp add: bit_simps word_size ac_simps not_less)
  apply (meson bit_imp_le_length bit_shiftr_word_iff leD)
  done

lemma sshiftr_numeral:
  (numeral k >>> numeral n :: 'a::len word) =
    word_of_int (signed_take_bit (LENGTH('a) - 1) (numeral k) >> numeral n)
  using signed_drop_bit_word_numeral [of n k] by (simp add: sshiftr_def shiftr_def)

lemma sshiftr_div_2n: "sint (w >>> n) = sint w div 2 ^ n"
  by word_eqI (cases n < LENGTH('a); fastforce simp: le_diff_conv2)

lemma mask_eq:
  mask n = (1 << n) - (1 :: 'a::len word)
  by (simp add: mask_eq_exp_minus_1 shiftl_def)

lemma nth_shiftl': "bit (w << m) n  n < size w  n >= m  bit w (n - m)"
  for w :: "'a::len word"
  by (simp add: bit_simps word_size ac_simps)

lemmas nth_shiftl = nth_shiftl' [unfolded word_size]

lemma nth_shiftr: "bit (w >> m) n = bit w (n + m)"
  for w :: "'a::len word"
  by (simp add: bit_simps ac_simps)

lemma shiftr_div_2n: "uint (shiftr w n) = uint w div 2 ^ n"
  by (fact uint_shiftr_eq)

lemma shiftl_rev: "shiftl w n = word_reverse (shiftr (word_reverse w) n)"
  by word_eqI_solve

lemma rev_shiftl: "word_reverse w << n = word_reverse (w >> n)"
  by (simp add: shiftl_rev)

lemma shiftr_rev: "w >> n = word_reverse (word_reverse w << n)"
  by (simp add: rev_shiftl)

lemma rev_shiftr: "word_reverse w >> n = word_reverse (w << n)"
  by (simp add: shiftr_rev)

lemmas ucast_up =
  rc1 [simplified rev_shiftr [symmetric] revcast_ucast [symmetric]]
lemmas ucast_down =
  rc2 [simplified rev_shiftr revcast_ucast [symmetric]]

lemma shiftl_zero_size: "size x  n  x << n = 0"
  for x :: "'a::len word"
  by (simp add: shiftl_def word_size)

lemma shiftl_t2n: "shiftl w n = 2 ^ n * w"
  for w :: "'a::len word"
  by (simp add: shiftl_def push_bit_eq_mult)

lemma word_shift_by_2:
  "x * 4 = (x::'a::len word) << 2"
  by (simp add: shiftl_t2n)

lemma word_shift_by_3:
  "x * 8 = (x::'a::len word) << 3"
  by (simp add: shiftl_t2n)

lemma slice_shiftr: "slice n w = ucast (w >> n)"
  by word_eqI (cases n  LENGTH('b); fastforce simp: ac_simps dest: bit_imp_le_length)

lemma shiftr_zero_size: "size x  n  x >> n = 0"
  for x :: "'a :: len word"
  by word_eqI

lemma shiftr_x_0 [simp]: "x >> 0 = x"
  for x :: "'a::len word"
  by (simp add: shiftr_def)

lemma shiftl_x_0 [simp]: "x << 0 = x"
  for x :: "'a::len word"
  by (simp add: shiftl_def)

lemmas shiftl0 = shiftl_x_0

lemma shiftr_1 [simp]: "(1::'a::len word) >> n = (if n = 0 then 1 else 0)"
  by (simp add: shiftr_def)

lemma and_not_mask:
  "w AND NOT (mask n) = (w >> n) << n"
  for w :: 'a::len word
  by word_eqI_solve

lemma and_mask:
  "w AND mask n = (w << (size w - n)) >> (size w - n)"
  for w :: 'a::len word
  by word_eqI_solve

lemma shiftr_div_2n_w: "w >> n = w div (2^n :: 'a :: len word)"
  by (fact shiftr_eq_div)

lemma le_shiftr:
  "u  v  u >> (n :: nat)  (v :: 'a :: len word) >> n"
  apply (unfold shiftr_def)
  apply transfer
  apply (simp add: take_bit_drop_bit)
  apply (simp add: drop_bit_eq_div zdiv_mono1)
  done

lemma le_shiftr':
  " u >> n  v >> n ; u >> n  v >> n   (u::'a::len word)  v"
  by (metis le_cases le_shiftr verit_la_disequality)

lemma shiftr_mask_le:
  "n <= m  mask n >> m = (0 :: 'a::len word)"
  by word_eqI

lemma shiftr_mask [simp]:
  mask m >> m = (0::'a::len word)
  by (rule shiftr_mask_le) simp

lemma le_mask_iff:
  "(w  mask n) = (w >> n = 0)"
  for w :: 'a::len word
  apply safe
   apply (rule word_le_0_iff [THEN iffD1])
   apply (rule xtrans(3))
    apply (erule_tac [2] le_shiftr)
   apply simp
  apply (rule word_leI)
  apply (rename_tac n')
  apply (drule_tac x = "n' - n" in word_eqD)
  apply (simp add : nth_shiftr word_size bit_simps)
  apply (case_tac "n <= n'")
  by auto

lemma and_mask_eq_iff_shiftr_0:
  "(w AND mask n = w) = (w >> n = 0)"
  for w :: 'a::len word
  by (simp flip: take_bit_eq_mask add: shiftr_def take_bit_eq_self_iff_drop_bit_eq_0)

lemma mask_shiftl_decompose:
  "mask m << n = mask (m + n) AND NOT (mask n :: 'a::len word)"
  by word_eqI_solve

lemma shiftl_over_and_dist:
  fixes a::"'a::len word"
  shows "(a AND b) << c = (a << c) AND (b << c)"
  by (unfold shiftl_def) (fact push_bit_and)

lemma shiftr_over_and_dist:
  fixes a::"'a::len word"
  shows "a AND b >> c = (a >> c) AND (b >> c)"
  by (unfold shiftr_def) (fact drop_bit_and)

lemma sshiftr_over_and_dist:
  fixes a::"'a::len word"
  shows "a AND b >>> c = (a >>> c) AND (b >>> c)"
  by word_eqI

lemma shiftl_over_or_dist:
  fixes a::"'a::len word"
  shows "a OR b << c = (a << c) OR (b << c)"
  by (unfold shiftl_def) (fact push_bit_or)

lemma shiftr_over_or_dist:
  fixes a::"'a::len word"
  shows "a OR b >> c = (a >> c) OR (b >> c)"
  by (unfold shiftr_def) (fact drop_bit_or)

lemma sshiftr_over_or_dist:
  fixes a::"'a::len word"
  shows "a OR b >>> c = (a >>> c) OR (b >>> c)"
  by word_eqI

lemmas shift_over_ao_dists =
  shiftl_over_or_dist shiftr_over_or_dist
  sshiftr_over_or_dist shiftl_over_and_dist
  shiftr_over_and_dist sshiftr_over_and_dist

lemma shiftl_shiftl:
  fixes a::"'a::len word"
  shows "a << b << c = a << (b + c)"
  by (word_eqI_solve simp: add.commute add.left_commute)

lemma shiftr_shiftr:
  fixes a::"'a::len word"
  shows "a >> b >> c = a >> (b + c)"
  by word_eqI (simp add: add.left_commute add.commute)

lemma shiftl_shiftr1:
  fixes a::"'a::len word"
  shows "c  b  a << b >> c = a AND (mask (size a - b)) << (b - c)"
  by word_eqI (auto simp: ac_simps)

lemma shiftl_shiftr2:
  fixes a::"'a::len word"
  shows "b < c  a << b >> c = (a >> (c - b)) AND (mask (size a - c))"
  by word_eqI_solve

lemma shiftr_shiftl1:
  fixes a::"'a::len word"
  shows "c  b  a >> b << c = (a >> (b - c)) AND (NOT (mask c))"
  by word_eqI_solve

lemma shiftr_shiftl2:
  fixes a::"'a::len word"
  shows "b < c  a >> b << c = (a << (c - b)) AND (NOT (mask c))"
  by word_eqI (auto simp: ac_simps)

lemmas multi_shift_simps =
  shiftl_shiftl shiftr_shiftr
  shiftl_shiftr1 shiftl_shiftr2
  shiftr_shiftl1 shiftr_shiftl2

lemma shiftr_mask2:
  "n  LENGTH('a)  (mask n >> m :: ('a :: len) word) = mask (n - m)"
  by word_eqI_solve

lemma word_shiftl_add_distrib:
  fixes x :: "'a :: len word"
  shows "(x + y) << n = (x << n) + (y << n)"
  by (simp add: shiftl_t2n ring_distribs)

lemma mask_shift:
  "(x AND NOT (mask y)) >> y = x >> y"
  for x :: 'a::len word
  by word_eqI

lemma shiftr_div_2n':
  "unat (w >> n) = unat w div 2 ^ n"
  by word_eqI

lemma shiftl_shiftr_id:
  " n < LENGTH('a); x < 2 ^ (LENGTH('a) - n)   x << n >> n = (x::'a::len word)" 
  by word_eqI (metis add.commute less_diff_conv)

lemma ucast_shiftl_eq_0:
  fixes w :: "'a :: len word"
  shows " n  LENGTH('b)   ucast (w << n) = (0 :: 'b :: len word)"
  by (transfer fixing: n) (simp add: take_bit_push_bit)

lemma word_shift_nonzero:
  " (x::'a::len word)  2 ^ m; m + n < LENGTH('a::len); x  0
    x << n  0"
  apply (simp only: word_neq_0_conv word_less_nat_alt
                    shiftl_t2n mod_0 unat_word_ariths
                    unat_power_lower word_le_nat_alt)
  apply (subst mod_less)
   apply (rule order_le_less_trans)
    apply (erule mult_le_mono2)
   apply (subst power_add[symmetric])
   apply (rule power_strict_increasing)
    apply simp
   apply simp
  apply simp
  done

lemma word_shiftr_lt:
  fixes w :: "'a::len word"
  shows "unat (w >> n) < (2 ^ (LENGTH('a) - n))"
  apply (subst shiftr_div_2n')
  apply transfer
  apply (simp flip: drop_bit_eq_div add: drop_bit_nat_eq drop_bit_take_bit)
  done

lemma shiftr_less_t2n':
  " x AND mask (n + m) = x; m < LENGTH('a)   x >> n < 2 ^ m" for x :: "'a :: len word"
  apply (simp add: word_size mask_eq_iff_w2p [symmetric] flip: take_bit_eq_mask)
  apply transfer
  apply (simp add: take_bit_drop_bit ac_simps)
  done

lemma shiftr_less_t2n:
  "x < 2 ^ (n + m)  x >> n < 2 ^ m" for x :: "'a :: len word"
  apply (rule shiftr_less_t2n')
   apply (erule less_mask_eq)
  apply (rule ccontr)
  apply (simp add: not_less)
  apply (subst (asm) p2_eq_0[symmetric])
  apply (simp add: power_add)
  done

lemma shiftr_eq_0:
  "n  LENGTH('a)  ((w::'a::len word) >> n) = 0"
  apply (cut_tac shiftr_less_t2n'[of w n 0], simp)
   apply (simp add: mask_eq_iff)
  apply (simp add: lt2p_lem)
  apply simp
  done

lemma shiftl_less_t2n:
  fixes x :: "'a :: len word"
  shows " x < (2 ^ (m - n)); m < LENGTH('a)   (x << n) < 2 ^ m"
  apply (simp add: word_size mask_eq_iff_w2p [symmetric] flip: take_bit_eq_mask)
  apply transfer
  apply (simp add: take_bit_push_bit)
  done

lemma shiftl_less_t2n':
  "(x::'a::len word) < 2 ^ m  m+n < LENGTH('a)  x << n < 2 ^ (m + n)"
  by (rule shiftl_less_t2n) simp_all

lemma scast_bit_test [simp]:
  "scast ((1 :: 'a::len signed word) << n) = (1 :: 'a word) << n"
  by word_eqI

lemma signed_shift_guard_to_word:
  unat x * 2 ^ y < 2 ^ n  x = 0  x < 1 << n >> y
    if n < LENGTH('a) 0 < n
    for x :: 'a::len word
proof (cases x = 0)
  case True
  then show ?thesis
    by simp
next
  case False
  then have unat x  0
    by (simp add: unat_eq_0)
  then have unat x  1
    by simp
  show ?thesis
  proof (cases y < n)
    case False
    then have n  y
      by simp
    then obtain q where y = n + q
      using le_Suc_ex by blast
    moreover have (2 :: nat) ^ n >> n + q  1
      by (simp add: drop_bit_eq_div power_add shiftr_def)
    ultimately show ?thesis
      using x  0 unat x  1 n < LENGTH('a)
      by (simp add: power_add not_less word_le_nat_alt unat_drop_bit_eq shiftr_def shiftl_def)
  next
    case True
    with that have y < LENGTH('a)
      by simp
    show ?thesis
    proof (cases 2 ^ n = unat x * 2 ^ y)
      case True
      moreover have unat x * 2 ^ y < 2 ^ LENGTH('a)
        using n < LENGTH('a) by (simp flip: True)
      moreover have (word_of_nat (2 ^ n) :: 'a word) = word_of_nat (unat x * 2 ^ y)
        using True by simp
      then have 2 ^ n = x * 2 ^ y
        by simp
      ultimately show ?thesis
        using y < LENGTH('a)
        by (auto simp add: drop_bit_eq_div word_less_nat_alt unat_div unat_word_ariths
          shiftr_def shiftl_def)
    next
      case False
      with y < n have *: unat x  2 ^ n div 2 ^ y
        by (auto simp flip: power_sub power_add)
      have unat x * 2 ^ y < 2 ^ n  unat x * 2 ^ y  2 ^ n
        using False by (simp add: less_le)
      also have   unat x  2 ^ n div 2 ^ y
        by (simp add: less_eq_div_iff_mult_less_eq)
      also have   unat x < 2 ^ n div 2 ^ y
        using * by (simp add: less_le)
      finally show ?thesis
      using that x  0 by (simp flip: push_bit_eq_mult drop_bit_eq_div
        add: shiftr_def shiftl_def unat_drop_bit_eq word_less_iff_unsigned [where ?'a = nat])
    qed
  qed
qed

lemma shiftr_not_mask_0:
  "n+m  LENGTH('a :: len)  ((w::'a::len word) >> n) AND NOT (mask m) = 0"
  by word_eqI

lemma shiftl_mask_is_0[simp]:
  "(x << n) AND mask n = 0"
  for x :: 'a::len word
  by (simp flip: take_bit_eq_mask add: take_bit_push_bit shiftl_def)

lemma rshift_sub_mask_eq:
  "(a >> (size a - b)) AND mask b = a >> (size a - b)"
  for a :: 'a::len word
  using shiftl_shiftr2[where a=a and b=0 and c="size a - b"]
  apply (cases "b < size a")
   apply simp
  apply (simp add: linorder_not_less mask_eq_decr_exp word_size
                   p2_eq_0[THEN iffD2])
  done

lemma shiftl_shiftr3:
  "b  c  a << b >> c = (a >> c - b) AND mask (size a - c)"
  for a :: 'a::len word
  apply (cases "b = c")
   apply (simp add: shiftl_shiftr1)
  apply (simp add: shiftl_shiftr2)
  done

lemma and_mask_shiftr_comm:
  "m  size w  (w AND mask m) >> n = (w >> n) AND mask (m-n)"
  for w :: 'a::len word
  by (simp add: and_mask shiftr_shiftr) (simp add: word_size shiftl_shiftr3)

lemma and_mask_shiftl_comm:
  "m+n  size w  (w AND mask m) << n = (w << n) AND mask (m+n)"
  for w :: 'a::len word
  by (simp add: and_mask word_size shiftl_shiftl) (simp add: shiftl_shiftr1)

lemma le_mask_shiftl_le_mask: "s = m + n  x  mask n  x << m  mask s"
  for x :: 'a::len word
  by (simp add: le_mask_iff shiftl_shiftr3)

lemma word_and_1_shiftl:
  "x AND (1 << n) = (if bit x n then (1 << n) else 0)" for x :: "'a :: len word"
  by word_eqI_solve

lemmas word_and_1_shiftls'
    = word_and_1_shiftl[where n=0]
      word_and_1_shiftl[where n=1]
      word_and_1_shiftl[where n=2]

lemmas word_and_1_shiftls = word_and_1_shiftls' [simplified]

lemma word_and_mask_shiftl:
  "x AND (mask n << m) = ((x >> m) AND mask n) << m"
  for x :: 'a::len word
  by word_eqI_solve

lemma shift_times_fold:
  "(x :: 'a :: len word) * (2 ^ n) << m = x << (m + n)"
  by (simp add: shiftl_t2n ac_simps power_add)

lemma of_bool_nth:
  "of_bool (bit x v) = (x >> v) AND 1"
  for x :: 'a::len word
  by (simp add: bit_iff_odd_drop_bit word_and_1 shiftr_def)

lemma shiftr_mask_eq:
  "(x >> n) AND mask (size x - n) = x >> n" for x :: "'a :: len word"
  by (word_eqI_solve dest: test_bit_lenD)

lemma shiftr_mask_eq':
  "m = (size x - n)  (x >> n) AND mask m = x >> n" for x :: "'a :: len word"
  by (simp add: shiftr_mask_eq)

lemma and_eq_0_is_nth:
  fixes x :: "'a :: len word"
  shows "y = 1 << n  ((x AND y) = 0) = (¬ (bit x n))"
  by (simp add: and_exp_eq_0_iff_not_bit shiftl_def)

lemma word_shift_zero:
  " x << n = 0; x  2^m; m + n < LENGTH('a)  (x::'a::len word) = 0"
  apply (rule ccontr)
  apply (drule (2) word_shift_nonzero)
  apply simp
  done

lemma mask_shift_and_negate[simp]:"(w AND mask n << m) AND NOT (mask n << m) = 0"
  for w :: 'a::len word
  by word_eqI

(* The seL4 bitfield generator produces functions containing mask and shift operations, such that
 * invoking two of them consecutively can produce something like the following.
 *)
lemma bitfield_op_twice:
  "(x AND NOT (mask n << m) OR ((y AND mask n) << m)) AND NOT (mask n << m) = x AND NOT (mask n << m)"
  for x :: 'a::len word
  by word_eqI_solve

lemma bitfield_op_twice'':
  "NOT a = b << c; x. b = mask x  (x AND a OR (y AND b << c)) AND a = x AND a"
  for a b :: 'a::len word
  by word_eqI_solve

lemma shiftr1_unfold: "x div 2 = x >> 1"
  by (simp add: drop_bit_eq_div shiftr_def)

lemma shiftr1_is_div_2: "(x::('a::len) word) >> 1 = x div 2"
  by (simp add: drop_bit_eq_div shiftr_def)

lemma shiftl1_is_mult: "(x << 1) = (x :: 'a::len word) * 2"
  by (metis One_nat_def mult_2 mult_2_right one_add_one
        power_0 power_Suc shiftl_t2n)

lemma shiftr1_lt:"x  0  (x::('a::len) word) >> 1 < x"
  apply (subst shiftr1_is_div_2)
  apply (rule div_less_dividend_word)
   apply simp+
  done

lemma shiftr1_0_or_1:"(x::('a::len) word) >> 1 = 0  x = 0  x = 1"
  apply (subst (asm) shiftr1_is_div_2)
  apply (drule word_less_div)
  apply (case_tac "LENGTH('a) = 1")
   apply (simp add:degenerate_word)
  apply (erule disjE)
   apply (subgoal_tac "(2::'a word)  0")
    apply simp
   apply (rule not_degenerate_imp_2_neq_0)
   apply (subgoal_tac "LENGTH('a)  0")
    apply arith
   apply simp
  apply (rule x_less_2_0_1', simp+)
  done

lemma shiftr1_irrelevant_lsb: "bit (x::('a::len) word) 0  x >> 1 = (x + 1) >> 1"
  by (auto simp add: bit_0 shiftr_def drop_bit_Suc ac_simps elim: evenE)

lemma shiftr1_0_imp_only_lsb:"((x::('a::len) word) + 1) >> 1 = 0  x = 0  x + 1 = 0"
  by (metis One_nat_def shiftr1_0_or_1 word_less_1 word_overflow)

lemma shiftr1_irrelevant_lsb': "¬ (bit (x::('a::len) word) 0)  x >> 1 = (x + 1) >> 1"
  using shiftr1_irrelevant_lsb [of x] by simp

(* Perhaps this one should be a simp lemma, but it seems a little dangerous. *)
lemma cast_chunk_assemble_id:
  "n = LENGTH('a::len); m = LENGTH('b::len); n * 2 = m 
  (((ucast ((ucast (x::'b word))::'a word))::'b word) OR (((ucast ((ucast (x >> n))::'a word))::'b word) << n)) = x"
  apply (subgoal_tac "((ucast ((ucast (x >> n))::'a word))::'b word) = x >> n")
   apply clarsimp
   apply (subst and_not_mask[symmetric])
   apply (subst ucast_ucast_mask)
   apply (subst word_ao_dist2[symmetric])
   apply clarsimp
  apply (rule ucast_ucast_len)
  apply (rule shiftr_less_t2n')
   apply (subst and_mask_eq_iff_le_mask)
   apply (simp_all add: mask_eq_decr_exp flip: mult_2_right)
  apply (metis add_diff_cancel_left' len_gt_0 mult_2_right zero_less_diff)
  done

lemma cast_chunk_scast_assemble_id:
  "n = LENGTH('a::len); m = LENGTH('b::len); n * 2 = m 
  (((ucast ((scast (x::'b word))::'a word))::'b word) OR
   (((ucast ((scast (x >> n))::'a word))::'b word) << n)) = x"
  apply (subgoal_tac "((scast x)::'a word) = ((ucast x)::'a word)")
   apply (subgoal_tac "((scast (x >> n))::'a word) = ((ucast (x >> n))::'a word)")
    apply (simp add:cast_chunk_assemble_id)
   apply (subst down_cast_same[symmetric], subst is_down, arith, simp)+
  done

lemma unat_shiftr_less_t2n:
  fixes x :: "'a :: len word"
  shows "unat x < 2 ^ (n + m)  unat (x >> n) < 2 ^ m"
  by (simp add: shiftr_div_2n' power_add mult.commute less_mult_imp_div_less)

lemma ucast_less_shiftl_helper:
  " LENGTH('b) + 2 < LENGTH('a); 2 ^ (LENGTH('b) + 2)  n
     (ucast (x :: 'b::len word) << 2) < (n :: 'a::len word)"
  apply (erule order_less_le_trans[rotated])
  using ucast_less[where x=x and 'a='a]
  apply (simp only: shiftl_t2n field_simps)
  apply (rule word_less_power_trans2; simp)
  done

(* negating a mask which has been shifted to the very left *)
lemma NOT_mask_shifted_lenword:
  "NOT (mask len << (LENGTH('a) - len) ::'a::len word) = mask (LENGTH('a) - len)"
  by word_eqI_solve

(* Comparisons between different word sizes. *)

lemma shiftr_less:
  "(w::'a::len word) < k  w >> n < k"
  by (metis div_le_dividend le_less_trans shiftr_div_2n' unat_arith_simps(2))

lemma word_and_notzeroD:
  "w AND w'  0  w  0  w'  0"
  by auto

lemma shiftr_le_0:
  "unat (w::'a::len word) < 2 ^ n  w >> n = (0::'a::len word)"
  by (auto simp add: take_bit_word_eq_self_iff word_less_nat_alt shiftr_def
    simp flip: take_bit_eq_self_iff_drop_bit_eq_0 intro: ccontr)

lemma of_nat_shiftl:
  "(of_nat x << n) = (of_nat (x * 2 ^ n) :: ('a::len) word)"
proof -
  have "(of_nat x::'a word) << n = of_nat (2 ^ n) * of_nat x"
    using shiftl_t2n by (metis word_unat_power)
  thus ?thesis by simp
qed

lemma shiftl_1_not_0:
  "n < LENGTH('a)  (1::'a::len word) << n  0"
  by (simp add: shiftl_t2n)

(* continue sorting out from here *)

(* usually: x,y = (len_of TYPE ('a)) *)
lemma bitmagic_zeroLast_leq_or1Last:
  "(a::('a::len) word) AND (mask len << x - len)  a OR mask (y - len)"
  by (meson le_word_or2 order_trans word_and_le2)

lemma zero_base_lsb_imp_set_eq_as_bit_operation:
  fixes base ::"'a::len word"
  assumes valid_prefix: "mask (LENGTH('a) - len) AND base = 0"
  shows "(base = NOT (mask (LENGTH('a) - len)) AND a) 
         (a  {base .. base OR mask (LENGTH('a) - len)})"
proof
  have helper3: "x OR y = x OR y AND NOT x" for x y ::"'a::len word" by (simp add: word_oa_dist2)
  from assms show "base = NOT (mask (LENGTH('a) - len)) AND a 
                    a  {base..base OR mask (LENGTH('a) - len)}"
    apply(simp add: word_and_le1)
    apply(metis helper3 le_word_or2 word_bw_comms(1) word_bw_comms(2))
  done
next
  assume "a  {base..base OR mask (LENGTH('a) - len)}"
  hence a: "base  a  a  base OR mask (LENGTH('a) - len)" by simp
  show "base = NOT (mask (LENGTH('a) - len)) AND a"
  proof -
    have f2: "x0. base AND NOT (mask x0)  a AND NOT (mask x0)"
      using a neg_mask_mono_le by blast
    have f3: "x0. a AND NOT (mask x0)  (base OR mask (LENGTH('a) - len)) AND NOT (mask x0)"
      using a neg_mask_mono_le by blast
    have f4: "base = base AND NOT (mask (LENGTH('a) - len))"
      using valid_prefix by (metis mask_eq_0_eq_x word_bw_comms(1))
    hence f5: "x6. (base OR x6) AND NOT (mask (LENGTH('a) - len)) =
                      base OR x6 AND NOT (mask (LENGTH('a) - len))"
      using word_ao_dist by (metis)
    have f6: "x2 x3. a AND NOT (mask x2)  x3 
                      ¬ (base OR mask (LENGTH('a) - len)) AND NOT (mask x2)  x3"
      using f3 dual_order.trans by auto
    have "base = (base OR mask (LENGTH('a) - len)) AND NOT (mask (LENGTH('a) - len))"
      using f5 by auto
    hence "base = a AND NOT (mask (LENGTH('a) - len))"
      using f2 f4 f6 by (metis eq_iff)
    thus "base = NOT (mask (LENGTH('a) - len)) AND a"
      by (metis word_bw_comms(1))
  qed
qed

lemma of_nat_eq_signed_scast:
  "(of_nat x = (y :: ('a::len) signed word))
   = (of_nat x = (scast y :: 'a word))"
  by (metis scast_of_nat scast_scast_id(2))

lemma word_aligned_add_no_wrap_bounded:
  " w + 2^n  x; w + 2^n  0; is_aligned w n   (w::'a::len word) < x"
  by (blast dest: is_aligned_no_overflow le_less_trans word_leq_le_minus_one)

lemma mask_Suc:
  "mask (Suc n) = (2 :: 'a::len word) ^ n + mask n"
  by (simp add: mask_eq_decr_exp)

lemma mask_mono:
  "sz'  sz  mask sz'  (mask sz :: 'a::len word)"
  by (simp add: le_mask_iff shiftr_mask_le)

lemma aligned_mask_disjoint:
  " is_aligned (a :: 'a :: len word) n; b  mask n   a AND b = 0"
  by (metis and_zero_eq is_aligned_mask le_mask_imp_and_mask word_bw_lcs(1))

lemma word_and_or_mask_aligned:
  " is_aligned a n; b  mask n   a + b = a OR b"
  by (simp add: aligned_mask_disjoint word_plus_and_or_coroll)

lemma word_and_or_mask_aligned2:
  is_aligned b n  a  mask n  a + b = a OR b
  using word_and_or_mask_aligned [of b n a] by (simp add: ac_simps)

lemma is_aligned_ucastI:
  "is_aligned w n  is_aligned (ucast w) n"
  by (simp add: bit_ucast_iff is_aligned_nth)

lemma ucast_le_maskI:
  "a  mask n  UCAST('a::len  'b::len) a  mask n"
  by (metis and_mask_eq_iff_le_mask ucast_and_mask)

lemma ucast_add_mask_aligned:
  " a  mask n; is_aligned b n   UCAST ('a::len  'b::len) (a + b) = ucast a + ucast b"
  by (metis add.commute is_aligned_ucastI ucast_le_maskI ucast_or_distrib word_and_or_mask_aligned)

lemma ucast_shiftl:
  "LENGTH('b)  LENGTH ('a)  UCAST ('a::len  'b::len) x << n = ucast (x << n)"
  by word_eqI_solve

lemma ucast_leq_mask:
  "LENGTH('a)  n  ucast (x::'a::len word)  mask n"
  apply (simp add: less_eq_mask_iff_take_bit_eq_self)
  apply transfer
  apply (simp add: ac_simps)
  done

lemma shiftl_inj:
  x = y
    if x << n = y << n x  mask (LENGTH('a) - n) y  mask (LENGTH('a) - n)
    for x y :: 'a::len word
proof (cases n < LENGTH('a))
  case False
  with that show ?thesis
    by simp
next
  case True
  moreover from that have take_bit (LENGTH('a) - n) x = x take_bit (LENGTH('a) - n) y = y
    by (simp_all add: less_eq_mask_iff_take_bit_eq_self)
  ultimately show ?thesis
    using x << n = y << n by (metis diff_less gr_implies_not0 linorder_cases linorder_not_le shiftl_shiftr_id shiftl_x_0 take_bit_word_eq_self_iff)
qed

lemma distinct_word_add_ucast_shift_inj:
  p' = p  off' = off
  if *: p + (UCAST('a::len  'b::len) off << n) = p' + (ucast off' << n)
    and is_aligned p n' is_aligned p' n' n' = n + LENGTH('a) n' < LENGTH('b)
proof -
  from n' = n + LENGTH('a)
  have [simp]: n' - n = LENGTH('a) n + LENGTH('a) = n'
    by simp_all
  from is_aligned p n' obtain q
    where p: p = push_bit n' (word_of_nat q) q < 2 ^ (LENGTH('b) - n')
    by (rule is_alignedE')
  from is_aligned p' n' obtain q'
    where p': p' = push_bit n' (word_of_nat q') q' < 2 ^ (LENGTH('b) - n')
    by (rule is_alignedE')
  define m :: nat where m = unat off
  then have off: off = word_of_nat m
    by simp
  define m' :: nat where m' = unat off'
  then have off': off' = word_of_nat m'
    by simp
  have push_bit n' q + take_bit n' (push_bit n m) < 2 ^ LENGTH('b)
    by (metis id_apply is_aligned_no_wrap''' of_nat_eq_id of_nat_push_bit p(1) p(2) take_bit_nat_eq_self_iff take_bit_nat_less_exp take_bit_push_bit that(2) that(5) unsigned_of_nat)
  moreover have push_bit n' q' + take_bit n' (push_bit n m') < 2 ^ LENGTH('b)
    by (metis n' - n = LENGTH('a) id_apply is_aligned_no_wrap''' m'_def of_nat_eq_id of_nat_push_bit off' p'(1) p'(2) take_bit_nat_eq_self_iff take_bit_push_bit that(3) that(5) unsigned_of_nat)
  ultimately have push_bit n' q + take_bit n' (push_bit n m) = push_bit n' q' + take_bit n' (push_bit n m')
    using * by (simp add: p p' off off' push_bit_of_nat push_bit_take_bit word_of_nat_inj unsigned_of_nat shiftl_def flip: of_nat_add)
  then have int (push_bit n' q + take_bit n' (push_bit n m))
    = int (push_bit n' q' + take_bit n' (push_bit n m'))
    by simp
  then have concat_bit n' (int (push_bit n m)) (int q)
    = concat_bit n' (int (push_bit n m')) (int q')
    by (simp add: of_nat_push_bit of_nat_take_bit concat_bit_eq)
  then show ?thesis
    by (simp add: p p' off off' take_bit_of_nat take_bit_push_bit word_of_nat_eq_iff concat_bit_eq_iff)
      (simp add: push_bit_eq_mult)
qed

lemma word_upto_Nil:
  "y < x  [x .e. y ::'a::len word] = []"
  by (simp add: upto_enum_red not_le word_less_nat_alt)

lemma word_enum_decomp_elem:
  assumes "[x .e. (y ::'a::len word)] = as @ a # bs"
  shows "x  a  a  y"
proof -
  have "set as  set [x .e. y]  a  set [x .e. y]"
    using assms by (auto dest: arg_cong[where f=set])
  then show ?thesis by auto
qed

lemma word_enum_prefix:
  "[x .e. (y ::'a::len word)] = as @ a # bs  as = (if x < a then [x .e. a - 1] else [])"
  apply (induct as arbitrary: x; clarsimp)
   apply (case_tac "x < y")
    prefer 2
    apply (case_tac "x = y", simp)
    apply (simp add: not_less)
    apply (drule (1) dual_order.not_eq_order_implies_strict)
    apply (simp add: word_upto_Nil)
   apply (simp add: word_upto_Cons_eq)
  apply (case_tac "x < y")
   prefer 2
   apply (case_tac "x = y", simp)
   apply (simp add: not_less)
   apply (drule (1) dual_order.not_eq_order_implies_strict)
   apply (simp add: word_upto_Nil)
  apply (clarsimp simp: word_upto_Cons_eq)
  apply (frule word_enum_decomp_elem)
  apply clarsimp
  apply (rule conjI)
   prefer 2
   apply (subst word_Suc_le[symmetric]; clarsimp)
  apply (drule meta_spec)
  apply (drule (1) meta_mp)
  apply clarsimp
  apply (rule conjI; clarsimp)
  apply (subst (2) word_upto_Cons_eq)
   apply unat_arith
  apply simp
  done

lemma word_enum_decomp_set:
  "[x .e. (y ::'a::len word)] = as @ a # bs  a  set as"
  by (metis distinct_append distinct_enum_upto' not_distinct_conv_prefix)

lemma word_enum_decomp:
  assumes "[x .e. (y ::'a::len word)] = as @ a # bs"
  shows "x  a  a  y  a  set as  (z  set as. x  z  z  y)"
proof -
  from assms
  have "set as  set [x .e. y]  a  set [x .e. y]"
    by (auto dest: arg_cong[where f=set])
  with word_enum_decomp_set[OF assms]
  show ?thesis by auto
qed

lemma of_nat_unat_le_mask_ucast:
  "of_nat (unat t) = w; t  mask LENGTH('a)  t = UCAST('a::len  'b::len) w"
  by (clarsimp simp: ucast_nat_def ucast_ucast_mask simp flip: and_mask_eq_iff_le_mask)

lemma less_diff_gt0:
  "a < b  (0 :: 'a :: len word) < b - a"
  by unat_arith

lemma unat_plus_gt:
  "unat ((a :: 'a :: len word) + b)  unat a + unat b"
  by (clarsimp simp: unat_plus_if_size)

lemma const_less:
  " (a :: 'a :: len word) - 1 < b; a  b   a < b"
  by (metis less_1_simp word_le_less_eq)

lemma add_mult_aligned_neg_mask:
  (x + y * m) AND NOT(mask n) = (x AND NOT(mask n)) + y * m
  if m AND (2 ^ n - 1) = 0
  for x y m :: 'a::len word
  by (metis (no_types, opaque_lifting)
            add.assoc add.commute add.right_neutral add_uminus_conv_diff
            mask_eq_decr_exp mask_eqs(2) mask_eqs(6) mult.commute mult_zero_left
            subtract_mask(1) that)

lemma unat_of_nat_minus_1:
  " n < 2 ^ LENGTH('a); n  0   unat ((of_nat n:: 'a :: len word) - 1) = n - 1"
  by (simp add: of_nat_diff unat_eq_of_nat)

lemma word_eq_zeroI:
  "a  a - 1  a = 0" for a :: "'a :: len word"
  by (simp add: word_must_wrap)

lemma word_add_format:
  "(-1 :: 'a :: len  word) + b + c = b + (c - 1)"
  by simp

lemma upto_enum_word_nth:
  " i  j; k  unat (j - i)   [i .e. j] ! k = i + of_nat k"
  apply (clarsimp simp: upto_enum_def nth_append)
  apply (clarsimp simp: word_le_nat_alt[symmetric])
  apply (rule conjI, clarsimp)
   apply (subst toEnum_of_nat, unat_arith)
   apply unat_arith
  apply (clarsimp simp: not_less unat_sub[symmetric])
  apply unat_arith
  done

lemma upto_enum_step_nth:
  " a  c; n  unat ((c - a) div (b - a)) 
    [a, b .e. c] ! n = a + of_nat n * (b - a)"
  by (clarsimp simp: upto_enum_step_def not_less[symmetric] upto_enum_word_nth)

lemma upto_enum_inc_1_len:
  "a < - 1  [(0 :: 'a :: len word) .e. 1 + a] = [0 .e. a] @ [1 + a]"
  apply (simp add: upto_enum_word)
  apply (subgoal_tac "unat (1+a) = 1 + unat a")
   apply simp
  apply (subst unat_plus_simple[THEN iffD1])
   apply (metis add.commute no_plus_overflow_neg olen_add_eqv)
  apply unat_arith
  done

lemma neg_mask_add:
  "y AND mask n = 0  x + y AND NOT(mask n) = (x AND NOT(mask n)) + y"
  for x y :: 'a::len word
  by (clarsimp simp: mask_out_sub_mask mask_eqs(7)[symmetric] mask_twice)

lemma shiftr_shiftl_shiftr[simp]:
  "(x :: 'a :: len word) >> a << a >> a = x >> a"
  by (word_eqI_solve dest: bit_imp_le_length)

lemma add_right_shift:
  " x AND mask n = 0; y AND mask n = 0; x  x + y 
    (x + y :: ('a :: len) word) >> n = (x >> n) + (y >> n)"
  apply (simp add: no_olen_add_nat is_aligned_mask[symmetric])
  apply (simp add: unat_arith_simps shiftr_div_2n' split del: if_split)
  apply (subst if_P)
   apply (erule order_le_less_trans[rotated])
   apply (simp add: add_mono)
  apply (simp add: shiftr_div_2n' is_aligned_iff_dvd_nat)
  done

lemma sub_right_shift:
  " x AND mask n = 0; y AND mask n = 0; y  x 
    (x - y) >> n = (x >> n :: 'a :: len word) - (y >> n)"
  using add_right_shift[where x="x - y" and y=y and n=n]
  by (simp add: aligned_sub_aligned is_aligned_mask[symmetric] word_sub_le)

lemma and_and_mask_simple:
  "y AND mask n = mask n  (x AND y) AND mask n = x AND mask n"
  by (simp add: ac_simps)

lemma and_and_mask_simple_not:
  "y AND mask n = 0  (x AND y) AND mask n = 0"
  by (simp add: ac_simps)

lemma word_and_le':
  "b  c  (a :: 'a :: len word) AND b  c"
  by (metis word_and_le1 order_trans)

lemma word_and_less':
  "b < c  (a :: 'a :: len word) AND b < c"
  by transfer simp

lemma shiftr_w2p:
  "x < LENGTH('a)  2 ^ x = (2 ^ (LENGTH('a) - 1) >> (LENGTH('a) - 1 - x) :: 'a :: len word)"
  by word_eqI_solve

lemma t2p_shiftr:
  " b  a; a < LENGTH('a)   (2 :: 'a :: len word) ^ a >> b = 2 ^ (a - b)"
  by word_eqI_solve

lemma scast_1[simp]:
  "scast (1 :: 'a :: len signed word) = (1 :: 'a word)"
  by simp

lemma unsigned_uminus1 [simp]:
  (unsigned (-1::'b::len word)::'c::len word) = mask LENGTH('b)
  by (fact unsigned_minus_1_eq_mask)

lemma ucast_ucast_mask_eq:
  " UCAST('a::len  'b::len) x = y; x AND mask LENGTH('b) = x   x = ucast y"
  by (drule sym) (simp flip: take_bit_eq_mask add: unsigned_ucast_eq)

lemma ucast_up_eq:
  " ucast x = (ucast y::'b::len word); LENGTH('a)  LENGTH ('b) 
    ucast x = (ucast y::'a::len word)"
  by (simp add: word_eq_iff bit_simps)

lemma ucast_up_neq:
  " ucast x  (ucast y::'b::len word); LENGTH('b)  LENGTH ('a) 
    ucast x  (ucast y::'a::len word)"
  by (fastforce dest: ucast_up_eq)

lemma mask_AND_less_0:
  " x AND mask n = 0; m  n   x AND mask m = 0"
  for x :: 'a::len word
  by (metis mask_twice2 word_and_notzeroD)

lemma mask_len_id [simp]:
  "(x :: 'a :: len word) AND mask LENGTH('a) = x"
  using uint_lt2p [of x] by (simp add: mask_eq_iff)

lemma scast_ucast_down_same:
  "LENGTH('b)  LENGTH('a)  SCAST('a  'b) = UCAST('a::len  'b::len)"
  by (simp add: down_cast_same is_down)

lemma word_aligned_0_sum:
  " a + b = 0; is_aligned (a :: 'a :: len word) n; b  mask n; n < LENGTH('a) 
    a = 0  b = 0"
  by (simp add: word_plus_and_or_coroll aligned_mask_disjoint word_or_zero)

lemma mask_eq1_nochoice:
  " LENGTH('a) > 1; (x :: 'a :: len word) AND 1 = x   x = 0  x = 1"
  by (metis word_and_1)

lemma shiftr_and_eq_shiftl:
  "(w >> n) AND x = y  w AND (x << n) = (y << n)" for y :: "'a:: len word"
  apply (drule sym)
  apply simp
  apply (rule bit_word_eqI)
  apply (auto simp add: bit_simps)
  done

lemma add_mask_lower_bits':
  " len = LENGTH('a); is_aligned (x :: 'a :: len word) n;
     n'  n. n' < len  ¬ bit p n' 
    x + p AND NOT(mask n) = x"
  using add_mask_lower_bits by auto

lemma leq_mask_shift:
  "(x :: 'a :: len word)  mask (low_bits + high_bits)  (x >> low_bits)  mask high_bits"
  by (simp add: le_mask_iff shiftr_shiftr ac_simps)

lemma ucast_ucast_eq_mask_shift:
  "(x :: 'a :: len word)  mask (low_bits + LENGTH('b))
    ucast((ucast (x >> low_bits)) :: 'b :: len word) = x >> low_bits"
  by (meson and_mask_eq_iff_le_mask eq_ucast_ucast_eq not_le_imp_less shiftr_less_t2n'
            ucast_ucast_len)

lemma const_le_unat:
  " b < 2 ^ LENGTH('a); of_nat b  a   b  unat (a :: 'a :: len word)"
  by (simp add: word_le_nat_alt unsigned_of_nat take_bit_nat_eq_self)

lemma upt_enum_offset_trivial:
  " x < 2 ^ LENGTH('a) - 1 ; n  unat x 
    ([(0 :: 'a :: len word) .e. x] ! n) = of_nat n"
  apply (induct x arbitrary: n)
    apply simp
  by (simp add: upto_enum_word_nth)

lemma word_le_mask_out_plus_2sz:
  "x  (x AND NOT(mask sz)) + 2 ^ sz - 1"
  for x :: 'a::len word
  by (metis add_diff_eq word_neg_and_le)

lemma ucast_add:
  "ucast (a + (b :: 'a :: len word)) = ucast a + (ucast b :: ('a signed word))"
  by transfer (simp add: take_bit_add)

lemma ucast_minus:
  "ucast (a - (b :: 'a :: len word)) = ucast a - (ucast b :: ('a signed word))"
  apply (insert ucast_add[where a=a and b="-b"])
  apply (metis (no_types, opaque_lifting) add_diff_eq diff_add_cancel ucast_add)
  done

lemma scast_ucast_add_one [simp]:
  "scast (ucast (x :: 'a::len word) + (1 :: 'a signed word)) = x + 1"
  apply (subst ucast_1[symmetric])
  apply (subst ucast_add[symmetric])
  apply clarsimp
  done

lemma word_and_le_plus_one:
  "a > 0  (x :: 'a :: len word) AND (a - 1) < a"
  by (simp add: gt0_iff_gem1 word_and_less')

lemma unat_of_ucast_then_shift_eq_unat_of_shift[simp]:
  "LENGTH('b)  LENGTH('a)
    unat ((ucast (x :: 'a :: len word) :: 'b :: len word) >> n) = unat (x >> n)"
  by (simp add: shiftr_div_2n' unat_ucast_up_simp)

lemma unat_of_ucast_then_mask_eq_unat_of_mask[simp]:
  "LENGTH('b)  LENGTH('a)
    unat ((ucast (x :: 'a :: len word) :: 'b :: len word) AND mask m) = unat (x AND mask m)"
  by (metis ucast_and_mask unat_ucast_up_simp)

lemma shiftr_less_t2n3:
  " (2 :: 'a word) ^ (n + m) = 0; m < LENGTH('a) 
    (x :: 'a :: len word) >> n < 2 ^ m"
  by (fastforce intro: shiftr_less_t2n' simp: mask_eq_decr_exp power_overflow)

lemma unat_shiftr_le_bound:
  " 2 ^ (LENGTH('a :: len) - n) - 1  bnd; 0 < n 
    unat ((x :: 'a word) >> n)  bnd"
  apply transfer
  apply (simp add: take_bit_drop_bit)
  apply (simp add: drop_bit_take_bit)
  apply (rule order_trans)
   defer
   apply assumption
  apply (simp add: nat_le_iff of_nat_diff)
  done

lemma shiftr_eqD:
  " x >> n = y >> n; is_aligned x n; is_aligned y n 
    x = y"
  by (metis is_aligned_shiftr_shiftl)

lemma word_shiftr_shiftl_shiftr_eq_shiftr:
  "a  b  (x :: 'a :: len word) >> a << b >> b = x >> a"
  apply (rule bit_word_eqI)
  apply (auto simp add: bit_simps dest: bit_imp_le_length)
  done

lemma of_int_uint_ucast:
   "of_int (uint (x :: 'a::len word)) = (ucast x :: 'b::len word)"
  by (fact Word.of_int_uint)

lemma mod_mask_drop:
  " m = 2 ^ n; 0 < m; mask n AND msk = mask n 
    (x mod m) AND msk = x mod m"
  for x :: 'a::len word
  by (simp add: word_mod_2p_is_mask word_bw_assocs)

lemma mask_eq_ucast_eq:
  " x AND mask LENGTH('a) = (x :: ('c :: len word));
     LENGTH('a)  LENGTH('b)
     ucast (ucast x :: ('a :: len word)) = (ucast x :: ('b :: len word))"
  by (metis ucast_and_mask ucast_id ucast_ucast_mask ucast_up_eq)

lemma of_nat_less_t2n:
  "of_nat i < (2 :: ('a :: len) word) ^ n  n < LENGTH('a)  unat (of_nat i :: 'a word) < 2 ^ n"
  by (metis order_less_trans p2_gt_0 unat_less_power word_neq_0_conv)

lemma two_power_increasing_less_1:
  " n  m; m  LENGTH('a)   (2 :: 'a :: len word) ^ n - 1  2 ^ m - 1"
  by (metis diff_diff_cancel le_m1_iff_lt less_imp_diff_less p2_gt_0 two_power_increasing
            word_1_le_power word_le_minus_mono_left word_less_sub_1)

lemma word_sub_mono4:
  " y + x  z + x; y  y + x; z  z + x   y  z" for y :: "'a :: len word"
  by (simp add: word_add_le_iff2)

lemma eq_or_less_helperD:
  " n = unat (2 ^ m - 1 :: 'a :: len word)  n < unat (2 ^ m - 1 :: 'a word); m < LENGTH('a) 
    n < 2 ^ m"
  by (meson le_less_trans nat_less_le unat_less_power word_power_less_1)

lemma mask_sub:
  "n  m  mask m - mask n = mask m AND NOT(mask n :: 'a::len word)"
  by (metis (full_types) and_mask_eq_iff_shiftr_0 mask_out_sub_mask shiftr_mask_le word_bw_comms(1))

lemma neg_mask_diff_bound:
  "sz' sz  (ptr AND NOT(mask sz')) - (ptr AND NOT(mask sz))  2 ^ sz - 2 ^ sz'"
  (is "_  ?lhs  ?rhs")
  for ptr :: 'a::len word
proof -
  assume lt: "sz'  sz"
  hence "?lhs = ptr AND (mask sz AND NOT(mask sz'))"
    by (metis add_diff_cancel_left' multiple_mask_trivia)
  also have "  ?rhs" using lt
    by (metis (mono_tags) add_diff_eq diff_eq_eq eq_iff mask_2pm1 mask_sub word_and_le')
  finally show ?thesis by simp
qed

lemma mask_out_eq_0:
  " idx < 2 ^ sz; sz < LENGTH('a)   (of_nat idx :: 'a :: len word) AND NOT(mask sz) = 0"
  by (simp add: of_nat_power less_mask_eq mask_eq_0_eq_x)

lemma is_aligned_neg_mask_eq':
  "is_aligned ptr sz = (ptr AND NOT(mask sz) = ptr)"
  using is_aligned_mask mask_eq_0_eq_x by blast

lemma neg_mask_mask_unat:
  "sz < LENGTH('a)
    unat ((ptr :: 'a :: len word) AND NOT(mask sz)) + unat (ptr AND mask sz) = unat ptr"
  by (metis AND_NOT_mask_plus_AND_mask_eq unat_plus_simple word_and_le2)

lemma unat_pow_le_intro:
  "LENGTH('a)  n  unat (x :: 'a :: len word) < 2 ^ n"
  by (metis lt2p_lem not_le of_nat_le_iff of_nat_numeral semiring_1_class.of_nat_power uint_nat)

lemma unat_shiftl_less_t2n:
  unat (x << n) < 2 ^ m
  if unat (x :: 'a :: len word) < 2 ^ (m - n) m < LENGTH('a)
proof (cases n  m)
  case False
  with that show ?thesis
    apply (transfer fixing: m n)
    apply (simp add: not_le take_bit_push_bit)
    apply (metis diff_le_self order_le_less_trans push_bit_of_0 take_bit_0 take_bit_int_eq_self
      take_bit_int_less_exp take_bit_nonnegative take_bit_tightened)
    done
next
  case True
  moreover define q r where q = m - n and r = LENGTH('a) - n - q
  ultimately have m - n = q m = n + q LENGTH('a) = r + q + n
    using that by simp_all
  with that show ?thesis
    apply (transfer fixing: m n q r)
    apply (simp add: not_le take_bit_push_bit)
    apply (simp add: push_bit_eq_mult power_add)
    using take_bit_tightened_less_eq_int [of r + q r + q + n]
    apply (rule le_less_trans)
     apply simp_all
    done
qed

lemma unat_is_aligned_add:
  " is_aligned p n; unat d < 2 ^ n 
    unat (p + d AND mask n) = unat d  unat (p + d AND NOT(mask n)) = unat p"
  by (metis add.right_neutral and_mask_eq_iff_le_mask and_not_mask le_mask_iff mask_add_aligned
            mask_out_add_aligned mult_zero_right shiftl_t2n shiftr_le_0)

lemma unat_shiftr_shiftl_mask_zero:
  " c + a  LENGTH('a) + b ; c < LENGTH('a) 
    unat (((q :: 'a :: len word) >> a << b) AND NOT(mask c)) = 0"
  by (fastforce intro: unat_is_aligned_add[where p=0 and n=c, simplified, THEN conjunct2]
                       unat_shiftl_less_t2n unat_shiftr_less_t2n unat_pow_le_intro)

lemmas of_nat_ucast = ucast_of_nat[symmetric]

lemma shift_then_mask_eq_shift_low_bits:
  "x  mask (low_bits + high_bits)  (x >> low_bits) AND mask high_bits = x >> low_bits"
  for x :: 'a::len word
  by (simp add: leq_mask_shift le_mask_imp_and_mask)

lemma leq_low_bits_iff_zero:
  " x  mask (low bits + high bits); x >> low_bits = 0   (x AND mask low_bits = 0) = (x = 0)"
  for x :: 'a::len word
  using and_mask_eq_iff_shiftr_0 by force

lemma unat_less_iff:
  " unat (a :: 'a :: len word) = b; c < 2 ^ LENGTH('a)   (a < of_nat c) = (b < c)"
  using unat_ucast_less_no_overflow_simp by blast

lemma is_aligned_no_overflow3:
 " is_aligned (a :: 'a :: len word) n; n < LENGTH('a); b < 2 ^ n; c  2 ^ n; b < c 
   a + b  a + (c - 1)"
  by (meson is_aligned_no_wrap' le_m1_iff_lt not_le word_less_sub_1 word_plus_mono_right)

lemma mask_add_aligned_right:
  "is_aligned p n  (q + p) AND mask n = q AND mask n"
  by (simp add: mask_add_aligned add.commute)

lemma leq_high_bits_shiftr_low_bits_leq_bits_mask:
  "x  mask high_bits  (x :: 'a :: len word) << low_bits  mask (low_bits + high_bits)"
  by (metis le_mask_shiftl_le_mask)

lemma word_two_power_neg_ineq:
  "2 ^ m  (0 :: 'a word)  2 ^ n  - (2 ^ m :: 'a :: len word)"
  apply (cases "n < LENGTH('a)"; simp add: power_overflow)
  apply (cases "m < LENGTH('a)"; simp add: power_overflow)
  apply (simp add: word_le_nat_alt unat_minus word_size)
  apply (cases "LENGTH('a)"; simp)
  apply (simp add: less_Suc_eq_le)
  apply (drule power_increasing[where a=2 and n=n] power_increasing[where a=2 and n=m], simp)+
  apply (drule(1) add_le_mono)
  apply simp
  done

lemma unat_shiftl_absorb:
  " x  2 ^ p; p + k < LENGTH('a)   unat (x :: 'a :: len word) * 2 ^ k = unat (x * 2 ^ k)"
  by (smt add_diff_cancel_right' add_lessD1 le_add2 le_less_trans mult.commute nat_le_power_trans
          unat_lt2p unat_mult_lem unat_power_lower word_le_nat_alt)

lemma word_plus_mono_right_split:
  " unat ((x :: 'a :: len word) AND mask sz) + unat z < 2 ^ sz; sz < LENGTH('a) 
    x  x + z"
  apply (subgoal_tac "(x AND NOT(mask sz)) + (x AND mask sz)  (x AND NOT(mask sz)) + ((x AND mask sz) + z)")
   apply (simp add:word_plus_and_or_coroll2 field_simps)
  apply (rule word_plus_mono_right)
   apply (simp add: less_le_trans no_olen_add_nat)
  using of_nat_power is_aligned_no_wrap' by force

lemma mul_not_mask_eq_neg_shiftl:
  "NOT(mask n :: 'a::len word) = -1 << n"
  by (simp add: NOT_mask shiftl_t2n)

lemma shiftr_mul_not_mask_eq_and_not_mask:
  "(x >> n) * NOT(mask n) = - (x AND NOT(mask n))"
  for x :: 'a::len word
  by (metis NOT_mask and_not_mask mult_minus_left semiring_normalization_rules(7) shiftl_t2n)

lemma mask_eq_n1_shiftr:
  "n  LENGTH('a)  (mask n :: 'a :: len word) = -1 >> (LENGTH('a) - n)"
  by (metis diff_diff_cancel eq_refl mask_full shiftr_mask2)

lemma is_aligned_mask_out_add_eq:
  "is_aligned p n  (p + x) AND NOT(mask n) = p + (x AND NOT(mask n))"
  by (simp add: mask_out_sub_mask mask_add_aligned)

lemmas is_aligned_mask_out_add_eq_sub
    = is_aligned_mask_out_add_eq[where x="a - b" for a b, simplified field_simps]

lemma aligned_bump_down:
  "is_aligned x n  (x - 1) AND NOT(mask n) = x - 2 ^ n"
  by (drule is_aligned_mask_out_add_eq[where x="-1"]) (simp add: NOT_mask)

lemma unat_2tp_if:
  "unat (2 ^ n :: ('a :: len) word) = (if n < LENGTH ('a) then 2 ^ n else 0)"
  by (split if_split, simp_all add: power_overflow)

lemma mask_of_mask:
  "mask (n::nat) AND mask (m::nat) = (mask (min m n) :: 'a::len word)"
  by word_eqI_solve

lemma unat_signed_ucast_less_ucast:
  "LENGTH('a)  LENGTH('b)  unat (ucast (x :: 'a :: len word) :: 'b :: len signed word) = unat x"
  by (simp add: unat_ucast_up_simp)

lemma toEnum_of_ucast:
  "LENGTH('b)  LENGTH('a) 
   (toEnum (unat (b::'b :: len word))::'a :: len word) = of_nat (unat b)"
  by (simp add: unat_pow_le_intro)

lemma plus_mask_AND_NOT_mask_eq:
  "x AND NOT(mask n) = x  (x + mask n) AND NOT(mask n) = x" for x::'a::len word
  apply (subst word_plus_and_or_coroll; word_eqI; fastforce?)
  apply (erule allE, drule (1) iffD2)
  apply clarsimp
  done

lemmas unat_ucast_mask = unat_ucast_eq_unat_and_mask[where w=a for a]

lemma t2n_mask_eq_if:
  "2 ^ n AND mask m = (if n < m then 2 ^ n else (0 :: 'a::len word))"
  by word_eqI_solve

lemma unat_ucast_le:
  "unat (ucast (x :: 'a :: len word) :: 'b :: len word)  unat x"
  by (simp add: ucast_nat_def word_unat_less_le)

lemma ucast_le_up_down_iff:
  " LENGTH('a)  LENGTH('b); (x :: 'b :: len word)  ucast (- 1 :: 'a :: len word) 
    (ucast x  (y :: 'a word)) = (x  ucast y)"
  using le_max_word_ucast_id ucast_le_ucast by metis

lemma ucast_ucast_mask_shift:
  "a  LENGTH('a) + b
    ucast (ucast (p AND mask a >> b) :: 'a :: len word) = p AND mask a >> b"
  by (metis add.commute le_mask_iff shiftr_mask_le ucast_ucast_eq_mask_shift word_and_le')

lemma unat_ucast_mask_shift:
  "a  LENGTH('a) + b
    unat (ucast (p AND mask a >> b) :: 'a :: len word) = unat (p AND mask a >> b)"
  by (metis linear ucast_ucast_mask_shift unat_ucast_up_simp)

lemma mask_overlap_zero:
  "a  b  (p AND mask a) AND NOT(mask b) = 0"
  for p :: 'a::len word
  by (metis NOT_mask_AND_mask mask_lower_twice2 max_def)

lemma mask_shifl_overlap_zero:
  "a + c  b  (p AND mask a << c) AND NOT(mask b) = 0"
  for p :: 'a::len word
  by (metis and_mask_0_iff_le_mask mask_mono mask_shiftl_decompose order_trans shiftl_over_and_dist word_and_le' word_and_le2)

lemma mask_overlap_zero':
  "a  b  (p AND NOT(mask a)) AND mask b = 0"
  for p :: 'a::len word
  using mask_AND_NOT_mask mask_AND_less_0 by blast

lemma mask_rshift_mult_eq_rshift_lshift:
  "((a :: 'a :: len word) >> b) * (1 << c) = (a >> b << c)"
  by (simp add: shiftl_t2n)

lemma shift_alignment:
  "a  b  is_aligned (p >> a << a) b"
  using is_aligned_shift is_aligned_weaken by blast

lemma mask_split_sum_twice:
  "a  b  (p AND NOT(mask a)) + ((p AND mask a) AND NOT(mask b)) + (p AND mask b) = p"
  for p :: 'a::len word
  by (simp add: add.commute multiple_mask_trivia word_bw_comms(1) word_bw_lcs(1) word_plus_and_or_coroll2)

lemma mask_shift_eq_mask_mask:
  "(p AND mask a >> b << b) = (p AND mask a) AND NOT(mask b)"
  for p :: 'a::len word
  by (simp add: and_not_mask)

lemma mask_shift_sum:
  " a  b; unat n = unat (p AND mask b) 
    (p AND NOT(mask a)) + (p AND mask a >> b) * (1 << b) + n = (p :: 'a :: len word)"
  apply (simp add: shiftl_def shiftr_def flip: push_bit_eq_mult take_bit_eq_mask word_unat_eq_iff)
  apply (subst disjunctive_add)
   apply (auto simp add: bit_simps)
  apply (subst disjunctive_add)
   apply (auto simp add: bit_simps)
    apply (rule bit_word_eqI)
  apply (auto simp add: bit_simps)
  done

lemma is_up_compose:
  " is_up uc; is_up uc'   is_up (uc'  uc)"
  unfolding is_up_def by (simp add: Word.target_size Word.source_size)

lemma of_int_sint_scast:
  "of_int (sint (x :: 'a :: len word)) = (scast x :: 'b :: len word)"
  by (fact Word.of_int_sint)

lemma scast_of_nat_to_signed [simp]:
  "scast (of_nat x :: 'a :: len word) = (of_nat x :: 'a signed word)"
  by (rule bit_word_eqI) (simp add: bit_simps)

lemma scast_of_nat_signed_to_unsigned_add:
  "scast (of_nat x + of_nat y :: 'a :: len signed word) = (of_nat x + of_nat y :: 'a :: len word)"
  by (metis of_nat_add scast_of_nat)

lemma scast_of_nat_unsigned_to_signed_add:
  "(scast (of_nat x + of_nat y :: 'a :: len word)) = (of_nat x + of_nat y :: 'a :: len signed word)"
  by (metis Abs_fnat_hom_add scast_of_nat_to_signed)

lemma and_mask_cases:
  fixes x :: "'a :: len word"
  assumes len: "n < LENGTH('a)"
  shows "x AND mask n  of_nat ` set [0 ..< 2 ^ n]"
  apply (simp flip: take_bit_eq_mask)
  apply (rule image_eqI [of _ _ unat (take_bit n x)])
  using len apply simp_all
  apply transfer
  apply simp
  done

lemma sint_eq_uint_2pl:
  " (a :: 'a :: len word) < 2 ^ (LENGTH('a) - 1) 
    sint a = uint a"
  by (simp add: not_msb_from_less sint_eq_uint word_2p_lem word_size)

lemma pow_sub_less:
  " a + b  LENGTH('a); unat (x :: 'a :: len word) = 2 ^ a 
    unat (x * 2 ^ b - 1) < 2 ^ (a + b)"
  by (smt (z3) eq_or_less_helperD le_add2 le_eq_less_or_eq le_trans power_add unat_mult_lem unat_pow_le_intro unat_power_lower word_eq_unatI)

lemma sle_le_2pl:
  " (b :: 'a :: len word) < 2 ^ (LENGTH('a) - 1); a  b   a <=s b"
  by (simp add: not_msb_from_less word_sle_msb_le)

lemma sless_less_2pl:
  " (b :: 'a :: len word) < 2 ^ (LENGTH('a) - 1); a < b   a <s b"
  using not_msb_from_less word_sless_msb_less by blast

lemma and_mask2:
  "w << n >> n = w AND mask (size w - n)"
  for w :: 'a::len word
  by (rule bit_word_eqI) (auto simp add: bit_simps word_size)

lemma aligned_sub_aligned_simple:
  " is_aligned a n; is_aligned b n   is_aligned (a - b) n"
  by (simp add: aligned_sub_aligned)

lemma minus_one_shift:
  "- (1 << n) = (-1 << n :: 'a::len word)"
  by (simp add: shiftl_def minus_exp_eq_not_mask)

lemma ucast_eq_mask:
  "(UCAST('a::len  'b::len) x = UCAST('a  'b) y) =
   (x AND mask LENGTH('b) = y AND mask LENGTH('b))"
  by transfer (simp flip: take_bit_eq_mask add: ac_simps)

context
  fixes w :: "'a::len word"
begin

private lemma sbintrunc_uint_ucast:
  "Suc n = LENGTH('b::len)  signed_take_bit n (uint (ucast w :: 'b word)) = signed_take_bit n (uint w)"
  by word_eqI

private lemma test_bit_sbintrunc:
  assumes "i < LENGTH('a)"
  shows "bit (word_of_int (signed_take_bit n (uint w)) :: 'a word) i
           = (if n < i then bit w n else bit w i)"
  using assms by (simp add: bit_simps)

private lemma test_bit_sbintrunc_ucast:
  assumes len_a: "i < LENGTH('a)"
  shows "bit (word_of_int (signed_take_bit (LENGTH('b) - 1) (uint (ucast w :: 'b word))) :: 'a word) i
          = (if LENGTH('b::len)  i then bit w (LENGTH('b) - 1) else bit w i)"
  using len_a by (auto simp add: sbintrunc_uint_ucast bit_simps)

lemma scast_ucast_high_bits:
  scast (ucast w :: 'b::len word) = w
      ( i  {LENGTH('b) ..< size w}. bit w i = bit w (LENGTH('b) - 1))
proof (cases LENGTH('a)  LENGTH('b))
  case True
  moreover define m where m = LENGTH('b) - LENGTH('a)
  ultimately have LENGTH('b) = m + LENGTH('a)
    by simp
  then show ?thesis
    by (simp add: signed_ucast_eq word_size) word_eqI
next
  case False
  define q where q = LENGTH('b) - 1
  then have LENGTH('b) = Suc q
    by simp
  moreover define m where m = Suc LENGTH('a) - LENGTH('b)
  with False LENGTH('b) = Suc q have LENGTH('a) = m + q
    by (simp add: not_le)
  ultimately show ?thesis
    apply (simp add: signed_ucast_eq word_size)
    apply (transfer fixing: m q)
    apply (simp add: signed_take_bit_take_bit)
    apply (rule impI)
    apply (subst bit_eq_iff)
    apply (simp add: bit_take_bit_iff bit_signed_take_bit_iff min_def)
    apply (auto simp add: Suc_le_eq)
    using less_imp_le_nat apply blast
    using less_imp_le_nat apply blast
    done
qed

lemma scast_ucast_mask_compare:
  "scast (ucast w :: 'b::len word) = w
    (w  mask (LENGTH('b) - 1)  NOT(mask (LENGTH('b) - 1))  w)"
  apply (clarsimp simp: le_mask_high_bits neg_mask_le_high_bits scast_ucast_high_bits word_size)
  apply (rule iffI; clarsimp)
   apply (rename_tac i j; case_tac "i = LENGTH('b) - 1"; case_tac "j = LENGTH('b) - 1")
  by auto

lemma ucast_less_shiftl_helper':
  " LENGTH('b) + (a::nat) < LENGTH('a); 2 ^ (LENGTH('b) + a)  n
    (ucast (x :: 'b::len word) << a) < (n :: 'a::len word)"
  apply (erule order_less_le_trans[rotated])
  using ucast_less[where x=x and 'a='a]
  apply (simp only: shiftl_t2n field_simps)
  apply (rule word_less_power_trans2; simp)
  done

end

lemma ucast_ucast_mask2:
  "is_down (UCAST ('a  'b)) 
   UCAST ('b::len  'c::len) (UCAST ('a::len  'b::len) x) = UCAST ('a  'c) (x AND mask LENGTH('b))"
  by word_eqI_solve

lemma ucast_NOT:
  "ucast (NOT x) = NOT(ucast x) AND mask (LENGTH('a))" for x::"'a::len word"
  by word_eqI_solve

lemma ucast_NOT_down:
  "is_down UCAST('a::len  'b::len)  UCAST('a  'b) (NOT x) = NOT(UCAST('a  'b) x)"
  by word_eqI

lemma upto_enum_step_shift:
  "is_aligned p n  ([p , p + 2 ^ m .e. p + 2 ^ n - 1]) = map ((+) p) [0, 2 ^ m .e. 2 ^ n - 1]"
  apply (erule is_aligned_get_word_bits)
   prefer 2
   apply (simp add: map_idI)
  apply (clarsimp simp: upto_enum_step_def)
  apply (frule is_aligned_no_overflow)
  apply (simp add: linorder_not_le [symmetric])
  done

lemma upto_enum_step_shift_red:
  " is_aligned p sz; sz < LENGTH('a); us  sz 
      [p :: 'a :: len word, p + 2 ^ us .e. p + 2 ^ sz - 1]
          = map (λx. p + of_nat x * 2 ^ us) [0 ..< 2 ^ (sz - us)]"
  apply (subst upto_enum_step_shift, assumption)
  apply (simp add: upto_enum_step_red)
  done

lemma upto_enum_step_subset:
  "set [x, y .e. z]  {x .. z}"
  apply (clarsimp simp: upto_enum_step_def linorder_not_less)
  apply (drule div_to_mult_word_lt)
  apply (rule conjI)
   apply (erule word_random[rotated])
   apply simp
  apply (rule order_trans)
   apply (erule word_plus_mono_right)
   apply simp
  apply simp
  done

lemma ucast_distrib:
  fixes M :: "'a::len word  'a::len word  'a::len word"
  fixes M' :: "'b::len word  'b::len word  'b::len word"
  fixes L :: "int  int  int"
  assumes lift_M: "x y. uint (M x y) = L (uint x) (uint y)  mod 2 ^ LENGTH('a)"
  assumes lift_M': "x y. uint (M' x y) = L (uint x) (uint y)  mod 2 ^ LENGTH('b)"
  assumes distrib: "x y. (L (x mod (2 ^ LENGTH('b))) (y mod (2 ^ LENGTH('b)))) mod (2 ^ LENGTH('b))
                               = (L x y) mod (2 ^ LENGTH('b))"
  assumes is_down: "is_down (ucast :: 'a word  'b word)"
  shows "ucast (M a b) = M' (ucast a) (ucast b)"
  apply (simp only: ucast_eq)
  apply (subst lift_M)
  apply (subst of_int_uint [symmetric], subst lift_M')
  apply (metis local.distrib local.is_down take_bit_eq_mod ucast_down_wi uint_word_of_int_eq word_of_int_uint)
  done

lemma ucast_down_add:
    "is_down (ucast:: 'a word  'b word)   ucast ((a :: 'a::len word) + b) = (ucast a + ucast b :: 'b::len word)"
  by (rule ucast_distrib [where L="(+)"], (clarsimp simp: uint_word_ariths)+, presburger, simp)

lemma ucast_down_minus:
    "is_down (ucast:: 'a word  'b word)   ucast ((a :: 'a::len word) - b) = (ucast a - ucast b :: 'b::len word)"
  apply (rule ucast_distrib [where L="(-)"], (clarsimp simp: uint_word_ariths)+)
  apply (metis mod_diff_left_eq mod_diff_right_eq)
  apply simp
  done

lemma ucast_down_mult:
    "is_down (ucast:: 'a word  'b word)   ucast ((a :: 'a::len word) * b) = (ucast a * ucast b :: 'b::len word)"
  apply (rule ucast_distrib [where L="(*)"], (clarsimp simp: uint_word_ariths)+)
  apply (metis mod_mult_eq)
  apply simp
  done

lemma scast_distrib:
  fixes M :: "'a::len word  'a::len word  'a::len word"
  fixes M' :: "'b::len word  'b::len word  'b::len word"
  fixes L :: "int  int  int"
  assumes lift_M: "x y. uint (M x y) = L (uint x) (uint y)  mod 2 ^ LENGTH('a)"
  assumes lift_M': "x y. uint (M' x y) = L (uint x) (uint y)  mod 2 ^ LENGTH('b)"
  assumes distrib: "x y. (L (x mod (2 ^ LENGTH('b))) (y mod (2 ^ LENGTH('b)))) mod (2 ^ LENGTH('b))
                               = (L x y) mod (2 ^ LENGTH('b))"
  assumes is_down: "is_down (scast :: 'a word  'b word)"
  shows "scast (M a b) = M' (scast a) (scast b)"
  apply (subst (1 2 3) down_cast_same [symmetric])
   apply (insert is_down)
   apply (clarsimp simp: is_down_def target_size source_size is_down)
  apply (rule ucast_distrib [where L=L, OF lift_M lift_M' distrib])
  apply (insert is_down)
  apply (clarsimp simp: is_down_def target_size source_size is_down)
  done

lemma scast_down_add:
    "is_down (scast:: 'a word  'b word)   scast ((a :: 'a::len word) + b) = (scast a + scast b :: 'b::len word)"
  by (rule scast_distrib [where L="(+)"], (clarsimp simp: uint_word_ariths)+, presburger, simp)

lemma scast_down_minus:
    "is_down (scast:: 'a word  'b word)   scast ((a :: 'a::len word) - b) = (scast a - scast b :: 'b::len word)"
  apply (rule scast_distrib [where L="(-)"], (clarsimp simp: uint_word_ariths)+)
  apply (metis mod_diff_left_eq mod_diff_right_eq)
  apply simp
  done

lemma scast_down_mult:
    "is_down (scast:: 'a word  'b word)   scast ((a :: 'a::len word) * b) = (scast a * scast b :: 'b::len word)"
  apply (rule scast_distrib [where L="(*)"], (clarsimp simp: uint_word_ariths)+)
  apply (metis mod_mult_eq)
  apply simp
  done

lemma scast_ucast_1:
  " is_down (ucast :: 'a word  'b word); is_down (ucast :: 'b word  'c word)  
         (scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
  by (metis down_cast_same ucast_eq ucast_down_wi)

lemma scast_ucast_3:
  " is_down (ucast :: 'a word  'c word); is_down (ucast :: 'b word  'c word)  
         (scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
  by (metis down_cast_same ucast_eq ucast_down_wi)

lemma scast_ucast_4:
  " is_up (ucast :: 'a word  'b word); is_down (ucast :: 'b word  'c word)  
         (scast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
  by (metis down_cast_same ucast_eq ucast_down_wi)

lemma scast_scast_b:
  " is_up (scast :: 'a word  'b word)  
     (scast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
  by (metis scast_eq sint_up_scast)

lemma ucast_scast_1:
  " is_down (scast :: 'a word  'b word); is_down (ucast :: 'b word  'c word)  
            (ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
  by (metis scast_eq ucast_down_wi)

lemma ucast_scast_3:
  " is_down (scast :: 'a word  'c word); is_down (ucast :: 'b word  'c word)  
     (ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
  by (metis scast_eq ucast_down_wi)

lemma ucast_scast_4:
  " is_up (scast :: 'a word  'b word); is_down (ucast :: 'b word  'c word)  
     (ucast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
  by (metis down_cast_same scast_eq sint_up_scast)

lemma ucast_ucast_a:
  " is_down (ucast :: 'b word  'c word)  
        (ucast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
  by (metis down_cast_same ucast_eq ucast_down_wi)

lemma ucast_ucast_b:
  " is_up (ucast :: 'a word  'b word)  
     (ucast (ucast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = ucast a"
  by (metis ucast_up_ucast)

lemma scast_scast_a:
  " is_down (scast :: 'b word  'c word)  
            (scast (scast (a :: 'a::len word) :: 'b::len word) :: 'c::len word) = scast a"
  apply (simp only: scast_eq)
  apply (metis down_cast_same is_up_down scast_eq ucast_down_wi)
  done

lemma scast_down_wi [OF refl]:
  "uc = scast  is_down uc  uc (word_of_int x) = word_of_int x"
  by (metis down_cast_same is_up_down ucast_down_wi)

lemmas cast_simps =
  is_down is_up
  scast_down_add scast_down_minus scast_down_mult
  ucast_down_add ucast_down_minus ucast_down_mult
  scast_ucast_1 scast_ucast_3 scast_ucast_4
  ucast_scast_1 ucast_scast_3 ucast_scast_4
  ucast_ucast_a ucast_ucast_b
  scast_scast_a scast_scast_b
  ucast_down_wi scast_down_wi
  ucast_of_nat scast_of_nat
  uint_up_ucast sint_up_scast
  up_scast_surj up_ucast_surj

lemma sdiv_word_max:
    "(sint (a :: ('a::len) word) sdiv sint (b :: ('a::len) word) < (2 ^ (size a - 1))) =
          ((a  - (2 ^ (size a - 1))  (b  -1)))"
    (is "?lhs = (¬ ?a_int_min  ¬ ?b_minus1)")
proof (rule classical)
  assume not_thesis: "¬ ?thesis"

  have not_zero: "b  0"
    using not_thesis
    by (clarsimp)

  let ?range = {- (2 ^ (size a - 1))..<2 ^ (size a - 1)} :: int set

  have result_range: "sint a sdiv sint b  ?range  {2 ^ (size a - 1)}"
    using sdiv_word_min [of a b] sdiv_word_max [of a b] by auto

  have result_range_overflow: "(sint a sdiv sint b = 2 ^ (size a - 1)) = (?a_int_min  ?b_minus1)"
    apply (rule iffI [rotated])
     apply (clarsimp simp: signed_divide_int_def sgn_if word_size sint_int_min)
    apply (rule classical)
    apply (case_tac "?a_int_min")
     apply (clarsimp simp: word_size sint_int_min)
     apply (metis diff_0_right
              int_sdiv_negated_is_minus1 minus_diff_eq minus_int_code(2)
              power_eq_0_iff sint_minus1 zero_neq_numeral)
    apply (subgoal_tac "abs (sint a) < 2 ^ (size a - 1)")
     apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1]
     apply (clarsimp simp: word_size)
    apply (insert sdiv_int_range [where a="sint a" and b="sint b"])[1]
    apply auto
    apply (cases size a)
     apply simp_all
    apply (smt (z3) One_nat_def diff_Suc_1 signed_word_eqI sint_int_min sint_range_size wsst_TYs(3))
    done

  have result_range_simple: "(sint a sdiv sint b  ?range)  ?thesis"
    apply (insert sdiv_int_range [where a="sint a" and b="sint b"])
    apply (clarsimp simp: word_size sint_int_min)
    done

  show ?thesis
    apply (rule UnE [OF result_range result_range_simple])
     apply simp
    apply (clarsimp simp: word_size)
    using result_range_overflow
    apply (clarsimp simp: word_size)
    done
qed

lemmas sdiv_word_min' = sdiv_word_min [simplified word_size, simplified]
lemmas sdiv_word_max' = sdiv_word_max [simplified word_size, simplified]

lemma signed_arith_ineq_checks_to_eq:
  "((- (2 ^ (size a - 1))  (sint a + sint b))  (sint a + sint b  (2 ^ (size a - 1) - 1)))
    = (sint a + sint b = sint (a + b ))"
  "((- (2 ^ (size a - 1))  (sint a - sint b))  (sint a - sint b  (2 ^ (size a - 1) - 1)))
    = (sint a - sint b = sint (a - b))"
  "((- (2 ^ (size a - 1))  (- sint a))  (- sint a)  (2 ^ (size a - 1) - 1))
    = ((- sint a) = sint (- a))"
  "((- (2 ^ (size a - 1))  (sint a * sint b))  (sint a * sint b  (2 ^ (size a - 1) - 1)))
    = (sint a * sint b = sint (a * b))"
  "((- (2 ^ (size a - 1))  (sint a sdiv sint b))  (sint a sdiv sint b  (2 ^ (size a - 1) - 1)))
    = (sint a sdiv sint b = sint (a sdiv b))"
  "((- (2 ^ (size a - 1))  (sint a smod sint b))  (sint a smod sint b  (2 ^ (size a - 1) - 1)))
    = (sint a smod sint b = sint (a smod b))"
  by (auto simp: sint_word_ariths word_size signed_div_arith signed_mod_arith signed_take_bit_int_eq_self_iff intro: sym dest: sym)

lemma signed_arith_sint:
  "((- (2 ^ (size a - 1))  (sint a + sint b))  (sint a + sint b  (2 ^ (size a - 1) - 1)))
     sint (a + b) = (sint a + sint b)"
  "((- (2 ^ (size a - 1))  (sint a - sint b))  (sint a - sint b  (2 ^ (size a - 1) - 1)))
     sint (a - b) = (sint a - sint b)"
  "((- (2 ^ (size a - 1))  (- sint a))  (- sint a)  (2 ^ (size a - 1) - 1))
     sint (- a) = (- sint a)"
  "((- (2 ^ (size a - 1))  (sint a * sint b))  (sint a * sint b  (2 ^ (size a - 1) - 1)))
     sint (a * b) = (sint a * sint b)"
  "((- (2 ^ (size a - 1))  (sint a sdiv sint b))  (sint a sdiv sint b  (2 ^ (size a - 1) - 1)))
     sint (a sdiv b) = (sint a sdiv sint b)"
  "((- (2 ^ (size a - 1))  (sint a smod sint b))  (sint a smod sint b  (2 ^ (size a - 1) - 1)))
     sint (a smod b) = (sint a smod sint b)"
  by (subst (asm) signed_arith_ineq_checks_to_eq; simp)+

lemma nasty_split_lt:
  x * 2 ^ n + (2 ^ n - 1)  2 ^ m - 1
    if x < 2 ^ (m - n) n  m m < LENGTH('a::len)
    for x :: 'a::len word
proof -
  define q where q = m - n
  with n  m have m = q + n
    by simp
  with x < 2 ^ (m - n) have *: i < q if bit x i for i
    using that by simp (metis bit_take_bit_iff take_bit_word_eq_self_iff)
  from m = q + n have push_bit n x OR mask n  mask m
    by (auto simp add: le_mask_high_bits word_size bit_simps dest!: *)
  then have push_bit n x + mask n  mask m
    by (simp add: disjunctive_add bit_simps)
  then show ?thesis
    by (simp add: mask_eq_exp_minus_1 push_bit_eq_mult)
qed

lemma nasty_split_less:
  "m  n; n  nm; nm < LENGTH('a::len); x < 2 ^ (nm - n)
    (x :: 'a word) * 2 ^ n + (2 ^ m - 1) < 2 ^ nm"
  apply (simp only: word_less_sub_le[symmetric])
  apply (rule order_trans [OF _ nasty_split_lt])
     apply (rule word_plus_mono_right)
      apply (rule word_sub_mono)
         apply (simp add: word_le_nat_alt)
        apply simp
       apply (simp add: word_sub_1_le[OF power_not_zero])
      apply (simp add: word_sub_1_le[OF power_not_zero])
     apply (rule is_aligned_no_wrap')
      apply (rule is_aligned_mult_triv2)
     apply simp
    apply (erule order_le_less_trans, simp)
   apply simp+
  done

end

end